Spaces:
Build error
Build error
| # -*- coding: utf-8 -*- | |
| """ArabicPoetryGeneration.ipynb | |
| Automatically generated by Colab. | |
| Original file is located at | |
| https://colab.research.google.com/drive/1HDyT5F8qnrbR_PW_HYpiM3O-7i6htGG2 | |
| """ | |
| !pip install transformers | |
| !pip install tashaphyne | |
| !pip install gradio | |
| !pip install translate | |
| import pandas as pd | |
| import nltk | |
| from nltk.tokenize import word_tokenize | |
| from transformers import BertTokenizer | |
| from transformers import AutoTokenizer | |
| import random | |
| from tashaphyne import normalize | |
| import re | |
| import numpy as np | |
| from tensorflow.keras.preprocessing.sequence import pad_sequences | |
| from tensorflow.keras.models import Sequential | |
| from tensorflow.keras.layers import Embedding, LSTM, Dense, Bidirectional, GRU | |
| import tensorflow as tf | |
| from transformers import AutoTokenizer | |
| nltk.download('punkt') | |
| nltk.download('wordnet') | |
| aurl = 'https://raw.githubusercontent.com/Obai33/NLP_PoemGenerationDatasets/main/arabicpoems.csv' | |
| adf = pd.read_csv(aurl) | |
| # Function to normalize text | |
| def normalize_text(text): | |
| normalize.strip_tashkeel(text) | |
| normalize.strip_tatweel(text) | |
| normalize.normalize_hamza(text) | |
| normalize.normalize_lamalef(text) | |
| return text | |
| # Normalize the text | |
| allah = normalize_text('ุงููู') | |
| adf = adf['poem_text'] | |
| i = random.randint(0, len(adf)) | |
| adf = adf.sample(n=100, random_state=i) | |
| adf = adf.apply(lambda x: normalize_text(x)) | |
| adf = adf[~adf.str.contains(allah)] | |
| # Function to clean text | |
| def remove_non_arabic_symbols(text): | |
| arabic_pattern = r'[\u0600-\u06FF\s]+' | |
| arabic_text = re.findall(arabic_pattern, text) | |
| cleaned_text = ''.join(arabic_text) | |
| return cleaned_text | |
| # Clean the text | |
| adf = adf.apply(lambda x: remove_non_arabic_symbols(x)) | |
| # Tokenize the text | |
| tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv2") | |
| tokens = tokenizer.tokenize(adf.tolist(), is_split_into_words=True) | |
| input_sequences = [] | |
| for line in adf: | |
| token_list = tokenizer.encode(line, add_special_tokens=True) | |
| for i in range(1, len(token_list)): | |
| n_gram_sequence = token_list[:i+1] | |
| input_sequences.append(n_gram_sequence) | |
| max_sequence_len = 100 | |
| input_sequences = np.array(pad_sequences(input_sequences, maxlen=max_sequence_len, padding='pre')) | |
| total_words = tokenizer.vocab_size | |
| xs, labels = input_sequences[:, :-1], input_sequences[:, -1] | |
| ys = tf.keras.utils.to_categorical(labels, num_classes=total_words) | |
| ############## | |
| import requests | |
| # URL of the model | |
| url = 'https://github.com/Obai33/NLP_PoemGenerationDatasets/raw/main/modelarab1.h5' | |
| # Local file path to save the model | |
| local_filename = 'modelarab1.h5' | |
| # Download the model file | |
| response = requests.get(url) | |
| with open(local_filename, 'wb') as f: | |
| f.write(response.content) | |
| # Load the pre-trained model | |
| model = tf.keras.models.load_model(local_filename) | |
| ############## | |
| # Import the necessary library for translation | |
| import translate | |
| # Function to translate text to English | |
| def translate_to_english(text): | |
| translator = translate.Translator(from_lang="ar", to_lang="en") | |
| translated_text = translator.translate(text) | |
| return translated_text | |
| def generate_arabic_text(seed_text, next_words=50): | |
| generated_text = seed_text | |
| for _ in range(next_words): | |
| token_list = tokenizer.encode(generated_text, add_special_tokens=False) | |
| token_list = pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre') | |
| predicted = np.argmax(model.predict(token_list), axis=-1) | |
| output_word = tokenizer.decode(predicted[0]) | |
| generated_text += " " + output_word | |
| reconnected_text = generated_text.replace(" ##", "") | |
| t_text = translate_to_english(reconnected_text) | |
| return reconnected_text, t_text | |
| import gradio as gr | |
| # Update Gradio interface to include both Arabic and English outputs | |
| iface = gr.Interface( | |
| fn=generate_arabic_text, | |
| inputs="text", | |
| outputs=["text", "text"], | |
| title="Arabic Poetry Generation", | |
| description="Enter Arabic text to generate a small poem.", | |
| theme="compact" | |
| ) | |
| # Run the interface | |
| iface.launch() |