Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import argparse, os | |
| import cv2 | |
| import torch | |
| import numpy as np | |
| import torchvision | |
| from omegaconf import OmegaConf | |
| from PIL import Image | |
| from tqdm import tqdm, trange | |
| from itertools import islice | |
| from einops import rearrange | |
| from torchvision.utils import make_grid | |
| import time | |
| from pytorch_lightning import seed_everything | |
| from torch import autocast | |
| from contextlib import nullcontext | |
| from ldm.util import instantiate_from_config | |
| from ldm.models.diffusion.ddim import DDIMSampler | |
| from ldm.modules.diffusionmodules.openaimodel import clear_feature_dic,get_feature_dic | |
| from ldm.models.seg_module import Segmodule | |
| import numpy as np | |
| os.environ["CUDA_VISIBLE_DEVICES"] = "0" | |
| device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| def chunk(it, size): | |
| it = iter(it) | |
| return iter(lambda: tuple(islice(it, size)), ()) | |
| def numpy_to_pil(images): | |
| """ | |
| Convert a numpy image or a batch of images to a PIL image. | |
| """ | |
| if images.ndim == 3: | |
| images = images[None, ...] | |
| images = (images * 255).round().astype("uint8") | |
| pil_images = [Image.fromarray(image) for image in images] | |
| return pil_images | |
| def load_model_from_config(config, ckpt, verbose=False): | |
| print(f"Loading model from {ckpt}") | |
| pl_sd = torch.load(ckpt, map_location="cpu") | |
| if "global_step" in pl_sd: | |
| print(f"Global Step: {pl_sd['global_step']}") | |
| sd = pl_sd["state_dict"] | |
| model = instantiate_from_config(config.model) | |
| m, u = model.load_state_dict(sd, strict=False) | |
| if len(m) > 0 and verbose: | |
| print("missing keys:") | |
| print(m) | |
| if len(u) > 0 and verbose: | |
| print("unexpected keys:") | |
| print(u) | |
| model.to(device) | |
| model.eval() | |
| return model | |
| def put_watermark(img, wm_encoder=None): | |
| if wm_encoder is not None: | |
| img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
| img = wm_encoder.encode(img, 'dwtDct') | |
| img = Image.fromarray(img[:, :, ::-1]) | |
| return img | |
| def load_replacement(x): | |
| try: | |
| hwc = x.shape | |
| y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0])) | |
| y = (np.array(y)/255.0).astype(x.dtype) | |
| assert y.shape == x.shape | |
| return y | |
| except Exception: | |
| return x | |
| def plot_mask(img, masks, colors=None, alpha=0.8,indexlist=[0,1]) -> np.ndarray: | |
| """Visualize segmentation mask. | |
| Parameters | |
| ---------- | |
| img: numpy.ndarray | |
| Image with shape `(H, W, 3)`. | |
| masks: numpy.ndarray | |
| Binary images with shape `(N, H, W)`. | |
| colors: numpy.ndarray | |
| corlor for mask, shape `(N, 3)`. | |
| if None, generate random color for mask | |
| alpha: float, optional, default 0.5 | |
| Transparency of plotted mask | |
| Returns | |
| ------- | |
| numpy.ndarray | |
| The image plotted with segmentation masks, shape `(H, W, 3)` | |
| """ | |
| H,W= masks.shape[0],masks.shape[1] | |
| color_list=[[255,97,0],[128,42,42],[220,220,220],[255,153,18],[56,94,15],[127,255,212],[210,180,140],[221,160,221],[255,0,0],[255,128,0],[255,255,0],[128,255,0],[0,255,0],[0,255,128],[0,255,255],[0,128,255],[0,0,255],[128,0,255],[255,0,255],[255,0,128]]*6 | |
| final_color_list=[np.array([[i]*512]*512) for i in color_list] | |
| background=np.ones(img.shape)*255 | |
| count=0 | |
| colors=final_color_list[indexlist[count]] | |
| for mask, color in zip(masks, colors): | |
| color=final_color_list[indexlist[count]] | |
| mask = np.stack([mask, mask, mask], -1) | |
| img = np.where(mask, img * (1 - alpha) + color * alpha,background*0.4+img*0.6 ) | |
| count+=1 | |
| return img.astype(np.uint8) | |
| def create_parser(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--prompt", | |
| type=str, | |
| nargs="?", | |
| default="a photo of a lion on a mountain top at sunset", | |
| help="the prompt to render" | |
| ) | |
| parser.add_argument( | |
| "--category", | |
| type=str, | |
| nargs="?", | |
| default="lion", | |
| help="the category to ground" | |
| ) | |
| parser.add_argument( | |
| "--outdir", | |
| type=str, | |
| nargs="?", | |
| help="dir to write results to", | |
| default="outputs/txt2img-samples" | |
| ) | |
| parser.add_argument( | |
| "--skip_grid", | |
| action='store_true', | |
| help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", | |
| ) | |
| parser.add_argument( | |
| "--skip_save", | |
| action='store_true', | |
| help="do not save individual samples. For speed measurements.", | |
| ) | |
| parser.add_argument( | |
| "--ddim_steps", | |
| type=int, | |
| default=50, | |
| help="number of ddim sampling steps", | |
| ) | |
| parser.add_argument( | |
| "--plms", | |
| action='store_true', | |
| help="use plms sampling", | |
| ) | |
| parser.add_argument( | |
| "--laion400m", | |
| action='store_true', | |
| help="uses the LAION400M model", | |
| ) | |
| parser.add_argument( | |
| "--fixed_code", | |
| action='store_true', | |
| help="if enabled, uses the same starting code across samples ", | |
| ) | |
| parser.add_argument( | |
| "--ddim_eta", | |
| type=float, | |
| default=0.0, | |
| help="ddim eta (eta=0.0 corresponds to deterministic sampling", | |
| ) | |
| parser.add_argument( | |
| "--n_iter", | |
| type=int, | |
| default=1, | |
| help="sample this often", | |
| ) | |
| parser.add_argument( | |
| "--H", | |
| type=int, | |
| default=512, | |
| help="image height, in pixel space", | |
| ) | |
| parser.add_argument( | |
| "--W", | |
| type=int, | |
| default=512, | |
| help="image width, in pixel space", | |
| ) | |
| parser.add_argument( | |
| "--C", | |
| type=int, | |
| default=4, | |
| help="latent channels", | |
| ) | |
| parser.add_argument( | |
| "--f", | |
| type=int, | |
| default=8, | |
| help="downsampling factor", | |
| ) | |
| parser.add_argument( | |
| "--n_samples", | |
| type=int, | |
| default=1, | |
| help="how many samples to produce for each given prompt. A.k.a. batch size", | |
| ) | |
| parser.add_argument( | |
| "--n_rows", | |
| type=int, | |
| default=0, | |
| help="rows in the grid (default: n_samples)", | |
| ) | |
| parser.add_argument( | |
| "--scale", | |
| type=float, | |
| default=7.5, | |
| help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", | |
| ) | |
| parser.add_argument( | |
| "--from-file", | |
| type=str, | |
| help="if specified, load prompts from this file", | |
| ) | |
| parser.add_argument( | |
| "--config", | |
| type=str, | |
| default="configs/stable-diffusion/v1-inference.yaml", | |
| help="path to config which constructs model", | |
| ) | |
| parser.add_argument( | |
| "--sd_ckpt", | |
| type=str, | |
| default="stable_diffusion.ckpt", | |
| help="path to checkpoint of stable diffusion model", | |
| ) | |
| parser.add_argument( | |
| "--grounding_ckpt", | |
| type=str, | |
| default="grounding_module.pth", | |
| help="path to checkpoint of grounding module", | |
| ) | |
| parser.add_argument( | |
| "--seed", | |
| type=int, | |
| default=42, | |
| help="the seed (for reproducible sampling)", | |
| ) | |
| parser.add_argument( | |
| "--precision", | |
| type=str, | |
| help="evaluate at this precision", | |
| choices=["full", "autocast"], | |
| default="autocast" | |
| ) | |
| opt = parser.parse_args() | |
| return opt | |
| def main(): | |
| opt = create_parser() | |
| print(opt) | |
| seed_everything(opt.seed) | |
| tic = time.time() | |
| config = OmegaConf.load(f"{opt.config}") | |
| print(config) | |
| model = load_model_from_config(config, f"{opt.sd_ckpt}") | |
| device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| model = model.to(device) | |
| model.eval() | |
| toc = time.time() | |
| seg_module=Segmodule().to(device) | |
| seg_module.load_state_dict(torch.load(opt.grounding_ckpt, map_location="cpu"), strict=True) | |
| print('load time:',toc-tic) | |
| sampler = DDIMSampler(model) | |
| os.makedirs(opt.outdir, exist_ok=True) | |
| outpath = opt.outdir | |
| batch_size = opt.n_samples | |
| precision_scope = autocast if opt.precision=="autocast" else nullcontext | |
| def inference(input_prompt, input_category): | |
| with torch.no_grad(): | |
| with precision_scope("cuda"): | |
| with model.ema_scope(): | |
| prompt = input_prompt | |
| text = input_category | |
| trainclass = text | |
| print(type(prompt)) | |
| print(text) | |
| if not opt.from_file: | |
| assert prompt is not None | |
| data = [batch_size * [prompt]] | |
| else: | |
| print(f"reading prompts from {opt.from_file}") | |
| with open(opt.from_file, "r") as f: | |
| data = f.read().splitlines() | |
| data = list(chunk(data, batch_size)) | |
| print(data) | |
| sample_path = os.path.join(outpath, "samples") | |
| os.makedirs(sample_path, exist_ok=True) | |
| start_code = None | |
| if opt.fixed_code: | |
| print('start_code') | |
| start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device) | |
| for n in trange(opt.n_iter, desc="Sampling"): | |
| for prompts in tqdm(data, desc="data"): | |
| clear_feature_dic() | |
| uc = None | |
| if opt.scale != 1.0: | |
| uc = model.get_learned_conditioning(batch_size * [""]) | |
| if isinstance(prompts, tuple): | |
| prompts = list(prompts) | |
| c = model.get_learned_conditioning(prompts) | |
| shape = [opt.C, opt.H // opt.f, opt.W // opt.f] | |
| print('c:',c) | |
| print('uc:',uc) | |
| print(start_code) | |
| samples_ddim,_, _ = sampler.sample(S=opt.ddim_steps, | |
| conditioning=c, | |
| batch_size=opt.n_samples, | |
| shape=shape, | |
| verbose=False, | |
| unconditional_guidance_scale=opt.scale, | |
| unconditional_conditioning=uc, | |
| eta=opt.ddim_eta, | |
| x_T=start_code) | |
| x_samples_ddim = model.decode_first_stage(samples_ddim) | |
| diffusion_features = get_feature_dic() | |
| x_sample = torch.clamp((x_samples_ddim[0] + 1.0) / 2.0, min=0.0, max=1.0) | |
| x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') | |
| img = x_sample.astype(np.uint8) | |
| print("img:",img) | |
| class_name = trainclass | |
| query_text ="a photograph of a "+class_name | |
| c_split = model.cond_stage_model.tokenizer.tokenize(query_text) | |
| sen_text_embedding = model.get_learned_conditioning(query_text) | |
| class_embedding = sen_text_embedding[:, 5:len(c_split)+1, :] | |
| if class_embedding.size()[1] > 1: | |
| class_embedding = torch.unsqueeze(class_embedding.mean(1), 1) | |
| text_embedding = class_embedding | |
| text_embedding = text_embedding.repeat(batch_size, 1, 1) | |
| print('diffusion_features:', len(diffusion_features)) | |
| print('text_embedding:', text_embedding.shape) | |
| pred_seg_total = seg_module(diffusion_features, text_embedding) | |
| pred_seg = torch.unsqueeze(pred_seg_total[0,0,:,:], 0).unsqueeze(0) | |
| label_pred_prob = torch.sigmoid(pred_seg) | |
| label_pred_mask = torch.zeros_like(label_pred_prob, dtype=torch.float32) | |
| label_pred_mask[label_pred_prob > 0.5] = 1 | |
| annotation_pred = label_pred_mask[0][0].cpu() | |
| mask = annotation_pred.numpy() | |
| mask = np.expand_dims(mask, 0) | |
| done_image_mask = plot_mask(img, mask, alpha=0.9, indexlist=[0]) | |
| print("done_image_mask:", type(done_image_mask)) | |
| generated_image = img | |
| generated_mask = done_image_mask | |
| print('done') | |
| return [generated_image, generated_mask] | |
| with gr.Blocks() as demo: | |
| gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;"> | |
| Guiding Text-to-Image Diffusion Model Towards Grounded Generation | |
| </h1> | |
| <p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. | |
| <br/> | |
| <a href="https://huggingface.co/spaces/Purple11/Grounded-Diffusion?duplicate=true"> | |
| <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
| <p/>""") | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| Prompt = gr.Textbox(lines=1, label="Prompt", interactive=True) | |
| with gr.Column(scale=2): | |
| Category = gr.Textbox(lines=1, label="Category", interactive=True) | |
| with gr.Column(scale=1, min_width=100): | |
| generate_button = gr.Button("Generate") | |
| with gr.Row(): | |
| generated_image = gr.Image(label="Generated Image", type="pil", interactive=False) | |
| generated_mask = gr.Image(label=f"Generated Mask", type="pil", interactive=False) | |
| generated_image.style(height=512, width=512) | |
| generated_mask.style(height=512, width=512) | |
| generate_button.click( | |
| fn=inference, | |
| inputs=[ | |
| Prompt, | |
| Category, | |
| ], | |
| outputs=[generated_image, generated_mask], | |
| ) | |
| demo.queue(concurrency_count=1) | |
| demo.launch(share=False) | |
| if __name__ == "__main__": | |
| main() |