File size: 7,687 Bytes
a42ebba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import numpy as np
import os
import torch
from einops import rearrange

script_directory = os.path.dirname(os.path.abspath(__file__))

class Camera(object):
    """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
    """
    def __init__(self, entry):
        fx, fy, cx, cy = entry[1:5]
        self.fx = fx
        self.fy = fy
        self.cx = cx
        self.cy = cy
        w2c_mat = np.array(entry[7:]).reshape(3, 4)
        w2c_mat_4x4 = np.eye(4)
        w2c_mat_4x4[:3, :] = w2c_mat
        self.w2c_mat = w2c_mat_4x4
        self.c2w_mat = np.linalg.inv(w2c_mat_4x4)

def custom_meshgrid(*args):
    """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
    """
    # ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
    return torch.meshgrid(*args)
   

def get_relative_pose(cam_params):
    """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
    """
    abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
    abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
    cam_to_origin = 0
    target_cam_c2w = np.array([
        [1, 0, 0, 0],
        [0, 1, 0, -cam_to_origin],
        [0, 0, 1, 0],
        [0, 0, 0, 1]
    ])
    abs2rel = target_cam_c2w @ abs_w2cs[0]
    ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
    ret_poses = np.array(ret_poses, dtype=np.float32)
    return ret_poses

def ray_condition(K, c2w, H, W, device):
    """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
    """
    # c2w: B, V, 4, 4
    # K: B, V, 4

    B = K.shape[0]

    j, i = custom_meshgrid(
        torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
        torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype),
    )
    i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5  # [B, HxW]
    j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5  # [B, HxW]

    fx, fy, cx, cy = K.chunk(4, dim=-1)  # B,V, 1

    zs = torch.ones_like(i)  # [B, HxW]
    xs = (i - cx) / fx * zs
    ys = (j - cy) / fy * zs
    zs = zs.expand_as(ys)

    directions = torch.stack((xs, ys, zs), dim=-1)  # B, V, HW, 3
    directions = directions / directions.norm(dim=-1, keepdim=True)  # B, V, HW, 3

    rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2)  # B, V, 3, HW
    rays_o = c2w[..., :3, 3]  # B, V, 3
    rays_o = rays_o[:, :, None].expand_as(rays_d)  # B, V, 3, HW
    # c2w @ dirctions
    rays_dxo = torch.cross(rays_o, rays_d)
    plucker = torch.cat([rays_dxo, rays_d], dim=-1)
    plucker = plucker.reshape(B, c2w.shape[1], H, W, 6)  # B, V, H, W, 6
    # plucker = plucker.permute(0, 1, 4, 2, 3)
    return plucker

def process_poses(poses, width=672, height=384, original_pose_width=1280, original_pose_height=720, device='cpu', return_poses=False):
    """Modified from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
    """
    
    cam_params = [[float(x) for x in pose] for pose in poses]
    if return_poses:
        return cam_params
    else:
        cam_params = [Camera(cam_param) for cam_param in cam_params]

        sample_wh_ratio = width / height
        pose_wh_ratio = original_pose_width / original_pose_height  # Assuming placeholder ratios, change as needed

        if pose_wh_ratio > sample_wh_ratio:
            resized_ori_w = height * pose_wh_ratio
            for cam_param in cam_params:
                cam_param.fx = resized_ori_w * cam_param.fx / width
        else:
            resized_ori_h = width / pose_wh_ratio
            for cam_param in cam_params:
                cam_param.fy = resized_ori_h * cam_param.fy / height

        intrinsic = np.asarray([[cam_param.fx * width,
                                cam_param.fy * height,
                                cam_param.cx * width,
                                cam_param.cy * height]
                                for cam_param in cam_params], dtype=np.float32)

        K = torch.as_tensor(intrinsic)[None]  # [1, 1, 4]
        c2ws = get_relative_pose(cam_params)  # Assuming this function is defined elsewhere
        c2ws = torch.as_tensor(c2ws)[None]  # [1, n_frame, 4, 4]
        plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous()  # V, 6, H, W
        plucker_embedding = plucker_embedding[None]
        plucker_embedding = rearrange(plucker_embedding, "b f c h w -> b f h w c")[0]
        return plucker_embedding

class WanVideoFunCameraEmbeds:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "poses": ("CAMERACTRL_POSES", ),
            "width": ("INT", {"default": 832, "min": 64, "max": 2048, "step": 8, "tooltip": "Width of the image to encode"}),
            "height": ("INT", {"default": 480, "min": 64, "max": 29048, "step": 8, "tooltip": "Height of the image to encode"}),
            "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Strength of the camera motion"}),
            "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Start percent of the steps to apply camera motion"}),
            "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "End percent of the steps to apply camera motion"}),
            },
            # "optional": {
            #     "fun_ref_image": ("LATENT", {"tooltip": "Reference latent for the Fun 1.1 -model"}),
            # }
        }
        

    RETURN_TYPES = ("WANVIDIMAGE_EMBEDS",)
    RETURN_NAMES = ("image_embeds",)
    FUNCTION = "process"
    CATEGORY = "WanVideoWrapper"

    def process(self, poses, width, height, strength, start_percent, end_percent, fun_ref_image=None):
        num_frames = len(poses)

        control_camera_video = process_poses(poses, width, height)
        control_camera_video = control_camera_video.permute([3, 0, 1, 2]).unsqueeze(0)
        print("control_camera_video.shape", control_camera_video.shape)
       
        # Rearrange dimensions
        # Concatenate and transpose dimensions
        control_camera_latents = torch.concat(
            [
                torch.repeat_interleave(control_camera_video[:, :, 0:1], repeats=4, dim=2),
                control_camera_video[:, :, 1:]
            ], dim=2
        ).transpose(1, 2)

        # Reshape, transpose, and view into desired shape
        b, f, c, h, w = control_camera_latents.shape
        control_camera_latents = control_camera_latents.contiguous().view(b, f // 4, 4, c, h, w).transpose(2, 3)
        control_camera_latents = control_camera_latents.contiguous().view(b, f // 4, c * 4, h, w).transpose(1, 2)
        print("control_camera_latents.shape", control_camera_latents.shape)

        vae_stride = (4, 8, 8)

        target_shape = (16, (num_frames - 1) // vae_stride[0] + 1,
                        height // vae_stride[1],
                        width // vae_stride[2])
      
        embeds = {
            "target_shape": target_shape,
            "num_frames": num_frames,
            "control_embeds": {
                "control_camera_latents": control_camera_latents * strength,
                "control_camera_start_percent": start_percent,
                "control_camera_end_percent": end_percent,
                "fun_ref_image": fun_ref_image["samples"][:,:, 0] if fun_ref_image is not None else None,
            }
        }
       
        return (embeds,)

NODE_CLASS_MAPPINGS = {
    "WanVideoFunCameraEmbeds": WanVideoFunCameraEmbeds,
    }
NODE_DISPLAY_NAME_MAPPINGS = {
    "WanVideoFunCameraEmbeds": "WanVideo FunCamera Embeds",
    }