File size: 16,768 Bytes
8b7b267 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
#!/usr/bin/env python3
"""
Unified AI Service
سرویس یکپارچه AI که از هر دو روش پشتیبانی میکند:
1. Local model loading (ai_models.py)
2. HuggingFace Inference API (hf_inference_api_client.py)
"""
import os
import sys
from typing import Dict, Any, Optional
import logging
import asyncio
# اضافه کردن مسیر root به sys.path
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
logger = logging.getLogger(__name__)
# Import local model manager
try:
from ai_models import (
ensemble_crypto_sentiment as local_ensemble,
analyze_financial_sentiment as local_financial,
analyze_social_sentiment as local_social,
basic_sentiment_fallback,
registry_status,
get_model_health_registry,
initialize_models
)
LOCAL_MODELS_AVAILABLE = True
except ImportError as e:
logger.warning(f"Local models not available: {e}")
LOCAL_MODELS_AVAILABLE = False
# Import HF Inference API client
try:
from backend.services.hf_inference_api_client import HFInferenceAPIClient
HF_API_AVAILABLE = True
except ImportError as e:
logger.warning(f"HF API client not available: {e}")
HF_API_AVAILABLE = False
class UnifiedAIService:
"""
سرویس یکپارچه AI که بر اساس محیط و تنظیمات، بهترین روش را انتخاب میکند
حالتهای کاری:
1. HF_SPACE + USE_HF_API=true → استفاده از Inference API (پیشفرض در HF Space)
2. Local + USE_HF_API=false → بارگذاری مستقیم مدلها
3. HF_SPACE + USE_HF_API=false → بارگذاری مستقیم (اگر RAM کافی باشد)
4. Local + USE_HF_API=true → استفاده از API (برای تست)
"""
def __init__(self):
# تشخیص محیط
self.is_hf_space = bool(os.getenv("SPACE_ID"))
self.use_api = os.getenv("USE_HF_API", "true" if self.is_hf_space else "false").lower() == "true"
# کلاینتها
self.hf_client = None
self.local_initialized = False
# آمار
self.stats = {
"total_requests": 0,
"api_requests": 0,
"local_requests": 0,
"fallback_requests": 0,
"errors": 0
}
logger.info(f"UnifiedAIService initialized - Environment: {'HF Space' if self.is_hf_space else 'Local'}, Mode: {'API' if self.use_api else 'Local Models'}")
async def initialize(self):
"""
مقداردهی اولیه سرویس
"""
# اگر از API استفاده میکنیم، کلاینت را آماده کن
if self.use_api and HF_API_AVAILABLE:
if self.hf_client is None:
self.hf_client = HFInferenceAPIClient()
await self.hf_client.__aenter__()
logger.info("HF API client initialized")
# اگر از local استفاده میکنیم، مدلها را بارگذاری کن
if not self.use_api and LOCAL_MODELS_AVAILABLE:
if not self.local_initialized:
result = initialize_models()
self.local_initialized = True
logger.info(f"Local models initialized: {result}")
async def analyze_sentiment(
self,
text: str,
category: str = "crypto",
use_ensemble: bool = True
) -> Dict[str, Any]:
"""
تحلیل sentiment با انتخاب خودکار روش بهینه
Args:
text: متن برای تحلیل
category: دستهبندی (crypto, financial, social)
use_ensemble: استفاده از ensemble
Returns:
Dict شامل نتیجه تحلیل
"""
self.stats["total_requests"] += 1
# اگر متن خالی است
if not text or len(text.strip()) == 0:
return {
"status": "error",
"error": "Empty text",
"label": "neutral",
"confidence": 0.0
}
try:
# انتخاب روش بر اساس تنظیمات
if self.use_api and HF_API_AVAILABLE:
result = await self._analyze_via_api(text, category, use_ensemble)
self.stats["api_requests"] += 1
elif LOCAL_MODELS_AVAILABLE:
result = await self._analyze_via_local(text, category)
self.stats["local_requests"] += 1
else:
# fallback به تحلیل لغوی
result = self._fallback_analysis(text)
self.stats["fallback_requests"] += 1
return result
except Exception as e:
logger.error(f"Error in analyze_sentiment: {e}")
self.stats["errors"] += 1
# fallback در صورت خطا
return self._fallback_analysis(text)
async def _analyze_via_api(
self,
text: str,
category: str,
use_ensemble: bool
) -> Dict[str, Any]:
"""
تحلیل با استفاده از HF Inference API
"""
if self.hf_client is None:
await self.initialize()
try:
if use_ensemble:
# استفاده از ensemble
models = self._get_models_for_category(category)
result = await self.hf_client.ensemble_sentiment(text, models)
else:
# استفاده از تک مدل
model_key = self._get_primary_model_for_category(category)
result = await self.hf_client.analyze_sentiment(text, model_key)
# اگر نتیجه موفق بود
if result.get("status") == "success":
return result
# اگر مدل در حال بارگذاری است
elif result.get("status") == "loading":
# تلاش با مدل دیگر
fallback_key = self._get_fallback_model(category)
result = await self.hf_client.analyze_sentiment(text, fallback_key)
if result.get("status") == "success":
result["used_fallback"] = True
return result
# در غیر این صورت، fallback
return self._fallback_analysis(text)
except Exception as e:
logger.error(f"API analysis failed: {e}")
return self._fallback_analysis(text)
async def _analyze_via_local(
self,
text: str,
category: str
) -> Dict[str, Any]:
"""
تحلیل با استفاده از مدلهای local
"""
if not self.local_initialized:
await self.initialize()
try:
# انتخاب تابع بر اساس category
if category == "crypto":
result = local_ensemble(text)
elif category == "financial":
result = local_financial(text)
elif category == "social":
result = local_social(text)
else:
result = local_ensemble(text)
# اطمینان از وجود فیلدهای مورد نیاز
if not isinstance(result, dict):
result = self._fallback_analysis(text)
elif "label" not in result:
result = self._fallback_analysis(text)
return result
except Exception as e:
logger.error(f"Local analysis failed: {e}")
return self._fallback_analysis(text)
def _fallback_analysis(self, text: str) -> Dict[str, Any]:
"""
تحلیل fallback (لغوی)
"""
if LOCAL_MODELS_AVAILABLE:
return basic_sentiment_fallback(text)
else:
# تحلیل ساده لغوی
return self._simple_lexical_analysis(text)
def _simple_lexical_analysis(self, text: str) -> Dict[str, Any]:
"""
تحلیل لغوی ساده (برای زمانی که هیچ مدلی در دسترس نیست)
"""
text_lower = text.lower()
bullish_words = ["bullish", "rally", "surge", "pump", "moon", "buy", "up", "high", "gain", "profit"]
bearish_words = ["bearish", "dump", "crash", "sell", "down", "low", "loss", "drop", "fall", "decline"]
bullish_count = sum(1 for word in bullish_words if word in text_lower)
bearish_count = sum(1 for word in bearish_words if word in text_lower)
if bullish_count > bearish_count:
label = "bullish"
confidence = min(0.6 + (bullish_count - bearish_count) * 0.05, 0.9)
elif bearish_count > bullish_count:
label = "bearish"
confidence = min(0.6 + (bearish_count - bullish_count) * 0.05, 0.9)
else:
label = "neutral"
confidence = 0.5
return {
"status": "success",
"label": label,
"confidence": confidence,
"score": confidence,
"engine": "simple_lexical",
"available": True
}
def _get_models_for_category(self, category: str) -> list:
"""
دریافت لیست مدلها بر اساس category
"""
if category == "crypto":
return ["crypto_sentiment", "social_sentiment"]
elif category == "financial":
return ["financial_sentiment", "fintwit_sentiment"]
elif category == "social":
return ["social_sentiment", "twitter_sentiment"]
else:
return ["crypto_sentiment", "financial_sentiment"]
def _get_primary_model_for_category(self, category: str) -> str:
"""
دریافت مدل اصلی بر اساس category
"""
mapping = {
"crypto": "crypto_sentiment",
"financial": "financial_sentiment",
"social": "social_sentiment",
"twitter": "twitter_sentiment"
}
return mapping.get(category, "crypto_sentiment")
def _get_fallback_model(self, category: str) -> str:
"""
دریافت مدل fallback
"""
if category == "crypto":
return "twitter_sentiment"
elif category == "financial":
return "crypto_sentiment"
else:
return "crypto_sentiment"
def get_service_info(self) -> Dict[str, Any]:
"""
اطلاعات سرویس
"""
info = {
"environment": "HF Space" if self.is_hf_space else "Local",
"mode": "Inference API" if self.use_api else "Local Models",
"hf_api_available": HF_API_AVAILABLE,
"local_models_available": LOCAL_MODELS_AVAILABLE,
"initialized": self.local_initialized or (self.hf_client is not None),
"stats": self.stats.copy()
}
# اضافه کردن اطلاعات مدلهای local
if LOCAL_MODELS_AVAILABLE and not self.use_api:
try:
info["local_status"] = registry_status()
except Exception as e:
info["local_status_error"] = str(e)
return info
def get_health_status(self) -> Dict[str, Any]:
"""
وضعیت سلامت سرویس
"""
health = {
"status": "healthy",
"checks": {
"api_available": HF_API_AVAILABLE,
"local_available": LOCAL_MODELS_AVAILABLE,
"client_initialized": self.hf_client is not None,
"local_initialized": self.local_initialized
}
}
# بررسی وضعیت مدلهای local
if LOCAL_MODELS_AVAILABLE and not self.use_api:
try:
model_health = get_model_health_registry()
health["model_health"] = {
"total_models": len(model_health),
"healthy": sum(1 for m in model_health if m.get("status") == "healthy"),
"degraded": sum(1 for m in model_health if m.get("status") == "degraded"),
"unavailable": sum(1 for m in model_health if m.get("status") == "unavailable")
}
except Exception as e:
health["model_health_error"] = str(e)
# تعیین وضعیت کلی
if not HF_API_AVAILABLE and not LOCAL_MODELS_AVAILABLE:
health["status"] = "degraded"
health["warning"] = "No AI services available, using fallback"
elif self.use_api and not HF_API_AVAILABLE:
health["status"] = "degraded"
health["warning"] = "API mode enabled but client not available"
return health
async def close(self):
"""
بستن سرویس و آزادسازی منابع
"""
if self.hf_client:
await self.hf_client.__aexit__(None, None, None)
self.hf_client = None
logger.info("HF API client closed")
# ===== توابع کمکی سراسری =====
# سرویس سراسری (Singleton)
_unified_service = None
async def get_unified_service() -> UnifiedAIService:
"""
دریافت سرویس یکپارچه (Singleton)
"""
global _unified_service
if _unified_service is None:
_unified_service = UnifiedAIService()
await _unified_service.initialize()
return _unified_service
async def analyze_text(
text: str,
category: str = "crypto",
use_ensemble: bool = True
) -> Dict[str, Any]:
"""
تحلیل سریع متن
Args:
text: متن برای تحلیل
category: دستهبندی
use_ensemble: استفاده از ensemble
Returns:
Dict شامل نتیجه
"""
service = await get_unified_service()
return await service.analyze_sentiment(text, category, use_ensemble)
# ===== مثال استفاده =====
if __name__ == "__main__":
async def test_service():
"""تست سرویس یکپارچه"""
print("🧪 Testing Unified AI Service...")
service = await get_unified_service()
# نمایش اطلاعات سرویس
print("\n1️⃣ Service Info:")
info = service.get_service_info()
print(f" Environment: {info['environment']}")
print(f" Mode: {info['mode']}")
print(f" API Available: {info['hf_api_available']}")
print(f" Local Available: {info['local_models_available']}")
# بررسی سلامت
print("\n2️⃣ Health Status:")
health = service.get_health_status()
print(f" Status: {health['status']}")
print(f" Checks: {health['checks']}")
# تست تحلیل
print("\n3️⃣ Sentiment Analysis Tests:")
test_texts = [
("Bitcoin is showing strong bullish momentum!", "crypto"),
("Market crash incoming, sell everything!", "crypto"),
("Institutional investors are accumulating", "financial"),
]
for text, category in test_texts:
print(f"\n Text: {text}")
print(f" Category: {category}")
result = await service.analyze_sentiment(text, category, use_ensemble=True)
if result.get("status") == "success":
print(f" ✅ Sentiment: {result['label']}")
print(f" 📊 Confidence: {result['confidence']:.2%}")
print(f" 🤖 Engine: {result.get('engine', 'unknown')}")
else:
print(f" ❌ Error: {result.get('error', 'Unknown')}")
# نمایش آمار
print("\n4️⃣ Service Statistics:")
stats = service.stats
print(f" Total requests: {stats['total_requests']}")
print(f" API requests: {stats['api_requests']}")
print(f" Local requests: {stats['local_requests']}")
print(f" Fallback requests: {stats['fallback_requests']}")
print(f" Errors: {stats['errors']}")
# بستن سرویس
await service.close()
print("\n✅ Testing complete!")
import asyncio
asyncio.run(test_service())
|