File size: 15,241 Bytes
8b7b267 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
#!/usr/bin/env python3
"""
HuggingFace Data Hub API Endpoints
Serve data FROM HuggingFace Datasets to clients
This API ensures all data comes from HuggingFace Datasets:
External APIs → Workers → HuggingFace Datasets → THIS API → Clients
"""
import os
import logging
from typing import List, Optional, Dict, Any
from datetime import datetime
from fastapi import APIRouter, HTTPException, Query, Depends
from pydantic import BaseModel, Field
# Import authentication
from api.hf_auth import verify_hf_token
try:
from datasets import load_dataset
DATASETS_AVAILABLE = True
except ImportError:
DATASETS_AVAILABLE = False
from utils.logger import setup_logger
logger = setup_logger("hf_data_hub_api")
# Create router
router = APIRouter(prefix="/api/hub", tags=["data-hub"])
# Response models
class MarketDataResponse(BaseModel):
"""Market data response model"""
symbol: str
price: float
market_cap: Optional[float] = None
volume_24h: Optional[float] = None
change_24h: Optional[float] = None
high_24h: Optional[float] = None
low_24h: Optional[float] = None
provider: str
timestamp: str
fetched_at: str
class OHLCDataResponse(BaseModel):
"""OHLC data response model"""
symbol: str
interval: str
timestamp: str
open: float
high: float
low: float
close: float
volume: float
provider: str
fetched_at: str
class DataHubStatus(BaseModel):
"""Data hub status response"""
status: str
message: str
market_dataset: Dict[str, Any]
ohlc_dataset: Dict[str, Any]
timestamp: str
# Configuration
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HF_API_TOKEN")
HF_USERNAME = os.getenv("HF_USERNAME", "crypto-data-hub")
MARKET_DATASET = f"{HF_USERNAME}/crypto-market-data"
OHLC_DATASET = f"{HF_USERNAME}/crypto-ohlc-data"
def _load_market_dataset():
"""Load market data dataset from HuggingFace"""
try:
if not DATASETS_AVAILABLE:
raise ImportError("datasets library not available")
logger.info(f"Loading market dataset from HuggingFace: {MARKET_DATASET}")
dataset = load_dataset(
MARKET_DATASET,
split="train",
token=HF_TOKEN
)
return dataset
except Exception as e:
logger.error(f"Error loading market dataset: {e}")
return None
def _load_ohlc_dataset():
"""Load OHLC dataset from HuggingFace"""
try:
if not DATASETS_AVAILABLE:
raise ImportError("datasets library not available")
logger.info(f"Loading OHLC dataset from HuggingFace: {OHLC_DATASET}")
dataset = load_dataset(
OHLC_DATASET,
split="train",
token=HF_TOKEN
)
return dataset
except Exception as e:
logger.error(f"Error loading OHLC dataset: {e}")
return None
@router.get(
"/status",
response_model=DataHubStatus,
summary="Data Hub Status",
description="Get status of HuggingFace Data Hub and available datasets"
)
async def get_hub_status():
"""
Get Data Hub status and dataset information
Returns information about available HuggingFace Datasets:
- Market data dataset (prices, volumes, market caps)
- OHLC dataset (candlestick data)
- Dataset sizes and last update times
This endpoint does NOT require authentication.
"""
try:
market_info = {"available": False, "records": 0, "error": None}
ohlc_info = {"available": False, "records": 0, "error": None}
# Check market dataset
try:
market_dataset = _load_market_dataset()
if market_dataset:
market_info = {
"available": True,
"records": len(market_dataset),
"columns": market_dataset.column_names,
"url": f"https://huggingface.co/datasets/{MARKET_DATASET}"
}
except Exception as e:
market_info["error"] = str(e)
# Check OHLC dataset
try:
ohlc_dataset = _load_ohlc_dataset()
if ohlc_dataset:
ohlc_info = {
"available": True,
"records": len(ohlc_dataset),
"columns": ohlc_dataset.column_names,
"url": f"https://huggingface.co/datasets/{OHLC_DATASET}"
}
except Exception as e:
ohlc_info["error"] = str(e)
return DataHubStatus(
status="healthy" if (market_info["available"] or ohlc_info["available"]) else "degraded",
message="Data Hub operational" if (market_info["available"] or ohlc_info["available"]) else "No datasets available",
market_dataset=market_info,
ohlc_dataset=ohlc_info,
timestamp=datetime.utcnow().isoformat() + "Z"
)
except Exception as e:
logger.error(f"Error getting hub status: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Error getting hub status: {str(e)}")
@router.get(
"/market",
response_model=List[MarketDataResponse],
summary="Get Market Data from HuggingFace",
description="Fetch real-time cryptocurrency market data FROM HuggingFace Datasets"
)
async def get_market_data_from_hub(
symbols: Optional[str] = Query(None, description="Comma-separated list of symbols (e.g., 'BTC,ETH')"),
limit: int = Query(100, ge=1, le=1000, description="Maximum number of records to return"),
_: dict = Depends(verify_hf_token)
):
"""
Get market data FROM HuggingFace Dataset
Data Flow:
HuggingFace Dataset → THIS API → Client
Authentication: Required (HF_TOKEN)
Query Parameters:
- symbols: Filter by specific symbols (comma-separated)
- limit: Maximum records to return (1-1000)
Returns:
List of market data records with prices, volumes, market caps, etc.
This endpoint ensures data is served FROM HuggingFace Datasets,
NOT from local cache or external APIs.
"""
try:
# Load dataset from HuggingFace
logger.info(f"Fetching market data FROM HuggingFace Dataset: {MARKET_DATASET}")
dataset = _load_market_dataset()
if not dataset:
raise HTTPException(
status_code=503,
detail="Market dataset not available on HuggingFace"
)
# Convert to pandas for filtering
df = dataset.to_pandas()
if df.empty:
raise HTTPException(
status_code=404,
detail="No market data available in HuggingFace Dataset"
)
# Filter by symbols if provided
if symbols:
symbol_list = [s.strip().upper() for s in symbols.split(",")]
df = df[df["symbol"].isin(symbol_list)]
# Sort by timestamp descending (most recent first)
if "timestamp" in df.columns:
df = df.sort_values("timestamp", ascending=False)
elif "fetched_at" in df.columns:
df = df.sort_values("fetched_at", ascending=False)
# Apply limit
df = df.head(limit)
# Convert to response model
results = df.to_dict("records")
logger.info(f"✅ Serving {len(results)} market records FROM HuggingFace Dataset")
return results
except HTTPException:
raise
except Exception as e:
logger.error(f"Error fetching market data from HuggingFace: {e}", exc_info=True)
raise HTTPException(
status_code=500,
detail=f"Error fetching market data from HuggingFace: {str(e)}"
)
@router.get(
"/ohlc",
response_model=List[OHLCDataResponse],
summary="Get OHLC Data from HuggingFace",
description="Fetch cryptocurrency candlestick data FROM HuggingFace Datasets"
)
async def get_ohlc_data_from_hub(
symbol: str = Query(..., description="Trading pair symbol (e.g., 'BTCUSDT')"),
interval: str = Query("1h", description="Candle interval (e.g., '1h', '4h', '1d')"),
limit: int = Query(500, ge=1, le=5000, description="Maximum number of candles to return"),
_: dict = Depends(verify_hf_token)
):
"""
Get OHLC/candlestick data FROM HuggingFace Dataset
Data Flow:
HuggingFace Dataset → THIS API → Client
Authentication: Required (HF_TOKEN)
Query Parameters:
- symbol: Trading pair (e.g., 'BTCUSDT')
- interval: Candle interval ('1h', '4h', '1d')
- limit: Maximum candles to return (1-5000)
Returns:
List of OHLC candles with open, high, low, close, volume data
This endpoint ensures data is served FROM HuggingFace Datasets,
NOT from local cache or external APIs.
"""
try:
# Load dataset from HuggingFace
logger.info(f"Fetching OHLC data FROM HuggingFace Dataset: {OHLC_DATASET}")
dataset = _load_ohlc_dataset()
if not dataset:
raise HTTPException(
status_code=503,
detail="OHLC dataset not available on HuggingFace"
)
# Convert to pandas for filtering
df = dataset.to_pandas()
if df.empty:
raise HTTPException(
status_code=404,
detail="No OHLC data available in HuggingFace Dataset"
)
# Filter by symbol and interval
symbol_upper = symbol.upper()
df = df[(df["symbol"] == symbol_upper) & (df["interval"] == interval)]
if df.empty:
raise HTTPException(
status_code=404,
detail=f"No OHLC data for {symbol_upper} {interval} in HuggingFace Dataset"
)
# Sort by timestamp descending (most recent first)
if "timestamp" in df.columns:
df = df.sort_values("timestamp", ascending=False)
# Apply limit
df = df.head(limit)
# Convert to response model
results = df.to_dict("records")
logger.info(f"✅ Serving {len(results)} OHLC candles FROM HuggingFace Dataset")
return results
except HTTPException:
raise
except Exception as e:
logger.error(f"Error fetching OHLC data from HuggingFace: {e}", exc_info=True)
raise HTTPException(
status_code=500,
detail=f"Error fetching OHLC data from HuggingFace: {str(e)}"
)
@router.get(
"/dataset-info",
summary="Get Dataset Information",
description="Get detailed information about HuggingFace Datasets"
)
async def get_dataset_info(
dataset_type: str = Query("market", description="Dataset type: 'market' or 'ohlc'")
):
"""
Get detailed information about a specific HuggingFace Dataset
Query Parameters:
- dataset_type: 'market' or 'ohlc'
Returns:
Detailed dataset information including:
- Dataset name and URL
- Number of records
- Column names and types
- Last update time
- Dataset size
This endpoint does NOT require authentication.
"""
try:
if dataset_type == "market":
dataset_name = MARKET_DATASET
dataset = _load_market_dataset()
elif dataset_type == "ohlc":
dataset_name = OHLC_DATASET
dataset = _load_ohlc_dataset()
else:
raise HTTPException(
status_code=400,
detail="Invalid dataset_type. Must be 'market' or 'ohlc'"
)
if not dataset:
raise HTTPException(
status_code=404,
detail=f"Dataset not found: {dataset_name}"
)
# Get dataset info
df = dataset.to_pandas()
info = {
"name": dataset_name,
"url": f"https://huggingface.co/datasets/{dataset_name}",
"records": len(dataset),
"columns": dataset.column_names,
"features": str(dataset.features),
"size_mb": df.memory_usage(deep=True).sum() / 1024 / 1024,
"sample_records": df.head(3).to_dict("records") if not df.empty else []
}
# Add timestamp info if available
if "timestamp" in df.columns:
info["latest_timestamp"] = str(df["timestamp"].max())
info["oldest_timestamp"] = str(df["timestamp"].min())
elif "fetched_at" in df.columns:
info["latest_timestamp"] = str(df["fetched_at"].max())
info["oldest_timestamp"] = str(df["fetched_at"].min())
return info
except HTTPException:
raise
except Exception as e:
logger.error(f"Error getting dataset info: {e}", exc_info=True)
raise HTTPException(
status_code=500,
detail=f"Error getting dataset info: {str(e)}"
)
# Health check for Data Hub
@router.get(
"/health",
summary="Data Hub Health Check",
description="Check if Data Hub is operational and datasets are accessible"
)
async def data_hub_health():
"""
Health check for Data Hub
Returns:
- Status of HuggingFace connection
- Dataset availability
- Number of records in each dataset
- Last update times
This endpoint does NOT require authentication.
"""
try:
health = {
"status": "healthy",
"timestamp": datetime.utcnow().isoformat() + "Z",
"datasets": {}
}
# Check market dataset
try:
market_dataset = _load_market_dataset()
if market_dataset:
df = market_dataset.to_pandas()
health["datasets"]["market"] = {
"available": True,
"records": len(market_dataset),
"latest_update": str(df["fetched_at"].max()) if "fetched_at" in df.columns else None
}
else:
health["datasets"]["market"] = {"available": False, "error": "Could not load dataset"}
health["status"] = "degraded"
except Exception as e:
health["datasets"]["market"] = {"available": False, "error": str(e)}
health["status"] = "degraded"
# Check OHLC dataset
try:
ohlc_dataset = _load_ohlc_dataset()
if ohlc_dataset:
df = ohlc_dataset.to_pandas()
health["datasets"]["ohlc"] = {
"available": True,
"records": len(ohlc_dataset),
"latest_update": str(df["fetched_at"].max()) if "fetched_at" in df.columns else None
}
else:
health["datasets"]["ohlc"] = {"available": False, "error": "Could not load dataset"}
health["status"] = "degraded"
except Exception as e:
health["datasets"]["ohlc"] = {"available": False, "error": str(e)}
health["status"] = "degraded"
return health
except Exception as e:
logger.error(f"Error in health check: {e}", exc_info=True)
return {
"status": "unhealthy",
"error": str(e),
"timestamp": datetime.utcnow().isoformat() + "Z"
}
|