File size: 15,682 Bytes
8b7b267 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
"""
HuggingFace Space API Endpoints - REAL DATA ONLY
Provides endpoints for market data, sentiment analysis, and system health
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β οΈ ABSOLUTELY NO FAKE DATA β οΈ
β NO mock data
β NO placeholder data
β NO hardcoded responses
β NO random numbers
β NO fake timestamps
β NO invented prices
β NO simulated responses
β
ONLY real data from database cache
β
ONLY real data from free APIs (via background workers)
β
ONLY real AI model inference
β
If data not available β return error
β
If cache empty β return error
β
If model fails β return error
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
"""
import time
import logging
from datetime import datetime
from typing import Optional, List
from fastapi import APIRouter, Depends, Query, Body, HTTPException
from pydantic import BaseModel
from api.hf_auth import verify_hf_token
from database.cache_queries import get_cache_queries
from database.db_manager import db_manager
from ai_models import _registry
from utils.logger import setup_logger
logger = setup_logger("hf_endpoints")
router = APIRouter(prefix="/api", tags=["hf_space"])
# Get cache queries instance
cache = get_cache_queries(db_manager)
# ============================================================================
# Pydantic Models
# ============================================================================
class SentimentRequest(BaseModel):
"""Request model for sentiment analysis"""
text: str
class Config:
json_schema_extra = {
"example": {
"text": "Bitcoin is pumping! Great news for crypto!"
}
}
# ============================================================================
# GET /api/market - Market Prices (REAL DATA ONLY)
# ============================================================================
@router.get("/market")
async def get_market_data(
limit: int = Query(100, ge=1, le=1000, description="Number of symbols to return"),
symbols: Optional[str] = Query(None, description="Comma-separated list of symbols (e.g., BTC,ETH,BNB)"),
auth: bool = Depends(verify_hf_token)
):
"""
Get real-time market data from database cache
CRITICAL RULES:
1. ONLY read from cached_market_data table in database
2. NEVER invent/generate/fake price data
3. If cache is empty β return error with status code 503
4. If symbol not found β return empty array, not fake data
5. Timestamps MUST be from actual database records
6. Prices MUST be from actual fetched data
Returns:
JSON with real market data or error if no data available
"""
try:
# Parse symbols if provided
symbol_list = None
if symbols:
symbol_list = [s.strip().upper() for s in symbols.split(',')]
logger.info(f"Filtering for symbols: {symbol_list}")
# Query REAL data from database - NO FAKE DATA
market_data = cache.get_cached_market_data(
symbols=symbol_list,
limit=limit
)
# If NO data in cache, return error (NOT fake data)
if not market_data or len(market_data) == 0:
logger.warning("No market data available in cache")
return {
"success": False,
"error": "No market data available. Background workers syncing data from free APIs. Please wait.",
"source": "hf_engine",
"timestamp": int(time.time() * 1000)
}
# Use REAL timestamps and prices from database
response = {
"success": True,
"data": [
{
"symbol": row["symbol"], # REAL from database
"price": float(row["price"]), # REAL from database
"market_cap": float(row["market_cap"]) if row.get("market_cap") else None,
"volume_24h": float(row["volume_24h"]) if row.get("volume_24h") else None,
"change_24h": float(row["change_24h"]) if row.get("change_24h") else None,
"high_24h": float(row["high_24h"]) if row.get("high_24h") else None,
"low_24h": float(row["low_24h"]) if row.get("low_24h") else None,
"last_updated": int(row["fetched_at"].timestamp() * 1000) # REAL timestamp
}
for row in market_data
],
"source": "hf_engine",
"timestamp": int(time.time() * 1000),
"cached": True,
"count": len(market_data)
}
logger.info(f"Returned {len(market_data)} real market records")
return response
except Exception as e:
logger.error(f"Market endpoint error: {e}", exc_info=True)
return {
"success": False,
"error": f"Database error: {str(e)}",
"source": "hf_engine",
"timestamp": int(time.time() * 1000)
}
# ============================================================================
# GET /api/market/history - OHLCV Data (REAL DATA ONLY)
# ============================================================================
@router.get("/market/history")
async def get_market_history(
symbol: str = Query(..., description="Trading pair symbol (e.g., BTCUSDT, ETHUSDT)"),
timeframe: str = Query("1h", description="Timeframe (1m, 5m, 15m, 1h, 4h, 1d)"),
limit: int = Query(1000, ge=1, le=5000, description="Number of candles"),
auth: bool = Depends(verify_hf_token)
):
"""
Get OHLCV (candlestick) data from database cache
CRITICAL RULES:
1. ONLY read from cached_ohlc table in database
2. NEVER generate/fake candle data
3. If cache empty β return error with 404
4. If symbol not found β return error, not fake data
5. All OHLC values MUST be from actual database records
6. Timestamps MUST be actual candle timestamps
Returns:
JSON with real OHLCV data or error if no data available
"""
try:
# Normalize symbol to uppercase
normalized_symbol = symbol.upper()
logger.info(f"Fetching OHLC for {normalized_symbol} {timeframe}")
# Query REAL OHLC data from database - NO FAKE DATA
ohlcv_data = cache.get_cached_ohlc(
symbol=normalized_symbol,
interval=timeframe,
limit=limit
)
# If NO data in cache, return error (NOT fake candles)
if not ohlcv_data or len(ohlcv_data) == 0:
logger.warning(f"No OHLCV data for {normalized_symbol} {timeframe}")
return {
"success": False,
"error": f"No OHLCV data for {symbol}. Background workers syncing data. Symbol may not be cached yet.",
"source": "hf_engine",
"timestamp": int(time.time() * 1000)
}
# Use REAL candle data from database
response = {
"success": True,
"data": [
{
"timestamp": int(candle["timestamp"].timestamp() * 1000), # REAL
"open": float(candle["open"]), # REAL
"high": float(candle["high"]), # REAL
"low": float(candle["low"]), # REAL
"close": float(candle["close"]), # REAL
"volume": float(candle["volume"]) # REAL
}
for candle in ohlcv_data
],
"source": "hf_engine",
"timestamp": int(time.time() * 1000),
"cached": True,
"count": len(ohlcv_data)
}
logger.info(f"Returned {len(ohlcv_data)} real OHLC candles for {normalized_symbol}")
return response
except Exception as e:
logger.error(f"History endpoint error: {e}", exc_info=True)
return {
"success": False,
"error": f"Database error: {str(e)}",
"source": "hf_engine",
"timestamp": int(time.time() * 1000)
}
# ============================================================================
# POST /api/sentiment/analyze - Sentiment Analysis (REAL AI MODEL ONLY)
# ============================================================================
@router.post("/sentiment/analyze")
async def analyze_sentiment(
request: SentimentRequest = Body(...),
auth: bool = Depends(verify_hf_token)
):
"""
Analyze sentiment using REAL AI model
CRITICAL RULES:
1. MUST use actual loaded AI model from ai_models.py
2. MUST run REAL model inference
3. NEVER return random sentiment scores
4. NEVER fake confidence values
5. If model not loaded β return error
6. If inference fails β return error
Returns:
JSON with real sentiment analysis or error
"""
try:
text = request.text
# Validate input
if not text or len(text.strip()) == 0:
return {
"success": False,
"error": "Text parameter is required and cannot be empty",
"source": "hf_engine",
"timestamp": int(time.time() * 1000)
}
logger.info(f"Analyzing sentiment for text (length={len(text)})")
# Try to get REAL sentiment model
sentiment_model = None
tried_models = []
# Try different model keys in order of preference
for model_key in ["crypto_sent_kk08", "sentiment_twitter", "sentiment_financial", "crypto_sent_0"]:
tried_models.append(model_key)
try:
sentiment_model = _registry.get_pipeline(model_key)
if sentiment_model:
logger.info(f"Using sentiment model: {model_key}")
break
except Exception as e:
logger.warning(f"Failed to load {model_key}: {e}")
continue
# If NO model available, return error (NOT fake sentiment)
if not sentiment_model:
logger.error(f"No sentiment model available. Tried: {tried_models}")
return {
"success": False,
"error": f"No sentiment model available. Tried: {', '.join(tried_models)}. Please ensure HuggingFace models are properly configured.",
"source": "hf_engine",
"timestamp": int(time.time() * 1000)
}
# Run REAL model inference
# This MUST call actual model.predict() or model()
# NEVER return fake scores
result = sentiment_model(text[:512]) # Limit text length
# Parse REAL model output
if isinstance(result, list) and len(result) > 0:
result = result[0]
# Extract REAL values from model output
label = result.get("label", "NEUTRAL").upper()
score = float(result.get("score", 0.5))
# Map label to standard format
if "POSITIVE" in label or "BULLISH" in label or "LABEL_2" in label:
sentiment = "positive"
elif "NEGATIVE" in label or "BEARISH" in label or "LABEL_0" in label:
sentiment = "negative"
else:
sentiment = "neutral"
# Response with REAL model output
response = {
"success": True,
"data": {
"label": sentiment, # REAL from model
"score": score, # REAL from model
"sentiment": sentiment, # REAL from model
"confidence": score, # REAL from model
"text": text,
"model_label": label, # Original label from model
"timestamp": int(time.time() * 1000)
},
"source": "hf_engine",
"timestamp": int(time.time() * 1000)
}
logger.info(f"Sentiment analysis completed: {sentiment} (score={score:.3f})")
return response
except Exception as e:
logger.error(f"Sentiment analysis failed: {e}", exc_info=True)
return {
"success": False,
"error": f"Model inference error: {str(e)}",
"source": "hf_engine",
"timestamp": int(time.time() * 1000)
}
# ============================================================================
# GET /api/health - Health Check
# ============================================================================
@router.get("/health")
async def health_check(auth: bool = Depends(verify_hf_token)):
"""
Health check endpoint
RULES:
- Return REAL system status
- Use REAL uptime calculation
- Check REAL database connection
- NEVER return fake status
Returns:
JSON with real system health status
"""
try:
# Check REAL database connection
db_status = "connected"
try:
# Test database with a simple query
health = db_manager.health_check()
if health.get("status") != "healthy":
db_status = "degraded"
except Exception as e:
logger.error(f"Database health check failed: {e}")
db_status = "disconnected"
# Get REAL cache statistics
cache_stats = {
"market_data_count": 0,
"ohlc_count": 0
}
try:
with db_manager.get_session() as session:
from database.models import CachedMarketData, CachedOHLC
from sqlalchemy import func, distinct
# Count unique symbols in cache
cache_stats["market_data_count"] = session.query(
func.count(distinct(CachedMarketData.symbol))
).scalar() or 0
cache_stats["ohlc_count"] = session.query(
func.count(CachedOHLC.id)
).scalar() or 0
except Exception as e:
logger.error(f"Failed to get cache stats: {e}")
# Get AI model status
model_status = _registry.get_registry_status()
response = {
"success": True,
"status": "healthy" if db_status == "connected" else "degraded",
"timestamp": int(time.time() * 1000),
"version": "1.0.0",
"database": db_status, # REAL database status
"cache": cache_stats, # REAL cache statistics
"ai_models": {
"loaded": model_status.get("models_loaded", 0),
"failed": model_status.get("models_failed", 0),
"total": model_status.get("models_total", 0)
},
"source": "hf_engine"
}
logger.info(f"Health check completed: {response['status']}")
return response
except Exception as e:
logger.error(f"Health check error: {e}", exc_info=True)
return {
"success": False,
"status": "unhealthy",
"error": str(e),
"timestamp": int(time.time() * 1000),
"source": "hf_engine"
}
|