QuantumShield / backend /huggingface_integration.py
SantoshKumar1310's picture
Upload folder using huggingface_hub
63590dc verified
"""
Hugging Face Integration for Quantum Fraud Detection
Offloads heavy ML computations to Hugging Face Inference API
"""
import os
import requests
import numpy as np
from typing import Dict, List, Optional
import time
class HuggingFaceIntegration:
"""
Integrates Hugging Face Inference API for cloud-based ML inference.
Reduces local system burden by offloading computations.
"""
# Free fraud detection models on Hugging Face
MODELS = {
"text_classification": "cardiffnlp/twitter-roberta-base-sentiment-latest",
"fraud_analysis": "bert-base-uncased",
"embeddings": "sentence-transformers/all-MiniLM-L6-v2"
}
def __init__(self, api_key: Optional[str] = None):
"""
Initialize HuggingFace integration.
Args:
api_key: HuggingFace API token. Get free at: https://huggingface.co/settings/tokens
"""
self.api_key = api_key or os.getenv("HUGGINGFACE_API_KEY", "")
self.api_url = "https://router.huggingface.co/hf-inference/models"
self.headers = {"Authorization": f"Bearer {self.api_key}"} if self.api_key else {}
self.cache = {}
self.last_request_time = 0
self.min_request_interval = 0.5 # Rate limiting
def _rate_limit(self):
"""Simple rate limiting to avoid API throttling"""
elapsed = time.time() - self.last_request_time
if elapsed < self.min_request_interval:
time.sleep(self.min_request_interval - elapsed)
self.last_request_time = time.time()
def query_model(self, model_id: str, payload: Dict) -> Dict:
"""
Query a Hugging Face model via Inference API.
Args:
model_id: The model identifier on HuggingFace Hub
payload: The input data for the model
Returns:
Model prediction results
"""
self._rate_limit()
url = f"{self.api_url}/{model_id}"
try:
response = requests.post(url, headers=self.headers, json=payload, timeout=30)
if response.status_code == 200:
return {"success": True, "data": response.json()}
elif response.status_code == 503:
# Model is loading, wait and retry
return {"success": False, "error": "Model loading, please retry", "retry": True}
else:
return {"success": False, "error": f"API error: {response.status_code}"}
except requests.exceptions.Timeout:
return {"success": False, "error": "Request timeout"}
except Exception as e:
return {"success": False, "error": str(e)}
def analyze_transaction_text(self, transaction_description: str) -> Dict:
"""
Use HuggingFace to analyze transaction text for fraud indicators.
Args:
transaction_description: Text description of the transaction
Returns:
Fraud analysis results
"""
payload = {"inputs": transaction_description, "options": {"wait_for_model": True}}
result = self.query_model(self.MODELS["text_classification"], payload)
if result["success"]:
data = result["data"]
if isinstance(data, list) and len(data) > 0:
scores = data[0] if isinstance(data[0], list) else data
# Map sentiment to fraud probability
# Negative sentiment could indicate suspicious activity description
fraud_score = 0.5 # Default neutral
for item in scores:
label = item.get("label", "").lower()
score = item.get("score", 0.5)
# Map negative sentiment to higher fraud risk
if "negative" in label:
fraud_score = 0.3 + (score * 0.4) # 0.3-0.7 range
elif "positive" in label:
fraud_score = 0.5 - (score * 0.3) # Lower risk for positive
return {"success": True, "fraud_indicator": fraud_score, "raw": data}
return {"success": False, "fraud_indicator": 0.5, "error": result.get("error", "Unknown error")}
def get_embedding(self, text: str, model_id: str = "sentence-transformers/all-MiniLM-L6-v2") -> Dict:
"""
Get text embeddings from HuggingFace for feature extraction.
Args:
text: Input text to embed
model_id: Embedding model to use
Returns:
Embedding vector
"""
payload = {"inputs": text, "options": {"wait_for_model": True}}
result = self.query_model(model_id, payload)
if result["success"]:
return {"success": True, "embedding": result["data"]}
return {"success": False, "embedding": None}
def batch_classify(self, texts: List[str]) -> List[Dict]:
"""
Batch classify multiple transaction descriptions.
Args:
texts: List of transaction descriptions
Returns:
List of classification results
"""
results = []
for text in texts:
result = self.analyze_transaction_text(text)
results.append(result)
return results
class HuggingFaceQuantumHybrid:
"""
Hybrid system combining local quantum features with HuggingFace cloud inference.
Best of both worlds: quantum advantage + cloud scalability.
"""
def __init__(self, hf_api_key: Optional[str] = None):
self.hf = HuggingFaceIntegration(api_key=hf_api_key)
self.local_quantum_weight = 0.3 # Weight for local quantum predictions
self.cloud_ml_weight = 0.7 # Weight for cloud ML predictions
def hybrid_predict(
self,
transaction_features: Dict,
local_quantum_score: float,
use_cloud: bool = True
) -> Dict:
"""
Combine local quantum predictions with HuggingFace cloud inference.
Args:
transaction_features: Transaction data dict
local_quantum_score: Score from local quantum models (0-1)
use_cloud: Whether to use HuggingFace API
Returns:
Combined prediction with detailed breakdown
"""
result = {
"local_quantum_score": local_quantum_score,
"cloud_ml_score": None,
"hybrid_score": local_quantum_score,
"prediction": "Legit" if local_quantum_score < 0.5 else "Fraud",
"cloud_used": False
}
if use_cloud and self.hf.api_key:
# Create transaction description for text-based analysis
description = self._features_to_text(transaction_features)
cloud_result = self.hf.analyze_transaction_text(description)
if cloud_result["success"]:
cloud_score = cloud_result["fraud_indicator"]
result["cloud_ml_score"] = cloud_score
result["cloud_used"] = True
# Weighted combination
result["hybrid_score"] = (
self.local_quantum_weight * local_quantum_score +
self.cloud_ml_weight * cloud_score
)
result["prediction"] = "Fraud" if result["hybrid_score"] >= 0.5 else "Legit"
return result
def _features_to_text(self, features: Dict) -> str:
"""Convert transaction features to text description for NLP models."""
amount = features.get("amt", features.get("amount", 0))
category = features.get("category", "unknown")
hour = features.get("Hour_of_Day", features.get("hour", 12))
# Create natural language description
time_of_day = "morning" if hour < 12 else "afternoon" if hour < 18 else "evening"
risk_indicators = []
if amount > 500:
risk_indicators.append("high value")
if hour < 6 or hour > 22:
risk_indicators.append("unusual time")
risk_text = ", ".join(risk_indicators) if risk_indicators else "normal"
description = f"Transaction of ${amount:.2f} in {category} category during {time_of_day}. Risk factors: {risk_text}."
return description
# ============== Usage Example ==============
def example_usage():
"""
Example of how to use HuggingFace integration.
To use:
1. Get free API key from: https://huggingface.co/settings/tokens
2. Set environment variable: HUGGINGFACE_API_KEY=your_key_here
3. Or pass directly: HuggingFaceIntegration(api_key="your_key")
"""
# Initialize (will use env var HUGGINGFACE_API_KEY if set)
hf = HuggingFaceIntegration()
# Analyze a transaction
result = hf.analyze_transaction_text(
"Large purchase at 3am from unknown merchant overseas"
)
print(f"Fraud Analysis: {result}")
# Hybrid approach
hybrid = HuggingFaceQuantumHybrid()
prediction = hybrid.hybrid_predict(
transaction_features={"amt": 1500, "category": "shopping", "Hour_of_Day": 3},
local_quantum_score=0.7,
use_cloud=True
)
print(f"Hybrid Prediction: {prediction}")
if __name__ == "__main__":
example_usage()