Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import pipeline | |
| import librosa | |
| import soundfile as sf | |
| import spaces | |
| import os | |
| def split_audio(audio_data, sr, chunk_duration=30): | |
| """Split audio into chunks of chunk_duration seconds.""" | |
| chunks = [] | |
| for start in range(0, len(audio_data), int(chunk_duration * sr)): | |
| end = start + int(chunk_duration * sr) | |
| chunks.append(audio_data[start:end]) | |
| return chunks | |
| def transcribe_long_audio(audio_input, transcriber, chunk_duration=30): | |
| """Transcribe long audio by splitting into smaller chunks.""" | |
| # Check if audio_input is a file path or raw data | |
| if isinstance(audio_input, str): | |
| audio_data, sr = librosa.load(audio_input, sr=None) | |
| else: # Raw audio data (e.g., from recording) | |
| audio_data, sr = audio_input | |
| chunks = split_audio(audio_data, sr, chunk_duration) | |
| transcriptions = [] | |
| for i, chunk in enumerate(chunks): | |
| temp_path = f"temp_chunk_{i}.wav" | |
| sf.write(temp_path, chunk, sr) # Save the chunk as a WAV file | |
| transcription = transcriber(temp_path)["text"] | |
| transcriptions.append(transcription) | |
| os.remove(temp_path) # Clean up temporary files | |
| return " ".join(transcriptions) | |
| def main(): | |
| # Force GPU if available, fallback to CPU | |
| device = 0 if torch.cuda.is_available() else -1 | |
| try: | |
| # Load models with explicit device | |
| transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) | |
| summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
| except Exception as e: | |
| print(f"Error loading models: {e}") | |
| raise | |
| # Function to process audio | |
| def process_audio(audio_input): | |
| try: | |
| # Transcribe the audio (long-form support) | |
| transcription = transcribe_long_audio(audio_input, transcriber, chunk_duration=30) | |
| # Summarize the transcription | |
| summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"] | |
| return transcription, summary | |
| except Exception as e: | |
| return f"Error processing audio: {e}", "" | |
| # Gradio Interface with Horizontal Layout | |
| with gr.Blocks() as interface: | |
| with gr.Row(): | |
| with gr.Column(): | |
| audio_input = gr.Audio(source="microphone", type="numpy", label="Record or Upload Audio") | |
| process_button = gr.Button("Process Audio") | |
| with gr.Column(): | |
| transcription_output = gr.Textbox(label="Full Transcription", lines=10) | |
| summary_output = gr.Textbox(label="Summary", lines=5) | |
| process_button.click( | |
| process_audio, | |
| inputs=[audio_input], | |
| outputs=[transcription_output, summary_output] | |
| ) | |
| # Launch the interface with optional public sharing | |
| interface.launch(share=True) | |
| # Run the main function | |
| if __name__ == "__main__": | |
| main() | |