Spaces:
Runtime error
Runtime error
remove persistent storage
Browse files
app.py
CHANGED
|
@@ -4,14 +4,8 @@ from transformers import pipeline
|
|
| 4 |
import librosa
|
| 5 |
import soundfile as sf
|
| 6 |
import os
|
| 7 |
-
import uuid
|
| 8 |
import spaces # Ensure spaces is imported
|
| 9 |
|
| 10 |
-
# Directory to save processed audio files
|
| 11 |
-
OUTPUT_DIR = os.getenv("HF_HOME", ".") # Use dynamic path or default to current directory
|
| 12 |
-
OUTPUT_DIR = os.path.join(OUTPUT_DIR, "processed_audio_files")
|
| 13 |
-
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 14 |
-
|
| 15 |
def split_audio(audio_data, sr, chunk_duration=30):
|
| 16 |
"""Split audio into chunks of chunk_duration seconds."""
|
| 17 |
chunks = []
|
|
@@ -38,25 +32,6 @@ def transcribe_long_audio(audio_path, transcriber, chunk_duration=30):
|
|
| 38 |
print(f"Error in transcribe_long_audio: {e}")
|
| 39 |
return f"Error processing audio: {e}"
|
| 40 |
|
| 41 |
-
def cleanup_output_dir(max_storage_mb=500):
|
| 42 |
-
"""Remove old files if total directory size exceeds max_storage_mb."""
|
| 43 |
-
try:
|
| 44 |
-
total_size = sum(
|
| 45 |
-
os.path.getsize(os.path.join(OUTPUT_DIR, f)) for f in os.listdir(OUTPUT_DIR)
|
| 46 |
-
)
|
| 47 |
-
if total_size > max_storage_mb * 1024 * 1024:
|
| 48 |
-
files = sorted(
|
| 49 |
-
(os.path.join(OUTPUT_DIR, f) for f in os.listdir(OUTPUT_DIR)),
|
| 50 |
-
key=os.path.getctime,
|
| 51 |
-
)
|
| 52 |
-
for file in files:
|
| 53 |
-
os.remove(file)
|
| 54 |
-
total_size -= os.path.getsize(file)
|
| 55 |
-
if total_size <= max_storage_mb * 1024 * 1024:
|
| 56 |
-
break
|
| 57 |
-
except Exception as e:
|
| 58 |
-
print(f"Error during cleanup: {e}")
|
| 59 |
-
|
| 60 |
@spaces.GPU(duration=3)
|
| 61 |
def main():
|
| 62 |
device = 0 if torch.cuda.is_available() else -1
|
|
@@ -80,9 +55,6 @@ def main():
|
|
| 80 |
transcription = transcribe_long_audio(audio_input, transcriber, chunk_duration=30)
|
| 81 |
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
|
| 82 |
|
| 83 |
-
# Cleanup old files
|
| 84 |
-
cleanup_output_dir()
|
| 85 |
-
|
| 86 |
return transcription, summary, audio_input
|
| 87 |
except Exception as e:
|
| 88 |
print(f"Error in process_audio: {e}")
|
|
@@ -93,9 +65,9 @@ def main():
|
|
| 93 |
with gr.Column():
|
| 94 |
# Only support file uploads
|
| 95 |
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
|
| 96 |
-
process_button = gr.Button("
|
| 97 |
with gr.Column():
|
| 98 |
-
transcription_output = gr.Textbox(label="
|
| 99 |
summary_output = gr.Textbox(label="Summary", lines=5)
|
| 100 |
audio_output = gr.Audio(label="Playback Processed Audio")
|
| 101 |
|
|
|
|
| 4 |
import librosa
|
| 5 |
import soundfile as sf
|
| 6 |
import os
|
|
|
|
| 7 |
import spaces # Ensure spaces is imported
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
def split_audio(audio_data, sr, chunk_duration=30):
|
| 10 |
"""Split audio into chunks of chunk_duration seconds."""
|
| 11 |
chunks = []
|
|
|
|
| 32 |
print(f"Error in transcribe_long_audio: {e}")
|
| 33 |
return f"Error processing audio: {e}"
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
@spaces.GPU(duration=3)
|
| 36 |
def main():
|
| 37 |
device = 0 if torch.cuda.is_available() else -1
|
|
|
|
| 55 |
transcription = transcribe_long_audio(audio_input, transcriber, chunk_duration=30)
|
| 56 |
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
|
| 57 |
|
|
|
|
|
|
|
|
|
|
| 58 |
return transcription, summary, audio_input
|
| 59 |
except Exception as e:
|
| 60 |
print(f"Error in process_audio: {e}")
|
|
|
|
| 65 |
with gr.Column():
|
| 66 |
# Only support file uploads
|
| 67 |
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
|
| 68 |
+
process_button = gr.Button("Transcribe Audio")
|
| 69 |
with gr.Column():
|
| 70 |
+
transcription_output = gr.Textbox(label="Transcription", lines=10)
|
| 71 |
summary_output = gr.Textbox(label="Summary", lines=5)
|
| 72 |
audio_output = gr.Audio(label="Playback Processed Audio")
|
| 73 |
|