Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| from diffusers import DiffusionPipeline, StableDiffusionXLBaseModel, StableDiffusionTrainer | |
| from transformers import CLIPTextModel, CLIPTokenizer, TrainingArguments | |
| from datasets import load_dataset | |
| from huggingface_hub import HfApi, HfFolder, Repository | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| if torch.cuda.is_available(): | |
| torch.cuda.max_memory_allocated(device=device) | |
| pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
| pipe.enable_xformers_memory_efficient_attention() | |
| pipe = pipe.to(device) | |
| else: | |
| pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) | |
| pipe = pipe.to(device) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator | |
| ).images[0] | |
| return image | |
| def get_latest_version(repo_id): | |
| api = HfApi() | |
| repo_info = api.repo_info(repo_id) | |
| versions = [tag.name for tag in repo_info.tags] | |
| if not versions: | |
| return "v_0.0" | |
| latest_version = sorted(versions)[-1] | |
| return latest_version | |
| def increment_version(version): | |
| major, minor = map(int, version.split('_')[1:]) | |
| minor += 1 | |
| return f"v_{major}.{minor}" | |
| def train_model(train_data_path, output_dir, num_train_epochs, per_device_train_batch_size, learning_rate): | |
| tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
| text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") | |
| base_model = StableDiffusionXLBaseModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
| dataset = load_dataset('imagefolder', data_dir=train_data_path) | |
| training_args = TrainingArguments( | |
| output_dir=output_dir, | |
| num_train_epochs=num_train_epochs, | |
| per_device_train_batch_size=per_device_train_batch_size, | |
| learning_rate=learning_rate, | |
| logging_dir="./logs", | |
| logging_steps=10, | |
| ) | |
| trainer = StableDiffusionTrainer( | |
| model=base_model, | |
| args=training_args, | |
| train_dataset=dataset['train'], | |
| tokenizer=tokenizer, | |
| ) | |
| trainer.train() | |
| base_model.save_pretrained(output_dir) | |
| # Publish the model | |
| repo_id = "ZennyKenny/stable-diffusion-xl-base-1.0_NatalieDiffusion" | |
| latest_version = get_latest_version(repo_id) | |
| new_version = increment_version(latest_version) | |
| api = HfApi() | |
| token = HfFolder.get_token() | |
| repo = Repository(output_dir, clone_from=repo_id, token=token) | |
| repo.git_tag(new_version) | |
| repo.push_tag(new_version) | |
| return f"Training complete. Model saved to {output_dir} and published as version {new_version}." | |
| examples = [ | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| if torch.cuda.is_available(): | |
| power_device = "GPU" | |
| else: | |
| power_device = "CPU" | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # Text-to-Image Gradio Template | |
| Currently running on {power_device}. | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=False, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=0.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=12, | |
| step=1, | |
| value=2, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[prompt] | |
| ) | |
| # Add new section for training the model | |
| with gr.Accordion("Training Settings", open=False): | |
| train_data_path = gr.Text( | |
| label="Training Data Path", | |
| placeholder="Enter the path to your training data", | |
| ) | |
| output_dir = gr.Text( | |
| label="Output Directory", | |
| placeholder="Enter the output directory for the trained model", | |
| ) | |
| num_train_epochs = gr.Slider( | |
| label="Number of Training Epochs", | |
| minimum=1, | |
| maximum=10, | |
| step=1, | |
| value=3, | |
| ) | |
| per_device_train_batch_size = gr.Slider( | |
| label="Batch Size per Device", | |
| minimum=1, | |
| maximum=16, | |
| step=1, | |
| value=4, | |
| ) | |
| learning_rate = gr.Slider( | |
| label="Learning Rate", | |
| minimum=1e-5, | |
| maximum=1e-3, | |
| step=1e-5, | |
| value=5e-5, | |
| ) | |
| train_button = gr.Button("Train Model") | |
| train_result = gr.Text(label="Training Result", show_label=False) | |
| train_button.click( | |
| fn=train_model, | |
| inputs=[train_data_path, output_dir, num_train_epochs, per_device_train_batch_size, learning_rate], | |
| outputs=[train_result], | |
| ) | |
| run_button.click( | |
| fn=infer, | |
| inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
| outputs=[result] | |
| ) | |
| demo.queue().launch() | |