Spaces:
Sleeping
Sleeping
add auth
Browse files
app.py
CHANGED
|
@@ -1,20 +1,29 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
-
from datasets import load_dataset
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
-
# Load the dataset
|
|
|
|
|
|
|
| 7 |
ds = load_dataset('ZennyKenny/demo_customer_nps')
|
| 8 |
df = pd.DataFrame(ds['train'])
|
| 9 |
|
| 10 |
# Initialize the model pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
pipe = pipeline("text-generation", model="mistralai/Mistral-Small-24B-Base-2501")
|
| 12 |
|
| 13 |
# Function to classify customer comments
|
|
|
|
| 14 |
def classify_comments():
|
| 15 |
results = []
|
| 16 |
for comment in df['customer_comment']:
|
| 17 |
-
prompt = f"Classify this customer feedback: '{comment}' into one of
|
| 18 |
category = pipe(prompt, max_length=30)[0]['generated_text']
|
| 19 |
results.append(category)
|
| 20 |
df['comment_category'] = results
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
|
| 5 |
+
# Load the dataset
|
| 6 |
+
DATASET_URL = 'https://huggingface.co/datasets/ZennyKenny/demo_customer_nps/resolve/main/customer_feedback_dataset.csv'
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
ds = load_dataset('ZennyKenny/demo_customer_nps')
|
| 9 |
df = pd.DataFrame(ds['train'])
|
| 10 |
|
| 11 |
# Initialize the model pipeline
|
| 12 |
+
from huggingface_hub import login
|
| 13 |
+
import os
|
| 14 |
+
|
| 15 |
+
# Login using the API key stored as an environment variable
|
| 16 |
+
hf_api_key = os.getenv("API_KEY")
|
| 17 |
+
login(token=hf_api_key)
|
| 18 |
+
|
| 19 |
pipe = pipeline("text-generation", model="mistralai/Mistral-Small-24B-Base-2501")
|
| 20 |
|
| 21 |
# Function to classify customer comments
|
| 22 |
+
@spaces.GPU
|
| 23 |
def classify_comments():
|
| 24 |
results = []
|
| 25 |
for comment in df['customer_comment']:
|
| 26 |
+
prompt = f"Classify this customer feedback: '{comment}' into one of the following categories: Price of Service, Quality of Customer Support, Product Experience. Please only respond with the category name and nothing else."
|
| 27 |
category = pipe(prompt, max_length=30)[0]['generated_text']
|
| 28 |
results.append(category)
|
| 29 |
df['comment_category'] = results
|