Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import yaml
|
| 4 |
+
import json
|
| 5 |
+
import random
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
from openai import OpenAI
|
| 8 |
+
from openevolve import run_evolution
|
| 9 |
+
from typing import Dict, List, Tuple
|
| 10 |
+
import tempfile
|
| 11 |
+
import shutil
|
| 12 |
+
|
| 13 |
+
# Free models from OpenRouter (as of 2025)
|
| 14 |
+
FREE_MODELS = [
|
| 15 |
+
"google/gemini-2.0-flash-001:free",
|
| 16 |
+
"google/gemini-flash-1.5-8b:free",
|
| 17 |
+
"meta-llama/llama-3.2-3b-instruct:free",
|
| 18 |
+
"meta-llama/llama-3.2-1b-instruct:free",
|
| 19 |
+
"microsoft/phi-3-mini-128k-instruct:free",
|
| 20 |
+
"microsoft/phi-3-medium-128k-instruct:free",
|
| 21 |
+
"qwen/qwen-2-7b-instruct:free",
|
| 22 |
+
"mistralai/mistral-7b-instruct:free",
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
# Popular HuggingFace datasets for different tasks
|
| 26 |
+
SAMPLE_DATASETS = {
|
| 27 |
+
"Question Answering": [
|
| 28 |
+
"hotpot_qa",
|
| 29 |
+
"squad",
|
| 30 |
+
"trivia_qa",
|
| 31 |
+
],
|
| 32 |
+
"Sentiment Analysis": [
|
| 33 |
+
"imdb",
|
| 34 |
+
"yelp_review_full",
|
| 35 |
+
"emotion",
|
| 36 |
+
],
|
| 37 |
+
"Text Classification": [
|
| 38 |
+
"ag_news",
|
| 39 |
+
"dbpedia_14",
|
| 40 |
+
"SetFit/sst5",
|
| 41 |
+
],
|
| 42 |
+
"Math Reasoning": [
|
| 43 |
+
"gsm8k",
|
| 44 |
+
"math_qa",
|
| 45 |
+
],
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def evaluate_prompt(prompt: str, dataset_name: str, split: str, num_samples: int,
|
| 50 |
+
api_key: str, model: str, input_field: str, target_field: str) -> Dict:
|
| 51 |
+
"""Evaluate a prompt on a dataset using the selected model."""
|
| 52 |
+
try:
|
| 53 |
+
# Load dataset
|
| 54 |
+
dataset = load_dataset(dataset_name, split=split, streaming=False)
|
| 55 |
+
|
| 56 |
+
# Sample random examples
|
| 57 |
+
if len(dataset) > num_samples:
|
| 58 |
+
indices = random.sample(range(len(dataset)), num_samples)
|
| 59 |
+
samples = [dataset[i] for i in indices]
|
| 60 |
+
else:
|
| 61 |
+
samples = list(dataset)[:num_samples]
|
| 62 |
+
|
| 63 |
+
# Initialize OpenAI client with OpenRouter
|
| 64 |
+
client = OpenAI(
|
| 65 |
+
base_url="https://openrouter.ai/api/v1",
|
| 66 |
+
api_key=api_key,
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
correct = 0
|
| 70 |
+
total = 0
|
| 71 |
+
results = []
|
| 72 |
+
|
| 73 |
+
for sample in samples:
|
| 74 |
+
try:
|
| 75 |
+
# Get input and target
|
| 76 |
+
input_text = sample.get(input_field, "")
|
| 77 |
+
if isinstance(input_text, dict):
|
| 78 |
+
input_text = str(input_text)
|
| 79 |
+
|
| 80 |
+
target = sample.get(target_field, "")
|
| 81 |
+
if isinstance(target, dict):
|
| 82 |
+
target = str(target)
|
| 83 |
+
|
| 84 |
+
# Format the prompt with the input
|
| 85 |
+
formatted_prompt = prompt.replace("{input}", str(input_text))
|
| 86 |
+
|
| 87 |
+
# Call the model
|
| 88 |
+
response = client.chat.completions.create(
|
| 89 |
+
model=model,
|
| 90 |
+
messages=[
|
| 91 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 92 |
+
{"role": "user", "content": formatted_prompt}
|
| 93 |
+
],
|
| 94 |
+
temperature=0.1,
|
| 95 |
+
max_tokens=500,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
prediction = response.choices[0].message.content.strip()
|
| 99 |
+
|
| 100 |
+
# Simple exact match evaluation
|
| 101 |
+
is_correct = str(target).lower().strip() in prediction.lower()
|
| 102 |
+
if is_correct:
|
| 103 |
+
correct += 1
|
| 104 |
+
total += 1
|
| 105 |
+
|
| 106 |
+
results.append({
|
| 107 |
+
"input": str(input_text)[:100] + "...",
|
| 108 |
+
"target": str(target),
|
| 109 |
+
"prediction": prediction[:100] + "...",
|
| 110 |
+
"correct": is_correct
|
| 111 |
+
})
|
| 112 |
+
|
| 113 |
+
except Exception as e:
|
| 114 |
+
print(f"Error evaluating sample: {e}")
|
| 115 |
+
continue
|
| 116 |
+
|
| 117 |
+
accuracy = (correct / total * 100) if total > 0 else 0
|
| 118 |
+
|
| 119 |
+
return {
|
| 120 |
+
"accuracy": accuracy,
|
| 121 |
+
"correct": correct,
|
| 122 |
+
"total": total,
|
| 123 |
+
"results": results
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
except Exception as e:
|
| 127 |
+
return {
|
| 128 |
+
"error": str(e),
|
| 129 |
+
"accuracy": 0,
|
| 130 |
+
"correct": 0,
|
| 131 |
+
"total": 0,
|
| 132 |
+
"results": []
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def create_evaluator_file(dataset_name: str, split: str, model: str,
|
| 137 |
+
input_field: str, target_field: str, work_dir: str):
|
| 138 |
+
"""Create an evaluator.py file for OpenEvolve."""
|
| 139 |
+
evaluator_code = f'''
|
| 140 |
+
import os
|
| 141 |
+
import random
|
| 142 |
+
from datasets import load_dataset
|
| 143 |
+
from openai import OpenAI
|
| 144 |
+
|
| 145 |
+
def evaluate(prompt: str) -> float:
|
| 146 |
+
"""Evaluate a prompt and return a score between 0 and 1."""
|
| 147 |
+
try:
|
| 148 |
+
# Load dataset
|
| 149 |
+
dataset = load_dataset("{dataset_name}", split="{split}", streaming=False)
|
| 150 |
+
|
| 151 |
+
# Sample 100 random examples
|
| 152 |
+
num_samples = min(100, len(dataset))
|
| 153 |
+
if len(dataset) > num_samples:
|
| 154 |
+
indices = random.sample(range(len(dataset)), num_samples)
|
| 155 |
+
samples = [dataset[i] for i in indices]
|
| 156 |
+
else:
|
| 157 |
+
samples = list(dataset)[:num_samples]
|
| 158 |
+
|
| 159 |
+
# Initialize OpenAI client
|
| 160 |
+
api_key = os.environ.get("OPENAI_API_KEY")
|
| 161 |
+
client = OpenAI(
|
| 162 |
+
base_url="https://openrouter.ai/api/v1",
|
| 163 |
+
api_key=api_key,
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
correct = 0
|
| 167 |
+
total = 0
|
| 168 |
+
|
| 169 |
+
for sample in samples:
|
| 170 |
+
try:
|
| 171 |
+
# Get input and target
|
| 172 |
+
input_text = sample.get("{input_field}", "")
|
| 173 |
+
if isinstance(input_text, dict):
|
| 174 |
+
input_text = str(input_text)
|
| 175 |
+
|
| 176 |
+
target = sample.get("{target_field}", "")
|
| 177 |
+
if isinstance(target, dict):
|
| 178 |
+
target = str(target)
|
| 179 |
+
|
| 180 |
+
# Format the prompt
|
| 181 |
+
formatted_prompt = prompt.replace("{{input}}", str(input_text))
|
| 182 |
+
|
| 183 |
+
# Call the model
|
| 184 |
+
response = client.chat.completions.create(
|
| 185 |
+
model="{model}",
|
| 186 |
+
messages=[
|
| 187 |
+
{{"role": "system", "content": "You are a helpful assistant."}},
|
| 188 |
+
{{"role": "user", "content": formatted_prompt}}
|
| 189 |
+
],
|
| 190 |
+
temperature=0.1,
|
| 191 |
+
max_tokens=500,
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
prediction = response.choices[0].message.content.strip()
|
| 195 |
+
|
| 196 |
+
# Simple evaluation
|
| 197 |
+
is_correct = str(target).lower().strip() in prediction.lower()
|
| 198 |
+
if is_correct:
|
| 199 |
+
correct += 1
|
| 200 |
+
total += 1
|
| 201 |
+
|
| 202 |
+
except Exception as e:
|
| 203 |
+
print(f"Error evaluating sample: {{e}}")
|
| 204 |
+
continue
|
| 205 |
+
|
| 206 |
+
# Return score between 0 and 1
|
| 207 |
+
return (correct / total) if total > 0 else 0.0
|
| 208 |
+
|
| 209 |
+
except Exception as e:
|
| 210 |
+
print(f"Error in evaluation: {{e}}")
|
| 211 |
+
return 0.0
|
| 212 |
+
'''
|
| 213 |
+
|
| 214 |
+
evaluator_path = os.path.join(work_dir, "evaluator.py")
|
| 215 |
+
with open(evaluator_path, "w") as f:
|
| 216 |
+
f.write(evaluator_code)
|
| 217 |
+
|
| 218 |
+
return evaluator_path
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def create_config_file(model: str, work_dir: str):
|
| 222 |
+
"""Create a config.yaml file for OpenEvolve."""
|
| 223 |
+
config = {
|
| 224 |
+
"llm": {
|
| 225 |
+
"api_base": "https://openrouter.ai/api/v1",
|
| 226 |
+
"model": model,
|
| 227 |
+
"temperature": 0.7,
|
| 228 |
+
"max_tokens": 4096,
|
| 229 |
+
},
|
| 230 |
+
"evolution": {
|
| 231 |
+
"max_iterations": 10,
|
| 232 |
+
"population_size": 10,
|
| 233 |
+
"num_islands": 1,
|
| 234 |
+
"elite_ratio": 0.1,
|
| 235 |
+
"explore_ratio": 0.3,
|
| 236 |
+
"exploit_ratio": 0.6,
|
| 237 |
+
},
|
| 238 |
+
"evaluation": {
|
| 239 |
+
"timeout": 1800,
|
| 240 |
+
}
|
| 241 |
+
}
|
| 242 |
+
|
| 243 |
+
config_path = os.path.join(work_dir, "config.yaml")
|
| 244 |
+
with open(config_path, "w") as f:
|
| 245 |
+
yaml.dump(config, f)
|
| 246 |
+
|
| 247 |
+
return config_path
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
def optimize_prompt(initial_prompt: str, dataset_name: str, dataset_split: str,
|
| 251 |
+
model: str, api_key: str, input_field: str, target_field: str,
|
| 252 |
+
progress=gr.Progress()) -> Tuple[str, str, str]:
|
| 253 |
+
"""Run OpenEvolve to optimize the prompt."""
|
| 254 |
+
|
| 255 |
+
if not api_key:
|
| 256 |
+
return "Error: OpenAI API Key is required", "", ""
|
| 257 |
+
|
| 258 |
+
# Set API key as environment variable
|
| 259 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
| 260 |
+
|
| 261 |
+
progress(0, desc="Setting up...")
|
| 262 |
+
|
| 263 |
+
# Create temporary working directory
|
| 264 |
+
work_dir = tempfile.mkdtemp(prefix="openevolve_")
|
| 265 |
+
|
| 266 |
+
try:
|
| 267 |
+
# Save initial prompt
|
| 268 |
+
initial_prompt_path = os.path.join(work_dir, "initial_prompt.txt")
|
| 269 |
+
with open(initial_prompt_path, "w") as f:
|
| 270 |
+
f.write(initial_prompt)
|
| 271 |
+
|
| 272 |
+
# Create evaluator
|
| 273 |
+
progress(0.1, desc="Creating evaluator...")
|
| 274 |
+
evaluator_path = create_evaluator_file(dataset_name, dataset_split, model,
|
| 275 |
+
input_field, target_field, work_dir)
|
| 276 |
+
|
| 277 |
+
# Create config
|
| 278 |
+
progress(0.2, desc="Creating configuration...")
|
| 279 |
+
config_path = create_config_file(model, work_dir)
|
| 280 |
+
|
| 281 |
+
# Run initial evaluation
|
| 282 |
+
progress(0.3, desc="Running initial evaluation...")
|
| 283 |
+
initial_eval = evaluate_prompt(
|
| 284 |
+
initial_prompt, dataset_name, dataset_split, 100,
|
| 285 |
+
api_key, model, input_field, target_field
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
initial_results = f"""
|
| 289 |
+
### Initial Prompt Evaluation
|
| 290 |
+
|
| 291 |
+
**Prompt:**
|
| 292 |
+
```
|
| 293 |
+
{initial_prompt}
|
| 294 |
+
```
|
| 295 |
+
|
| 296 |
+
**Results:**
|
| 297 |
+
- Accuracy: {initial_eval['accuracy']:.2f}%
|
| 298 |
+
- Correct: {initial_eval['correct']}/{initial_eval['total']}
|
| 299 |
+
|
| 300 |
+
**Sample Results:**
|
| 301 |
+
"""
|
| 302 |
+
for i, result in enumerate(initial_eval['results'][:5], 1):
|
| 303 |
+
initial_results += f"\n{i}. Input: {result['input']}\n"
|
| 304 |
+
initial_results += f" Target: {result['target']}\n"
|
| 305 |
+
initial_results += f" Prediction: {result['prediction']}\n"
|
| 306 |
+
initial_results += f" β Correct\n" if result['correct'] else f" β Incorrect\n"
|
| 307 |
+
|
| 308 |
+
# Run OpenEvolve
|
| 309 |
+
progress(0.4, desc="Running OpenEvolve (this may take several minutes)...")
|
| 310 |
+
|
| 311 |
+
output_dir = os.path.join(work_dir, "output")
|
| 312 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 313 |
+
|
| 314 |
+
try:
|
| 315 |
+
# Run evolution
|
| 316 |
+
result = run_evolution(
|
| 317 |
+
initial_program_path=initial_prompt_path,
|
| 318 |
+
evaluator_path=evaluator_path,
|
| 319 |
+
config_path=config_path,
|
| 320 |
+
output_dir=output_dir,
|
| 321 |
+
verbose=True
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
progress(0.8, desc="Evaluating best prompt...")
|
| 325 |
+
|
| 326 |
+
# Get the best prompt
|
| 327 |
+
best_prompt_path = os.path.join(output_dir, "best_program.txt")
|
| 328 |
+
if os.path.exists(best_prompt_path):
|
| 329 |
+
with open(best_prompt_path, "r") as f:
|
| 330 |
+
best_prompt = f.read()
|
| 331 |
+
else:
|
| 332 |
+
best_prompt = initial_prompt
|
| 333 |
+
|
| 334 |
+
# Evaluate best prompt
|
| 335 |
+
final_eval = evaluate_prompt(
|
| 336 |
+
best_prompt, dataset_name, dataset_split, 100,
|
| 337 |
+
api_key, model, input_field, target_field
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
final_results = f"""
|
| 341 |
+
### Evolved Prompt Evaluation
|
| 342 |
+
|
| 343 |
+
**Prompt:**
|
| 344 |
+
```
|
| 345 |
+
{best_prompt}
|
| 346 |
+
```
|
| 347 |
+
|
| 348 |
+
**Results:**
|
| 349 |
+
- Accuracy: {final_eval['accuracy']:.2f}%
|
| 350 |
+
- Correct: {final_eval['correct']}/{final_eval['total']}
|
| 351 |
+
- Improvement: {final_eval['accuracy'] - initial_eval['accuracy']:.2f}%
|
| 352 |
+
|
| 353 |
+
**Sample Results:**
|
| 354 |
+
"""
|
| 355 |
+
for i, result in enumerate(final_eval['results'][:5], 1):
|
| 356 |
+
final_results += f"\n{i}. Input: {result['input']}\n"
|
| 357 |
+
final_results += f" Target: {result['target']}\n"
|
| 358 |
+
final_results += f" Prediction: {result['prediction']}\n"
|
| 359 |
+
final_results += f" β Correct\n" if result['correct'] else f" β Incorrect\n"
|
| 360 |
+
|
| 361 |
+
summary = f"""
|
| 362 |
+
## Optimization Complete!
|
| 363 |
+
|
| 364 |
+
### Summary
|
| 365 |
+
- Initial Accuracy: {initial_eval['accuracy']:.2f}%
|
| 366 |
+
- Final Accuracy: {final_eval['accuracy']:.2f}%
|
| 367 |
+
- Improvement: {final_eval['accuracy'] - initial_eval['accuracy']:.2f}%
|
| 368 |
+
- Dataset: {dataset_name}
|
| 369 |
+
- Model: {model}
|
| 370 |
+
- Samples Evaluated: 100
|
| 371 |
+
- Iterations: 10
|
| 372 |
+
"""
|
| 373 |
+
|
| 374 |
+
progress(1.0, desc="Complete!")
|
| 375 |
+
|
| 376 |
+
return summary, initial_results, final_results
|
| 377 |
+
|
| 378 |
+
except Exception as e:
|
| 379 |
+
return f"Error during evolution: {str(e)}", initial_results, ""
|
| 380 |
+
|
| 381 |
+
finally:
|
| 382 |
+
# Clean up
|
| 383 |
+
try:
|
| 384 |
+
shutil.rmtree(work_dir)
|
| 385 |
+
except:
|
| 386 |
+
pass
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
# Create Gradio interface
|
| 390 |
+
with gr.Blocks(title="OpenEvolve Prompt Optimizer", theme=gr.themes.Soft()) as demo:
|
| 391 |
+
gr.Markdown("""
|
| 392 |
+
# 𧬠OpenEvolve Prompt Optimizer
|
| 393 |
+
|
| 394 |
+
Automatically evolve and optimize your prompts using evolutionary algorithms!
|
| 395 |
+
|
| 396 |
+
This space uses [OpenEvolve](https://github.com/codelion/openevolve) to iteratively improve prompts
|
| 397 |
+
by testing them on real datasets and evolving better versions.
|
| 398 |
+
|
| 399 |
+
## How it works:
|
| 400 |
+
1. Enter an initial prompt (use `{input}` as a placeholder for dataset inputs)
|
| 401 |
+
2. Select a HuggingFace dataset to test on
|
| 402 |
+
3. Choose a free model from OpenRouter
|
| 403 |
+
4. Click "Optimize Prompt" to evolve better versions
|
| 404 |
+
5. Compare initial vs. evolved performance!
|
| 405 |
+
""")
|
| 406 |
+
|
| 407 |
+
with gr.Row():
|
| 408 |
+
with gr.Column():
|
| 409 |
+
gr.Markdown("### Configuration")
|
| 410 |
+
|
| 411 |
+
api_key = gr.Textbox(
|
| 412 |
+
label="OpenAI API Key (for OpenRouter)",
|
| 413 |
+
type="password",
|
| 414 |
+
placeholder="sk-or-v1-...",
|
| 415 |
+
info="Get your free key at https://openrouter.ai/keys"
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
model = gr.Dropdown(
|
| 419 |
+
choices=FREE_MODELS,
|
| 420 |
+
value=FREE_MODELS[0],
|
| 421 |
+
label="Select Model",
|
| 422 |
+
info="Free models available on OpenRouter"
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
dataset_name = gr.Textbox(
|
| 426 |
+
label="HuggingFace Dataset",
|
| 427 |
+
value="imdb",
|
| 428 |
+
placeholder="e.g., imdb, hotpot_qa, gsm8k",
|
| 429 |
+
info="Any dataset from HuggingFace Hub"
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
dataset_split = gr.Textbox(
|
| 433 |
+
label="Dataset Split",
|
| 434 |
+
value="test",
|
| 435 |
+
placeholder="e.g., train, test, validation"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
input_field = gr.Textbox(
|
| 439 |
+
label="Input Field Name",
|
| 440 |
+
value="text",
|
| 441 |
+
placeholder="e.g., text, question, context",
|
| 442 |
+
info="The field containing inputs to process"
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
target_field = gr.Textbox(
|
| 446 |
+
label="Target Field Name",
|
| 447 |
+
value="label",
|
| 448 |
+
placeholder="e.g., label, answer, target",
|
| 449 |
+
info="The field containing expected outputs"
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
initial_prompt = gr.TextArea(
|
| 453 |
+
label="Initial Prompt",
|
| 454 |
+
value="Analyze the sentiment of the following text and classify it as positive or negative:\n\n{input}\n\nClassification:",
|
| 455 |
+
lines=6,
|
| 456 |
+
info="Use {input} as placeholder for dataset inputs"
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
optimize_btn = gr.Button("π Optimize Prompt", variant="primary", size="lg")
|
| 460 |
+
|
| 461 |
+
with gr.Row():
|
| 462 |
+
with gr.Column():
|
| 463 |
+
summary = gr.Markdown(label="Summary")
|
| 464 |
+
|
| 465 |
+
with gr.Row():
|
| 466 |
+
with gr.Column():
|
| 467 |
+
initial_results = gr.Markdown(label="Initial Results")
|
| 468 |
+
with gr.Column():
|
| 469 |
+
final_results = gr.Markdown(label="Evolved Results")
|
| 470 |
+
|
| 471 |
+
gr.Markdown("""
|
| 472 |
+
### Example Datasets & Fields:
|
| 473 |
+
|
| 474 |
+
| Dataset | Split | Input Field | Target Field | Task |
|
| 475 |
+
|---------|-------|-------------|--------------|------|
|
| 476 |
+
| imdb | test | text | label | Sentiment Analysis |
|
| 477 |
+
| hotpot_qa | validation | question | answer | Question Answering |
|
| 478 |
+
| emotion | test | text | label | Emotion Classification |
|
| 479 |
+
| gsm8k | test | question | answer | Math Reasoning |
|
| 480 |
+
| ag_news | test | text | label | News Classification |
|
| 481 |
+
|
| 482 |
+
### Notes:
|
| 483 |
+
- Evolution runs for 10 iterations with 1 island
|
| 484 |
+
- Each evaluation uses 100 random samples from the dataset
|
| 485 |
+
- The process may take 5-15 minutes depending on the dataset and model
|
| 486 |
+
- Make sure your API key has sufficient credits for the requests
|
| 487 |
+
""")
|
| 488 |
+
|
| 489 |
+
optimize_btn.click(
|
| 490 |
+
fn=optimize_prompt,
|
| 491 |
+
inputs=[initial_prompt, dataset_name, dataset_split, model, api_key,
|
| 492 |
+
input_field, target_field],
|
| 493 |
+
outputs=[summary, initial_results, final_results]
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
if __name__ == "__main__":
|
| 497 |
+
demo.launch()
|