VibeVoice-Realtime-0.5B / vibevoice /modular /configuration_vibevoice_streaming.py
akhaliq's picture
akhaliq HF Staff
Upload 37 files
26e0cd3 verified
""" VibeVoice Streaming model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
from .configuration_vibevoice import VibeVoiceAcousticTokenizerConfig, VibeVoiceDiffusionHeadConfig
logger = logging.get_logger(__name__)
class VibeVoiceStreamingConfig(PretrainedConfig):
model_type = "vibevoice_streaming"
is_composition = True
sub_configs = {
"acoustic_tokenizer_config": VibeVoiceAcousticTokenizerConfig,
"decoder_config": Qwen2Config,
"diffusion_head_config": VibeVoiceDiffusionHeadConfig,
}
# keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `Qwen2`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
def __init__(
self,
acoustic_tokenizer_config=None,
decoder_config=None,
diffusion_head_config=None,
tts_backbone_num_hidden_layers=20,
**kwargs
):
# kwargs["_attn_implementation"] = "flash_attention_2"
kwargs["_attn_implementation_autoset"] = False
if acoustic_tokenizer_config is None:
self.acoustic_tokenizer_config = self.sub_configs["acoustic_tokenizer_config"]()
elif isinstance(acoustic_tokenizer_config, dict):
acoustic_tokenizer_config["model_type"] = "vibevoice_acoustic_tokenizer"
self.acoustic_tokenizer_config = self.sub_configs["acoustic_tokenizer_config"](**acoustic_tokenizer_config)
elif isinstance(acoustic_tokenizer_config, VibeVoiceAcousticTokenizerConfig):
# If an instance of the config class is provided
self.acoustic_tokenizer_config = acoustic_tokenizer_config
if decoder_config is None:
self.decoder_config = self.sub_configs["decoder_config"]()
elif isinstance(decoder_config, dict):
# If a dictionary is provided, instantiate the config class with it
# self.decoder_config = self.sub_configs["decoder_config"](**decoder_config)
if decoder_config.get("model_type", '') == "qwen2":
self.decoder_config = Qwen2Config(**decoder_config)
else:
raise ValueError(f"Unsupported decoder model type: {decoder_config.get('model_type', '')}")
elif isinstance(decoder_config, (Qwen2Config,)):
# If an instance of the config class is provided
self.decoder_config = decoder_config
if diffusion_head_config is None:
self.diffusion_head_config = self.sub_configs["diffusion_head_config"]()
elif isinstance(diffusion_head_config, dict):
diffusion_head_config["model_type"] = "vibevoice_diffusion_head"
self.diffusion_head_config = self.sub_configs["diffusion_head_config"](**diffusion_head_config)
elif isinstance(diffusion_head_config, VibeVoiceDiffusionHeadConfig):
# If an instance of the config class is provided
self.diffusion_head_config = diffusion_head_config
# other parameters
self.acoustic_vae_dim = getattr(self.acoustic_tokenizer_config, 'vae_dim', 64)
# The decoder of the model is divided into two components. The lower Transformer layers are only used for encoding text, while the upper Transformer layers are used for encoding text and generating speech. `tts_backbone_num_hidden_layers` indicates the number of upper layers used for TTS.
self.tts_backbone_num_hidden_layers = tts_backbone_num_hidden_layers
super().__init__(**kwargs)
__all__ = [
"VibeVoiceStreamingConfig"
]