from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Union, Callable from tqdm import tqdm import torch import torch.nn as nn from transformers.models.auto import AutoModel, AutoModelForCausalLM from transformers.generation import GenerationMixin, GenerationConfig, LogitsProcessor, LogitsProcessorList, StoppingCriteriaList from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput from transformers import modeling_utils from transformers.modeling_utils import PreTrainedModel from transformers.modeling_flash_attention_utils import FlashAttentionKwargs from transformers.utils import logging from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache from .modular_vibevoice_diffusion_head import VibeVoiceDiffusionHead from vibevoice.schedule.dpm_solver import DPMSolverMultistepScheduler from .configuration_vibevoice_streaming import VibeVoiceStreamingConfig from .modular_vibevoice_text_tokenizer import VibeVoiceTextTokenizer, VibeVoiceTextTokenizerFast from .modeling_vibevoice_streaming import VibeVoiceStreamingPreTrainedModel, VibeVoiceStreamingModel, BinaryClassifier from .streamer import AudioStreamer, AsyncAudioStreamer logger = logging.get_logger(__name__) if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None: modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", "rowwise"] TTS_TEXT_WINDOW_SIZE = 5 TTS_SPEECH_WINDOW_SIZE = 6 def _update_model_kwargs_for_generation( outputs: ModelOutput, model_kwargs: Dict[str, Any], num_new_tokens: int = 1, ) -> Dict[str, Any]: """ Update model_kwargs after adding new tokens. Mainly for the case num_new_tokens > 1 (e.g. a whole text window): - past_key_values: take from current outputs - attention_mask: append num_new_tokens ones - cache_position: advance by creating a range for all new positions """ # update past_key_values keeping its naming used in model code model_kwargs["past_key_values"] = getattr(outputs, "past_key_values") attention_mask = model_kwargs["attention_mask"] model_kwargs["attention_mask"] = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], num_new_tokens))], dim=-1 ) model_kwargs["cache_position"] = torch.arange(model_kwargs["cache_position"][-1] + 1, model_kwargs["cache_position"][-1] + num_new_tokens + 1).to(model_kwargs["cache_position"].device) return model_kwargs @dataclass class VibeVoiceCausalLMOutputWithPast(BaseModelOutputWithPast): logits: Optional[torch.FloatTensor] = None @dataclass class VibeVoiceGenerationOutput(ModelOutput): """ Output type for VibeVoice generation. Args: sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The generated sequences. speech_outputs (`List[torch.FloatTensor]`, *optional*): List of generated speech waveforms or latents for each speech segment. """ sequences: torch.LongTensor = None speech_outputs: Optional[List[torch.FloatTensor]] = None reach_max_step_sample: Optional[torch.BoolTensor] = None class VibeVoiceStreamingForConditionalGenerationInference(VibeVoiceStreamingPreTrainedModel, GenerationMixin): def __init__(self, config): super().__init__(config) # Initialize the base model self.model = VibeVoiceStreamingModel(config) # TTS generation EOS classifier self.tts_eos_classifier = BinaryClassifier(config.decoder_config.hidden_size) # inference configuration self.ddpm_inference_steps = config.diffusion_head_config.ddpm_num_inference_steps # Initialize weights and apply final processing self.post_init() @property def noise_scheduler(self): return self.model.noise_scheduler @property def prediction_head(self): return self.model.prediction_head @property def speech_scaling_factor(self): return self.model.speech_scaling_factor @property def speech_bias_factor(self): return self.model.speech_bias_factor @property def acoustic_tokenizer(self): return self.model.acoustic_tokenizer @property def acoustic_connector(self): return self.model.acoustic_connector def tie_weights(self): """ Tie the weights between the input embeddings and the output embeddings. """ # Tie lm_head.weight to language_model.embed_tokens.weight if not getattr(self.config, 'tie_word_embeddings', False): return if hasattr(self, 'lm_head') and hasattr(self.model.language_model, 'embed_tokens'): self.lm_head.weight = self.model.language_model.embed_tokens.weight def get_input_embeddings(self): return self.model.get_input_embeddings() def set_input_embeddings(self, value): self.model.set_input_embeddings(value) def get_output_embeddings(self): """ This model does not define an `lm_head` (vocabulary projection). """ return None def set_output_embeddings(self, new_embeddings): """ No-op because there is no `lm_head`. Provided only to satisfy optional API calls. To enable, first create `self.lm_head` then allow assignment. """ raise RuntimeError("Output embeddings (lm_head) are not defined for this model. " "Create one before calling set_output_embeddings if needed.") def set_speech_tokenizers(self, acoustic_tokenizer=None): """Set the speech tokenizers used for encoding and decoding speech.""" self.model.set_speech_tokenizers(acoustic_tokenizer) def set_ddpm_inference_steps(self, num_steps=None): self.ddpm_inference_steps = num_steps or self.config.diffusion_head_config.ddpm_num_inference_steps # @can_return_tuple def forward_lm( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Union[Tuple, BaseModelOutputWithPast]: """ Single pass of the base text LM. - Builds embeddings if `inputs_embeds` not provided. - Uses (and returns) `past_key_values` when `use_cache=True`. - No loss / no lm_head / no speech logic. Args: input_ids: (B, S) token ids. attention_mask: (B, S) mask. past_key_values: cache from previous steps. cache_position: positions for cached tokens. labels: unsupported (will raise). Returns: BaseModelOutputWithPast with `last_hidden_state` and `past_key_values`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Get embeddings if inputs_embeds is None: inputs_embeds = self.model.get_input_embeddings()(input_ids) outputs = self.model.language_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state if labels is not None: raise NotImplementedError("Loss computation is not implemented in this version.") return BaseModelOutputWithPast( past_key_values=outputs.past_key_values, last_hidden_state=hidden_states, attentions=outputs.attentions, ) # @can_return_tuple def forward_tts_lm( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, lm_last_hidden_state: Optional[torch.FloatTensor] = None, tts_text_masks: Optional[torch.BoolTensor] = None, **kwargs, ) -> Union[Tuple, VibeVoiceCausalLMOutputWithPast]: """ Single pass of the TTS LM. - Overwrites tail embeddings with `lm_last_hidden_state`. - Adds type embedding via `tts_text_masks` (1=text, 0=speech). - Predicts EOS from last hidden state (binary classifier). - No loss / no full acoustic decoding here. Args: input_ids: (B, S) token ids. attention_mask: (B, S) mask. lm_last_hidden_state: (B, K, H) hidden states to splice into the tail. tts_text_masks: (B, 1) mask marking current position as text(1)/speech(0). past_key_values: cache from previous TTS steps. cache_position: positions for cached tokens. labels: unsupported (will raise). Returns: VibeVoiceCausalLMOutputWithPast with `logits` (EOS), `last_hidden_state`, `past_key_values`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Get embeddings if inputs_embeds is None: # Will be replaced with lm_last_hidden_state inputs_embeds = self.model.get_input_embeddings()(input_ids) # Replace the last part of inputs_embeds with lm_last_hidden_state start_idx = inputs_embeds.shape[1] - lm_last_hidden_state.shape[1] inputs_embeds[:, start_idx:, :] = lm_last_hidden_state # Adds type embedding via `tts_text_masks`. inputs_embeds = inputs_embeds + self.model.tts_input_types(tts_text_masks.long()) outputs = self.model.tts_language_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state logits = self.tts_eos_classifier(hidden_states[:, -1, :]) if labels is not None: raise NotImplementedError("Loss computation is not implemented in this version.") return VibeVoiceCausalLMOutputWithPast( logits=logits, past_key_values=outputs.past_key_values, last_hidden_state=hidden_states, attentions=outputs.attentions, ) def forward(self, *args, **kwargs): """ Unified forward is intentionally disabled. Reasons: 1. The inference pipeline is staged: base text LM, then TTS LM, plus streaming & diffusion handled in `generate`. 2. A monolithic call would hide required sequencing (prefill, window stepping, speech diffusion sampling). Use instead: - self.forward_lm(...) for a base text LM step (prefill or incremental). - self.forward_tts_lm(...) for a single TTS LM step (needs LM hidden states). - self.generate(...) for full streaming (text + speech + diffusion + audio assembly). Raises: RuntimeError: Always (by design). """ raise RuntimeError( "Unified forward is disabled. Use `forward_lm`, `forward_tts_lm`, or `generate` instead." ) def _build_generate_config_model_kwargs(self, generation_config, inputs, tokenizer, return_processors=False, **kwargs): if generation_config is None: generation_config = GenerationConfig( bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, pad_token_id = tokenizer.pad_token_id ) else: generation_config = GenerationConfig( **generation_config, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, pad_token_id = tokenizer.pad_token_id ) generation_config, model_kwargs = self._prepare_generation_config( generation_config, True, speech_start_id=tokenizer.speech_start_id, speech_end_id=tokenizer.speech_end_id, speech_diffusion_id=tokenizer.speech_diffusion_id, **kwargs ) generation_config.speech_start_id = tokenizer.speech_start_id generation_config.speech_end_id = tokenizer.speech_end_id generation_config.speech_diffusion_id = tokenizer.speech_diffusion_id inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(inputs, generation_config.bos_token_id, model_kwargs) batch_size = inputs_tensor.shape[0] device = self.device self._prepare_special_tokens(generation_config, True, device=device) generation_config.use_cache = True model_kwargs["use_cache"] = generation_config.use_cache input_ids = inputs_tensor.to(self.device) input_ids_length = input_ids.shape[1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None generation_config = self._prepare_generated_length( generation_config=generation_config, has_default_max_length=has_default_max_length, has_default_min_length=has_default_min_length, model_input_name=model_input_name, inputs_tensor=inputs_tensor, input_ids_length=input_ids_length, ) max_cache_length = generation_config.max_length - 1 self._prepare_cache_for_generation(generation_config, model_kwargs, None, batch_size, max_cache_length, device) model_kwargs['cache_position'] = torch.arange(input_ids_length, device=device, dtype=torch.long) for k, v in model_kwargs.items(): if isinstance(v, torch.Tensor): model_kwargs[k] = v.to(device=device) if return_processors: logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_length, encoder_input_ids=inputs_tensor, prefix_allowed_tokens_fn=None, logits_processor=LogitsProcessorList(), device=inputs_tensor.device, model_kwargs=model_kwargs, ) stopping_criteria = self._get_stopping_criteria(generation_config=generation_config, stopping_criteria=StoppingCriteriaList()) return generation_config, model_kwargs, input_ids, logits_processor, stopping_criteria else: return generation_config, model_kwargs, input_ids @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, synced_gpus: Optional[bool] = None, assistant_model: Optional["PreTrainedModel"] = None, audio_streamer: Optional[Union[AudioStreamer, AsyncAudioStreamer]] = None, negative_prompt_ids: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, speech_tensors: Optional[torch.FloatTensor] = None, speech_masks: Optional[torch.BoolTensor] = None, speech_input_mask: Optional[torch.BoolTensor] = None, tts_text_ids: Optional[torch.LongTensor] = None, return_speech: bool = True, cfg_scale: float = 1.0, stop_check_fn: Optional[Callable[[], bool]] = None, **kwargs, ) -> Union[torch.LongTensor, VibeVoiceGenerationOutput]: """ Text is fed in small windows (dynamic slicing of `tts_text_ids`), which enables streaming text input: you don’t need the full text upfront. After each text window, a loop samples several speech latents (diffusion). The interleaved text encoding + speech generation enables streaming text input and realtime speech output. The function only supports batch size = 1 currently. - Windowed text prefill → incremental LM + TTS LM updates. - Interleave speech token diffusion sampling (`sample_speech_tokens`). - Stops on EOS (binary classifier) or max length / external `stop_check_fn`. - Returns final token `sequences` and (optionally) concatenated speech audio. Args (selected): tts_text_ids: Full text tokens to stream in windows. audio_streamer: If provided, emits audio chunks during generation. cfg_scale: Classifier-free guidance scale for speech diffusion. return_speech: If False, skips audio decode concatenation. stop_check_fn: External early-stop hook (returns True to halt). Returns: VibeVoiceGenerationOutput with: - sequences: final token ids - speech_outputs: list of concatenated audio tensors (or None) - reach_max_step_sample: flags for samples stopped by max length """ # 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call tokenizer = kwargs.pop("tokenizer", None) neg_text_input_id = tokenizer.convert_tokens_to_ids("<|image_pad|>") tts_lm_input_ids = kwargs.pop("tts_lm_input_ids", None) tts_lm_attention_mask = kwargs.pop("tts_lm_attention_mask", None) # all_prefilled_outputs: cached prefilled prompt outputs for lm, tts_lm, neg_lm, neg_tts_lm all_prefilled_outputs = kwargs.pop("all_prefilled_outputs", None) tts_text_ids = tts_text_ids.to(self.device) if kwargs.get('max_new_tokens', None) is None: kwargs['max_new_tokens'] = self.config.decoder_config.max_position_embeddings - tts_lm_input_ids.shape[-1] generation_config, model_kwargs, input_ids, logits_processor, stopping_criteria = self._build_generate_config_model_kwargs( generation_config, inputs, tokenizer, return_processors=True, **kwargs ) negative_kwargs = { 'input_ids': torch.full((kwargs['input_ids'].shape[0], 1), neg_text_input_id, dtype=torch.long, device=kwargs['input_ids'].device), 'attention_mask': torch.ones((kwargs['input_ids'].shape[0], 1), dtype=torch.long, device=kwargs['input_ids'].device), 'max_new_tokens': kwargs.get('max_new_tokens', 100) } negative_generation_config, negative_model_kwargs, negative_input_ids = self._build_generate_config_model_kwargs( None, None, tokenizer, return_processors=False, **negative_kwargs ) tts_lm_kwargs = { 'input_ids': tts_lm_input_ids, 'attention_mask': tts_lm_attention_mask, 'max_new_tokens': kwargs.get('max_new_tokens', 100) } tts_lm_generation_config, tts_lm_model_kwargs, tts_lm_input_ids = self._build_generate_config_model_kwargs( None, None, tokenizer, return_processors=False, **tts_lm_kwargs ) tts_lm_negative_kwargs = { 'input_ids': torch.full((kwargs['input_ids'].shape[0], 1), neg_text_input_id, dtype=torch.long, device=kwargs['input_ids'].device), 'attention_mask': torch.ones((kwargs['input_ids'].shape[0], 1), dtype=torch.long, device=kwargs['input_ids'].device), 'max_new_tokens': kwargs.get('max_new_tokens', 100) } tts_lm_negative_generation_config, tts_lm_negative_model_kwargs, tts_lm_negative_input_ids = self._build_generate_config_model_kwargs( None, None, tokenizer, return_processors=False, **tts_lm_negative_kwargs ) acoustic_cache = VibeVoiceTokenizerStreamingCache() batch_size = input_ids.shape[0] assert batch_size == 1, "Currently only supports batch size == 1" device = input_ids.device finished_tags = torch.zeros(batch_size, dtype=torch.bool, device=device) verbose = kwargs.get("verbose", False) # Initialize audio chunks storage for each sample audio_chunks = [[] for _ in range(batch_size)] tts_text_window_index = 0 reach_max_step_sample = torch.zeros(batch_size, dtype=torch.bool, device=device) first_text_window_size = TTS_TEXT_WINDOW_SIZE if tts_text_ids.shape[1] >= TTS_TEXT_WINDOW_SIZE else tts_text_ids.shape[1] outputs = all_prefilled_outputs["lm"] tts_lm_outputs = all_prefilled_outputs["tts_lm"] negative_outputs = all_prefilled_outputs["neg_lm"] tts_lm_negative_outputs = all_prefilled_outputs["neg_tts_lm"] model_kwargs = _update_model_kwargs_for_generation( outputs, model_kwargs, num_new_tokens=first_text_window_size, ) tts_lm_model_kwargs = _update_model_kwargs_for_generation( tts_lm_outputs, tts_lm_model_kwargs, num_new_tokens=first_text_window_size, ) negative_model_kwargs = self._update_model_kwargs_for_generation( negative_outputs, negative_model_kwargs, is_encoder_decoder=False, ) tts_lm_negative_model_kwargs = self._update_model_kwargs_for_generation( tts_lm_negative_outputs, tts_lm_negative_model_kwargs, is_encoder_decoder=False, ) step = tts_lm_input_ids.shape[1] total_generated_speech_tokens = 0 total_prefilled_text_tokens = 0 if kwargs.get("show_progress_bar", True): progress_bar = tqdm( total=tts_lm_generation_config.max_length, desc=f"Prefilled {step} tokens, current step ({step} / {tts_lm_generation_config.max_length})", initial=step, leave=False ) else: progress_bar = None while True: # Check for external stop signal if stop_check_fn is not None and stop_check_fn(): if verbose: print(f"Generation stopped externally at step {step + 1}") # End the audio streamer if it exists if audio_streamer is not None: audio_streamer.end() break # # Check if audio_streamer has been ended (stopped externally) # if audio_streamer is not None and hasattr(audio_streamer, 'finished_flags'): # if any(audio_streamer.finished_flags): # if verbose: # print(f"Audio generation stopped externally at step {step + 1}") # break if finished_tags.all(): if hasattr(progress_bar, 'set_description'): progress_bar.set_description("Generation complete") break cur_input_tts_text_ids = tts_text_ids[:, tts_text_window_index*TTS_TEXT_WINDOW_SIZE:(tts_text_window_index+1)*TTS_TEXT_WINDOW_SIZE] next_text_window_size = tts_text_ids[:, (tts_text_window_index+1)*TTS_TEXT_WINDOW_SIZE:(tts_text_window_index+2)*TTS_TEXT_WINDOW_SIZE].shape[1] tts_text_window_index += 1 if cur_input_tts_text_ids.shape[1] > 0: input_ids = torch.cat([input_ids, cur_input_tts_text_ids], dim=-1) tts_lm_input_ids = torch.cat([tts_lm_input_ids, cur_input_tts_text_ids], dim=-1) if tts_lm_input_ids.shape[1] > tts_lm_generation_config.max_length: if verbose: print(f"Reached maximum generation length {generation_config.max_length}, stopped it.") reached_samples = torch.arange(batch_size, device=device)[~finished_tags] if reached_samples.numel() > 0: reach_max_step_sample[reached_samples] = True break step += cur_input_tts_text_ids.shape[1] total_prefilled_text_tokens += cur_input_tts_text_ids.shape[1] if progress_bar is not None: progress_bar.update(cur_input_tts_text_ids.shape[1]) progress_bar.set_description(f"Prefilled {total_prefilled_text_tokens} text tokens, generated {total_generated_speech_tokens} speech tokens, current step ({step} / {tts_lm_generation_config.max_length})") model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) # Forward pass through the model outputs = self.forward_lm( **model_inputs, return_dict=True, output_attentions=False, output_hidden_states=False, ) model_kwargs = _update_model_kwargs_for_generation( outputs, model_kwargs, num_new_tokens=next_text_window_size, ) tts_lm_model_inputs = self.prepare_inputs_for_generation(tts_lm_input_ids, **tts_lm_model_kwargs) tts_lm_additional_inputs = { "tts_text_masks": torch.ones_like(tts_lm_input_ids[:, -1:]), "lm_last_hidden_state": outputs.last_hidden_state, } # Forward pass through the model tts_lm_outputs = self.forward_tts_lm( **tts_lm_model_inputs, **tts_lm_additional_inputs, return_dict=True, output_attentions=False, output_hidden_states=False, ) tts_lm_model_kwargs = self._update_model_kwargs_for_generation( tts_lm_outputs, tts_lm_model_kwargs, is_encoder_decoder=False, ) diffusion_indices = torch.LongTensor([0]) for cur_speech_index in range(TTS_SPEECH_WINDOW_SIZE): positive_condition = tts_lm_outputs.last_hidden_state[diffusion_indices, -1, :] negative_condition = tts_lm_negative_outputs.last_hidden_state[diffusion_indices, -1, :] speech_latent = self.sample_speech_tokens( positive_condition, negative_condition, cfg_scale=cfg_scale, ).unsqueeze(1) # Decode acoustic latent to audio using acoustic streaming cache scaled_latent = speech_latent / self.model.speech_scaling_factor.to(speech_latent.device) - self.model.speech_bias_factor.to(speech_latent.device) audio_chunk = self.model.acoustic_tokenizer.decode( scaled_latent.to(self.model.acoustic_tokenizer.device), cache=acoustic_cache, # Use acoustic-specific cache sample_indices=diffusion_indices.to(self.model.acoustic_tokenizer.device), use_cache=True, debug=False ) # Store audio chunks for each sample for i, sample_idx in enumerate(diffusion_indices): idx = sample_idx.item() # Only append audio chunk if the sample is not finished if not finished_tags[idx]: audio_chunks[idx].append(audio_chunk[i]) # Add streaming support here if audio_streamer is not None: # Stream the audio chunks immediately audio_streamer.put(audio_chunk, diffusion_indices) acoustic_embed = self.model.acoustic_connector(speech_latent) tts_lm_input_ids = torch.cat([tts_lm_input_ids, torch.ones_like(tts_lm_input_ids[:, -1:])], dim=-1) if tts_lm_input_ids.shape[1] > tts_lm_generation_config.max_length: break step += 1 total_generated_speech_tokens += 1 if progress_bar is not None: progress_bar.update(1) progress_bar.set_description(f"Prefilled {total_prefilled_text_tokens} text tokens, generated {total_generated_speech_tokens} speech tokens, current step ({step} / {tts_lm_generation_config.max_length})") tts_lm_model_inputs = self.prepare_inputs_for_generation(tts_lm_input_ids, **tts_lm_model_kwargs) tts_lm_additional_inputs = { "tts_text_masks": torch.zeros_like(tts_lm_input_ids[:, -1:]), "lm_last_hidden_state": acoustic_embed, } # Forward pass through the model tts_lm_outputs = self.forward_tts_lm( **tts_lm_model_inputs, **tts_lm_additional_inputs, return_dict=True, output_attentions=False, output_hidden_states=False, ) if cur_speech_index == TTS_SPEECH_WINDOW_SIZE - 1 and next_text_window_size > 0: tts_lm_model_kwargs = _update_model_kwargs_for_generation( tts_lm_outputs, tts_lm_model_kwargs, num_new_tokens=next_text_window_size, ) else: tts_lm_model_kwargs = self._update_model_kwargs_for_generation( tts_lm_outputs, tts_lm_model_kwargs, is_encoder_decoder=False, ) tts_lm_negative_input_ids = torch.cat([tts_lm_negative_input_ids, torch.ones_like(tts_lm_input_ids[:, -1:])], dim=-1) tts_lm_negative_model_inputs = self.prepare_inputs_for_generation(tts_lm_negative_input_ids, **tts_lm_negative_model_kwargs) # Forward negative pass through the model tts_lm_negative_additional_inputs = { "tts_text_masks": torch.zeros_like(tts_lm_negative_input_ids[:, -1:]), "lm_last_hidden_state": acoustic_embed, } tts_lm_negative_outputs = self.forward_tts_lm( **tts_lm_negative_model_inputs, **tts_lm_negative_additional_inputs, return_dict=True, output_attentions=False, output_hidden_states=False, ) tts_lm_negative_model_kwargs = self._update_model_kwargs_for_generation( tts_lm_negative_outputs, tts_lm_negative_model_kwargs, is_encoder_decoder=False, ) tts_eos_logits = torch.sigmoid(self.tts_eos_classifier(tts_lm_outputs.last_hidden_state[diffusion_indices, -1, :])) if tts_eos_logits[0].item() > 0.5: # If EOS token is predicted, we can stop generation for this sample finished_tags[diffusion_indices] = True if audio_streamer is not None: audio_streamer.end(diffusion_indices) if tts_lm_input_ids.shape[1] > tts_lm_generation_config.max_length: if verbose: print(f"Reached maximum generation length {tts_lm_generation_config.max_length}, stopped it.") reached_samples = torch.arange(batch_size, device=device)[~finished_tags] if reached_samples.numel() > 0: reach_max_step_sample[reached_samples] = True break if audio_streamer is not None: audio_streamer.end() # Concatenate audio chunks for each sample final_audio_outputs = [] for sample_chunks in audio_chunks: if sample_chunks: # Concatenate all chunks along the time dimension (assumed to be the last dimension) concatenated_audio = torch.cat(sample_chunks, dim=-1) final_audio_outputs.append(concatenated_audio) else: # If no audio was generated for this sample, append None final_audio_outputs.append(None) if reach_max_step_sample is not None and reach_max_step_sample.any(): print(f"Reached maximum generation length {tts_lm_generation_config.max_length}, stopped it.") return VibeVoiceGenerationOutput( sequences=tts_lm_input_ids, speech_outputs=final_audio_outputs if return_speech else None, reach_max_step_sample=reach_max_step_sample, ) @torch.no_grad() def sample_speech_tokens(self, condition, neg_condition, cfg_scale=3.0): self.model.noise_scheduler.set_timesteps(self.ddpm_inference_steps) condition = torch.cat([condition, neg_condition], dim=0).to(self.model.prediction_head.device) speech = torch.randn(condition.shape[0], self.config.acoustic_vae_dim).to(condition) for t in self.model.noise_scheduler.timesteps: half = speech[: len(speech) // 2] combined = torch.cat([half, half], dim=0) eps = self.model.prediction_head(combined, t.repeat(combined.shape[0]).to(combined), condition=condition) cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) eps = torch.cat([half_eps, half_eps], dim=0) speech = self.model.noise_scheduler.step(eps, t, speech).prev_sample return speech[: len(speech) // 2] AutoModelForCausalLM.register(VibeVoiceStreamingConfig, VibeVoiceStreamingForConditionalGenerationInference) __all__ = [ "VibeVoiceStreamingForConditionalGenerationInference", ]