Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,866 Bytes
e673944 2473931 c0b519f 2473931 c0b519f be83a55 2473931 3d01d22 1a91398 3d01d22 1a91398 3d01d22 2473931 c0b519f bfc1d04 2473931 c0b519f 2473931 c0b519f 2473931 c0b519f 2473931 c0b519f 1a91398 be83a55 1a91398 2473931 1a91398 c0b519f 2473931 c0b519f 2473931 a6f47af 2e25444 2473931 a6f47af 2473931 a6f47af 4e2a429 a6f47af 2473931 a6f47af 2473931 a6f47af 2473931 a6f47af 2e25444 a6f47af 2473931 a6f47af 2e25444 a6f47af 2e25444 a6f47af 2e25444 c0b519f a6f47af 2e25444 a6f47af 2e25444 a6f47af 2e25444 a6f47af 2e25444 a6f47af 2e25444 a6f47af 2e25444 a6f47af 2e25444 a6f47af 2473931 2e25444 a6f47af 2e25444 a6f47af 2e25444 a6f47af 2473931 a6f47af 2e25444 a6f47af 2e25444 a6f47af 2e25444 a6f47af 2e25444 a6f47af 4e2a429 a6f47af 4e2a429 2e25444 a6f47af 4039a38 a6f47af 4039a38 c0b519f a6f47af 2e25444 a6f47af 2e25444 a6f47af 2e25444 a6f47af 2473931 2e25444 a6f47af 2e25444 2473931 a6f47af 2473931 a6f47af 2e25444 2473931 a6f47af 2473931 2e25444 a6f47af c0b519f 2e25444 a6f47af 2e25444 a6f47af 32fd425 2e25444 a6f47af 2e25444 2ef6ad8 2e25444 32fd425 a6f47af c0b519f 32fd425 2473931 c0b519f 2473931 be83a55 2473931 c0b519f a6f47af be83a55 2473931 4039a38 2ef6ad8 3d60b50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
import spaces
import gradio as gr
import torch
from diffusers import ZImagePipeline, AutoPipelineForText2Image
import os
from pathlib import Path
# Load the base model directly at startup
print("Loading Z-Image Turbo model...")
print("This may take a few minutes on first run while the model downloads...")
# Load the pipeline with optimal settings
pipe = ZImagePipeline.from_pretrained(
"Tongyi-MAI/Z-Image-Turbo",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=False,
)
# Move to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe.to(device)
print(f"Model loaded on {device}")
print("Model loaded successfully!")
# Store the current model state
current_model = "base"
lora_loaded = False
@spaces.GPU()
def generate_image(
prompt,
model_choice,
progress=gr.Progress(track_tqdm=True)
):
"""
Generate an image using Z-Image Turbo model with optional LoRA.
Args:
prompt: Text description of the desired image
model_choice: Either "Base Model" or "Classic Painting LoRA"
Returns:
Generated PIL Image
"""
global pipe, current_model, lora_loaded
if pipe is None:
raise gr.Error("Model failed to load on startup. Please restart the application.")
if not prompt.strip():
raise gr.Error("Please enter a prompt to generate an image.")
# Determine device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Handle model switching
progress(0.05, desc="Loading model...")
try:
if model_choice == "Classic Painting LoRA" and current_model != "lora":
# Load LoRA weights
if not lora_loaded:
print("Loading Classic Painting LoRA...")
pipe.load_lora_weights(
"renderartist/Classic-Painting-Z-Image-Turbo-LoRA",
adapter_name="classic_painting",
weight_name="pytorch_lora_weights.safetensors"
)
lora_loaded = True
# Set LoRA adapter
pipe.set_adapters(["classic_painting"], adapter_weights=[0.8])
current_model = "lora"
progress(0.15, desc="LoRA loaded, generating image...")
# Generate with LoRA settings
generator = torch.Generator(device).manual_seed(42)
result = pipe(
prompt=prompt,
negative_prompt=None,
height=1024,
width=1024,
num_inference_steps=9,
guidance_scale=0.0,
generator=generator,
)
elif model_choice == "Base Model" and current_model != "base":
# Disable LoRA
pipe.disable_lora()
current_model = "base"
progress(0.15, desc="Generating image...")
# Generate with base model settings
generator = torch.Generator(device).manual_seed(42)
result = pipe(
prompt=prompt,
negative_prompt=None,
height=1024,
width=1024,
num_inference_steps=9,
guidance_scale=0.0,
generator=generator,
)
else:
# Model already loaded, just generate
progress(0.15, desc="Generating image...")
generator = torch.Generator(device).manual_seed(42)
result = pipe(
prompt=prompt,
negative_prompt=None,
height=1024,
width=1024,
num_inference_steps=9,
guidance_scale=0.0,
generator=generator,
)
image = result.images[0]
progress(1.0, desc="Complete!")
return image
except Exception as e:
raise gr.Error(f"Generation failed: {str(e)}")
# Apple-style CSS
apple_css = """
/* Global Styles */
.gradio-container {
max-width: 980px !important;
margin: 0 auto !important;
padding: 48px 20px !important;
font-family: -apple-system, BlinkMacSystemFont, 'Inter', 'Segoe UI', 'Roboto', sans-serif !important;
}
/* Header */
.header-container {
text-align: center;
margin-bottom: 48px;
}
.main-title {
font-size: 56px !important;
font-weight: 600 !important;
letter-spacing: -0.02em !important;
line-height: 1.07 !important;
color: #1d1d1f !important;
margin: 0 0 12px 0 !important;
}
.subtitle {
font-size: 21px !important;
font-weight: 400 !important;
line-height: 1.38 !important;
color: #6e6e73 !important;
margin: 0 0 24px 0 !important;
}
.attribution-link {
display: inline-block;
font-size: 14px !important;
color: #0071e3 !important;
text-decoration: none !important;
font-weight: 400 !important;
transition: color 0.2s ease !important;
}
.attribution-link:hover {
color: #0077ed !important;
text-decoration: underline !important;
}
/* Input Section */
.input-section {
background: #ffffff;
border-radius: 18px;
padding: 32px;
margin-bottom: 24px;
box-shadow: 0 2px 12px rgba(0, 0, 0, 0.08);
}
/* Model Selector */
.model-selector {
margin-bottom: 24px;
}
.model-selector label {
font-size: 15px !important;
font-weight: 500 !important;
color: #1d1d1f !important;
margin-bottom: 8px !important;
display: block !important;
}
/* Textbox */
textarea {
font-size: 17px !important;
line-height: 1.47 !important;
border-radius: 12px !important;
border: 1px solid #d2d2d7 !important;
padding: 12px 16px !important;
transition: all 0.2s ease !important;
background: #ffffff !important;
font-family: -apple-system, BlinkMacSystemFont, 'Inter', sans-serif !important;
}
textarea:focus {
border-color: #0071e3 !important;
box-shadow: 0 0 0 4px rgba(0, 113, 227, 0.15) !important;
outline: none !important;
}
textarea::placeholder {
color: #86868b !important;
}
/* Button */
button.primary {
font-size: 17px !important;
font-weight: 400 !important;
padding: 12px 32px !important;
border-radius: 980px !important;
background: #0071e3 !important;
border: none !important;
color: #ffffff !important;
min-height: 44px !important;
transition: all 0.2s ease !important;
letter-spacing: -0.01em !important;
cursor: pointer !important;
}
button.primary:hover {
background: #0077ed !important;
transform: scale(1.02) !important;
}
button.primary:active {
transform: scale(0.98) !important;
}
/* Output Section */
.output-section {
background: #ffffff;
border-radius: 18px;
padding: 32px;
box-shadow: 0 2px 12px rgba(0, 0, 0, 0.08);
overflow: hidden;
}
.output-section img {
border-radius: 12px !important;
width: 100% !important;
height: auto !important;
}
/* Footer */
.footer-text {
text-align: center;
margin-top: 48px;
font-size: 14px !important;
color: #86868b !important;
line-height: 1.43 !important;
}
/* Progress */
.progress-bar {
background: #0071e3 !important;
border-radius: 4px !important;
}
/* Dark Mode */
.dark .main-title {
color: #f5f5f7 !important;
}
.dark .subtitle {
color: #a1a1a6 !important;
}
.dark .input-section,
.dark .output-section {
background: #1d1d1f;
box-shadow: 0 2px 12px rgba(0, 0, 0, 0.4);
}
.dark textarea {
background: #1d1d1f !important;
border-color: #424245 !important;
color: #f5f5f7 !important;
}
.dark textarea::placeholder {
color: #86868b !important;
}
.dark .model-selector label {
color: #f5f5f7 !important;
}
/* Responsive */
@media (max-width: 734px) {
.main-title {
font-size: 40px !important;
}
.subtitle {
font-size: 19px !important;
}
.gradio-container {
padding: 32px 16px !important;
}
.input-section,
.output-section {
padding: 24px !important;
}
}
/* Remove default Gradio styling */
.contain {
padding: 0 !important;
}
"""
# Create the interface
with gr.Blocks(
title="Z-Image Turbo",
fill_height=False,
) as demo:
# Header
gr.HTML("""
<div class="header-container">
<h1 class="main-title">Z-Image Turbo</h1>
<p class="subtitle">Transform your ideas into stunning visuals with AI</p>
<a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" class="attribution-link">
Built with anycoder
</a>
</div>
""")
# Input Section
with gr.Column(elem_classes="input-section"):
# Model Selector
with gr.Group(elem_classes="model-selector"):
model_choice = gr.Radio(
choices=["Base Model", "Classic Painting LoRA"],
value="Base Model",
label="Select Model",
info="Choose between the base Z-Image Turbo model or the Classic Painting LoRA variant"
)
prompt = gr.Textbox(
placeholder="Describe the image you want to create...",
lines=3,
max_lines=6,
label="",
show_label=False,
container=False,
)
generate_btn = gr.Button(
"Generate",
variant="primary",
size="lg",
elem_classes="primary"
)
# Output Section
with gr.Column(elem_classes="output-section"):
output_image = gr.Image(
type="pil",
label="",
show_label=False,
container=False,
buttons=["download"],
)
# Footer
gr.HTML("""
<div class="footer-text">
<p>Powered by Z-Image Turbo from Tongyi-MAI</p>
<p>Classic Painting LoRA by renderartist</p>
</div>
""")
# Event handlers
generate_btn.click(
fn=generate_image,
inputs=[prompt, model_choice],
outputs=output_image,
api_visibility="public"
)
prompt.submit(
fn=generate_image,
inputs=[prompt, model_choice],
outputs=output_image,
api_visibility="public"
)
if __name__ == "__main__":
demo.launch(
share=False,
show_error=True,
theme=gr.themes.Soft(
primary_hue=gr.themes.colors.blue,
secondary_hue=gr.themes.colors.slate,
neutral_hue=gr.themes.colors.gray,
spacing_size=gr.themes.sizes.spacing_lg,
radius_size=gr.themes.sizes.radius_lg,
text_size=gr.themes.sizes.text_md,
font=[gr.themes.GoogleFont("Inter"), "SF Pro Display", "-apple-system", "BlinkMacSystemFont", "system-ui", "sans-serif"],
font_mono=[gr.themes.GoogleFont("JetBrains Mono"), "SF Mono", "ui-monospace", "monospace"],
).set(
body_background_fill='#f5f5f7',
body_background_fill_dark='#000000',
button_primary_background_fill='#0071e3',
button_primary_background_fill_hover='#0077ed',
button_primary_text_color='#ffffff',
block_background_fill='#ffffff',
block_background_fill_dark='#1d1d1f',
block_border_width='0px',
block_shadow='0 2px 12px rgba(0, 0, 0, 0.08)',
block_shadow_dark='0 2px 12px rgba(0, 0, 0, 0.4)',
input_background_fill='#ffffff',
input_background_fill_dark='#1d1d1f',
input_border_width='1px',
input_border_color='#d2d2d7',
input_border_color_dark='#424245',
input_shadow='none',
input_shadow_focus='0 0 0 4px rgba(0, 113, 227, 0.15)',
),
css=apple_css,
) |