Z-Image-Turbo / app.py
akhaliq's picture
akhaliq HF Staff
Update app.py
32fd425 verified
raw
history blame
7.54 kB
import spaces
import gradio as gr
import torch
from diffusers import ZImagePipeline
import os
from pathlib import Path
# Global variable to store the pipeline
pipe = None
def load_model():
"""
Load the Z-Image Turbo model before inference.
This ensures the model is downloaded and ready before any generation requests.
"""
global pipe
if pipe is not None:
return pipe
print("Loading Z-Image Turbo model...")
print("This may take a few minutes on first run while the model downloads...")
try:
# Load the pipeline with optimal settings
pipe = ZImagePipeline.from_pretrained(
"Tongyi-MAI/Z-Image-Turbo",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=False,
)
# Move to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe.to(device)
print(f"Model loaded on {device}")
# Optional: Enable Flash Attention for better efficiency
try:
pipe.transformer.set_attention_backend("flash")
print("Flash Attention enabled")
except Exception as e:
print(f"Flash Attention not available: {e}")
print("Using default attention backend")
print("Model loaded successfully!")
return pipe
except Exception as e:
print(f"Error loading model: {e}")
raise
# Pre-load the model when the app starts
print("Initializing model on startup...")
try:
load_model()
print("Model initialization complete!")
except Exception as e:
print(f"Warning: Could not pre-load model: {e}")
print("Model will be loaded on first generation request")
@spaces.GPU()
def generate_image(
prompt,
progress=gr.Progress(track_tqdm=True)
):
"""
Generate an image using Z-Image Turbo model.
Args:
prompt: Text description of the desired image
Returns:
Generated PIL Image
"""
global pipe
# Ensure model is loaded
if pipe is None:
progress(0, desc="Loading model...")
load_model()
if not prompt.strip():
raise gr.Error("Please enter a prompt to generate an image.")
# Determine device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Set random seed for reproducibility
generator = torch.Generator(device).manual_seed(42)
# Generate the image with optimal settings
progress(0.1, desc="Generating image...")
try:
result = pipe(
prompt=prompt,
negative_prompt=None,
height=1024,
width=1024,
num_inference_steps=9,
guidance_scale=0.0,
generator=generator,
)
image = result.images[0]
progress(1.0, desc="Complete!")
return image
except Exception as e:
raise gr.Error(f"Generation failed: {str(e)}")
# Create a custom theme based on Soft theme with Apple-inspired colors
custom_theme = gr.themes.Soft(
primary_hue=gr.themes.colors.blue,
secondary_hue=gr.themes.colors.slate,
neutral_hue=gr.themes.colors.gray,
spacing_size=gr.themes.sizes.spacing_lg,
radius_size=gr.themes.sizes.radius_md,
text_size=gr.themes.sizes.text_lg,
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
font_mono=[gr.themes.GoogleFont("IBM Plex Mono"), "ui-monospace", "Consolas", "monospace"],
).set(
# Button styling
button_primary_background_fill="#0071e3",
button_primary_background_fill_hover="#0077ed",
button_primary_text_color="white",
button_large_padding="16px 40px",
button_large_radius="12px",
button_shadow="0 2px 8px rgba(0, 113, 227, 0.2)",
button_shadow_hover="0 4px 12px rgba(0, 113, 227, 0.3)",
# Input styling
input_background_fill="#fbfbfd",
input_background_fill_focus="white",
input_border_color="#d2d2d7",
input_border_color_focus="#0071e3",
input_radius="12px",
input_padding="16px",
input_shadow_focus="0 0 0 4px rgba(0, 113, 227, 0.1)",
# Container styling
block_background_fill="white",
block_border_width="1px",
block_border_color="#e5e5e7",
block_radius="12px",
block_padding="24px",
# Body styling
body_background_fill="#f5f5f7",
body_text_color="#1d1d1f",
# Link styling
link_text_color="#0071e3",
link_text_color_hover="#0077ed",
)
# Minimal additional CSS for layout refinements
minimal_css = """
.gradio-container {
max-width: 900px !important;
margin: 0 auto !important;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
padding-bottom: 2rem;
border-bottom: 1px solid #e5e5e7;
}
.main-header h1 {
font-size: 3rem !important;
font-weight: 600 !important;
color: #1d1d1f !important;
margin: 0 0 0.5rem 0 !important;
letter-spacing: -1px;
}
.main-header .subtitle {
font-size: 1.25rem !important;
color: #86868b !important;
margin: 0.5rem 0 !important;
}
.attribution {
margin-top: 1rem;
font-size: 0.875rem;
color: #86868b;
}
.attribution a {
color: #0071e3 !important;
text-decoration: none;
font-weight: 500;
}
.footer-info {
text-align: center;
padding: 2rem 1rem;
color: #86868b;
font-size: 0.875rem;
margin-top: 2rem;
border-top: 1px solid #e5e5e7;
}
.footer-info p {
margin: 0.25rem 0;
}
@media (max-width: 768px) {
.main-header h1 {
font-size: 2rem !important;
}
.main-header .subtitle {
font-size: 1rem !important;
}
}
"""
# Create the Gradio interface
with gr.Blocks(
title="Z-Image Turbo",
theme=custom_theme,
css=minimal_css,
fill_height=False
) as demo:
# Header
with gr.Column(elem_classes="main-header"):
gr.Markdown(
"""
# Z-Image Turbo
### Create stunning images from text
""",
elem_classes="main-header"
)
gr.HTML("""
<div class="attribution">
Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank">anycoder</a>
</div>
""")
# Prompt input
prompt = gr.Textbox(
placeholder="Describe the image you want to create...",
lines=3,
max_lines=6,
label="Prompt",
show_label=False,
container=True
)
# Generate button
generate_btn = gr.Button(
"Generate",
variant="primary",
size="lg",
scale=1
)
# Output image
output_image = gr.Image(
type="pil",
label="Generated Image",
show_label=False,
show_download_button=True,
show_share_button=False,
container=True
)
# Footer
gr.HTML("""
<div class="footer-info">
<p>Powered by Z-Image Turbo from Tongyi-MAI</p>
<p>Optimized for fast, high-quality image generation</p>
</div>
""")
# Event handlers
generate_btn.click(
fn=generate_image,
inputs=prompt,
outputs=output_image,
api_name="generate"
)
# Also allow generation on Enter key
prompt.submit(
fn=generate_image,
inputs=prompt,
outputs=output_image
)
# Launch the app
if __name__ == "__main__":
demo.launch(
share=False,
show_error=True
)