Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import GTP2Tokenizer, TrainingArguments, Trainer, GPT2LMHeadModel
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
|
| 4 |
+
dataset = load_dataset("sst2")
|
| 5 |
+
|
| 6 |
+
for row in dataset['train']:
|
| 7 |
+
print(row)
|
| 8 |
+
|
| 9 |
+
for i, row in enumerate(dataset):
|
| 10 |
+
prep_text = f"<|startoftext|> {rwo['sentence']}<|pad|>Sentiment: {rwo['label']}<|endoftext|>"
|
| 11 |
+
encodings_dict = tokenizer(prep_txt)
|
| 12 |
+
|
| 13 |
+
tokenizer = GTP2Tokenizer.from_pretrained('gpt2', bos_token='<|startoftext|>', eos_token='<|endoftext|>', pad_token='<|pad|>')
|
| 14 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
| 15 |
+
|
| 16 |
+
train_args = TrainingArguments(output_dir='results', num_train_epochs = 1, warmup_steps =100, weight_decay = 0.01)
|
| 17 |
+
|
| 18 |
+
Trainer(model='gpt2', args=train_args,train_dataset=train_dataset)
|
| 19 |
+
|
| 20 |
+
model.eval()
|
| 21 |
+
|
| 22 |
+
prompt = f'<|startoftext|>Tweet: {text}\nSentiment:'
|
| 23 |
+
tokenizer_text = tokenizer(prompt, return_tensors="pt").input_ids
|
| 24 |
+
output = model.generate(tokenized_text)
|
| 25 |
+
predicted_text = tokenizer.decode(output)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|