Spaces:
Runtime error
Runtime error
| import datasets | |
| from transformers import AutoFeatureExtractor, AutoModelForImageClassification | |
| import gradio as gr | |
| import torch | |
| import transformers | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| from sklearn.metrics import silhouette_score | |
| from sentence_transformers import SentenceTransformer | |
| model = SentenceTransformer("clip-ViT-L-14") | |
| def predict(im1, im2): | |
| embeddings = [model.encode(im1), model.encode(im2)] | |
| sim = cosine_similarity(embeddings[0].reshape(1, -1), embeddings[1].reshape(1, -1)).squeeze() | |
| if sim > 0.80: | |
| return sim, "SAME PERSON, UNLOCK PHONE" | |
| else: | |
| return sim, "DIFFERENT PEOPLE, DON'T UNLOCK" | |
| import gradio as gr | |
| interface = gr.Interface(fn=predict, | |
| inputs=[gr.Image(type="pil", source="webcam"), | |
| gr.Image(type="pil", source="webcam")], | |
| outputs=[gr.Number(label="Similarity"), | |
| gr.Textbox(label="Message")], | |
| title='Basic Face-Id', | |
| description='A very simple face-id implementation using sentence-transformer embeddings.', | |
| ) | |
| interface.launch() | |