Spaces:
Sleeping
Sleeping
techy-ai
commited on
Commit
Β·
47bae79
1
Parent(s):
47e9704
basic agent
Browse files- .gitignore +3 -0
- agent.py +518 -0
- app.py +196 -0
- code_interpreter.py +281 -0
- huggingface.py +15 -0
- image_processing.py +26 -0
- mcp/__init__.py +0 -0
- mcp/tavily_client.py +11 -0
- metadata.jsonl +0 -0
- requirements.txt +568 -0
- system_prompt.txt +5 -0
- test_agent.py +49 -0
- test_llm.py +230 -0
- test_local_hf.py +55 -0
- validation_json/metadata.jsonl +0 -0
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
venv/
|
| 2 |
+
.env
|
| 3 |
+
__pycache__/
|
agent.py
ADDED
|
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
from typing import List, Dict, Any, Optional
|
| 4 |
+
import tempfile
|
| 5 |
+
import re
|
| 6 |
+
import json
|
| 7 |
+
import requests
|
| 8 |
+
from urllib.parse import urlparse
|
| 9 |
+
import pytesseract
|
| 10 |
+
from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter
|
| 11 |
+
import cmath
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import uuid
|
| 14 |
+
import numpy as np
|
| 15 |
+
from code_interpreter import CodeInterpreter
|
| 16 |
+
import logging
|
| 17 |
+
|
| 18 |
+
interpreter_instance = CodeInterpreter()
|
| 19 |
+
|
| 20 |
+
from image_processing import *
|
| 21 |
+
|
| 22 |
+
"""Langraph"""
|
| 23 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
| 24 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 25 |
+
from langchain_community.document_loaders import WikipediaLoader
|
| 26 |
+
from langchain_community.document_loaders import ArxivLoader
|
| 27 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
| 28 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 29 |
+
from langchain_groq import ChatGroq
|
| 30 |
+
from langchain_huggingface import (
|
| 31 |
+
ChatHuggingFace,
|
| 32 |
+
HuggingFaceEndpoint,
|
| 33 |
+
HuggingFaceEmbeddings,
|
| 34 |
+
)
|
| 35 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
| 36 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
| 37 |
+
from langchain_core.tools import tool
|
| 38 |
+
from langchain.tools.retriever import create_retriever_tool
|
| 39 |
+
from supabase.client import Client, create_client
|
| 40 |
+
|
| 41 |
+
load_dotenv()
|
| 42 |
+
|
| 43 |
+
logging.basicConfig(level=logging.INFO)
|
| 44 |
+
logger = logging.getLogger("agent")
|
| 45 |
+
|
| 46 |
+
def tool_response(success: bool, data=None, error=None):
|
| 47 |
+
"""Standardized response format for tools."""
|
| 48 |
+
return {
|
| 49 |
+
"status": "success" if success else "error",
|
| 50 |
+
"data": data,
|
| 51 |
+
"error": error
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
from typing import Any
|
| 55 |
+
|
| 56 |
+
@tool
|
| 57 |
+
def multiply(a: Any, b: Any):
|
| 58 |
+
"""Multiply two numbers and return the product."""
|
| 59 |
+
logger.info("multiply called with a=%s, b=%s", a, b)
|
| 60 |
+
try:
|
| 61 |
+
a = float(a)
|
| 62 |
+
b = float(b)
|
| 63 |
+
result = a * b
|
| 64 |
+
return tool_response(True, result)
|
| 65 |
+
except Exception as e:
|
| 66 |
+
logger.error("multiply failed: %s", str(e))
|
| 67 |
+
return tool_response(False, error=f"Invalid input: {e}")
|
| 68 |
+
|
| 69 |
+
@tool
|
| 70 |
+
def add(a: Any, b: Any):
|
| 71 |
+
"""Add two numbers and return the sum."""
|
| 72 |
+
logger.info("add called with a=%s, b=%s", a, b)
|
| 73 |
+
try:
|
| 74 |
+
a = float(a)
|
| 75 |
+
b = float(b)
|
| 76 |
+
return tool_response(True, a + b)
|
| 77 |
+
except Exception as e:
|
| 78 |
+
logger.error("add failed: %s", str(e))
|
| 79 |
+
return tool_response(False, error=f"Invalid input: {e}")
|
| 80 |
+
|
| 81 |
+
@tool
|
| 82 |
+
def subtract(a: Any, b: Any):
|
| 83 |
+
"""Subtract b from a and return the result."""
|
| 84 |
+
logger.info("subtract called with a=%s, b=%s", a, b)
|
| 85 |
+
try:
|
| 86 |
+
a = float(a)
|
| 87 |
+
b = float(b)
|
| 88 |
+
return tool_response(True, a - b)
|
| 89 |
+
except Exception as e:
|
| 90 |
+
logger.error("subtract failed: %s", str(e))
|
| 91 |
+
return tool_response(False, error=f"Invalid input: {e}")
|
| 92 |
+
|
| 93 |
+
@tool
|
| 94 |
+
def divide(a: Any, b: Any):
|
| 95 |
+
"""Divide a by b and return the quotient."""
|
| 96 |
+
logger.info("divide called with a=%s, b=%s", a, b)
|
| 97 |
+
try:
|
| 98 |
+
a = float(a)
|
| 99 |
+
b = float(b)
|
| 100 |
+
if b == 0:
|
| 101 |
+
return tool_response(False, error="Division by zero")
|
| 102 |
+
return tool_response(True, a / b)
|
| 103 |
+
except Exception as e:
|
| 104 |
+
logger.error("divide failed: %s", str(e))
|
| 105 |
+
return tool_response(False, error=f"Invalid input: {e}")
|
| 106 |
+
|
| 107 |
+
@tool
|
| 108 |
+
def modulus(a: Any, b: Any):
|
| 109 |
+
"""Return the remainder of a divided by b."""
|
| 110 |
+
logger.info("modulus called with a=%s, b=%s", a, b)
|
| 111 |
+
try:
|
| 112 |
+
a = float(a)
|
| 113 |
+
b = float(b)
|
| 114 |
+
return tool_response(True, a % b)
|
| 115 |
+
except Exception as e:
|
| 116 |
+
logger.error("modulus failed: %s", str(e))
|
| 117 |
+
return tool_response(False, error=f"Invalid input: {e}")
|
| 118 |
+
|
| 119 |
+
@tool
|
| 120 |
+
def power(a: Any, b: Any):
|
| 121 |
+
"""Raise a to the power of b."""
|
| 122 |
+
logger.info("power called with a=%s, b=%s", a, b)
|
| 123 |
+
try:
|
| 124 |
+
a = float(a)
|
| 125 |
+
b = float(b)
|
| 126 |
+
return tool_response(True, a ** b)
|
| 127 |
+
except Exception as e:
|
| 128 |
+
logger.error("power failed: %s", str(e))
|
| 129 |
+
return tool_response(False, error=f"Invalid input: {e}")
|
| 130 |
+
|
| 131 |
+
@tool
|
| 132 |
+
def square_root(a: Any):
|
| 133 |
+
"""Return the square root of a number."""
|
| 134 |
+
logger.info("square_root called with a=%s", a)
|
| 135 |
+
try:
|
| 136 |
+
a = float(a)
|
| 137 |
+
if a < 0:
|
| 138 |
+
# use complex math if negative
|
| 139 |
+
return tool_response(True, str(cmath.sqrt(a)))
|
| 140 |
+
return tool_response(True, a ** 0.5)
|
| 141 |
+
except Exception as e:
|
| 142 |
+
logger.error("square_root failed: %s", str(e))
|
| 143 |
+
return tool_response(False, error=f"Invalid input: {e}")
|
| 144 |
+
|
| 145 |
+
# =========================
|
| 146 |
+
# π File Tools
|
| 147 |
+
# =========================
|
| 148 |
+
|
| 149 |
+
@tool
|
| 150 |
+
def save_and_read_file(filename: str, content: str):
|
| 151 |
+
"""Save content to a file and return the content back."""
|
| 152 |
+
logger.info("save_and_read_file called with filename=%s", filename)
|
| 153 |
+
try:
|
| 154 |
+
with open(filename, "w", encoding="utf-8") as f:
|
| 155 |
+
f.write(content)
|
| 156 |
+
with open(filename, "r", encoding="utf-8") as f:
|
| 157 |
+
result = f.read()
|
| 158 |
+
return tool_response(True, result)
|
| 159 |
+
except Exception as e:
|
| 160 |
+
logger.error("save_and_read_file failed: %s", str(e))
|
| 161 |
+
return tool_response(False, error=f"File error: {e}")
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
@tool
|
| 165 |
+
def download_file_from_url(url: str):
|
| 166 |
+
"""Download a file from a URL and return its local path."""
|
| 167 |
+
logger.info("download_file_from_url called with url=%s", url)
|
| 168 |
+
try:
|
| 169 |
+
if url.startswith("file://"):
|
| 170 |
+
raise ValueError("Local file:// URLs not allowed")
|
| 171 |
+
response = requests.get(url, timeout=10)
|
| 172 |
+
response.raise_for_status()
|
| 173 |
+
filename = os.path.basename(urlparse(url).path) or f"download_{uuid.uuid4()}"
|
| 174 |
+
with open(filename, "wb") as f:
|
| 175 |
+
f.write(response.content)
|
| 176 |
+
return tool_response(True, filename)
|
| 177 |
+
except Exception as e:
|
| 178 |
+
logger.error("download_file_from_url failed: %s", str(e))
|
| 179 |
+
return tool_response(False, error=f"Download error: {e}")
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
# =========================
|
| 183 |
+
# πΌοΈ Image Tools
|
| 184 |
+
# =========================
|
| 185 |
+
|
| 186 |
+
@tool
|
| 187 |
+
def extract_text_from_image(image_path: str):
|
| 188 |
+
"""Extract text from an image using OCR."""
|
| 189 |
+
logger.info("extract_text_from_image called with image_path=%s", image_path)
|
| 190 |
+
try:
|
| 191 |
+
text = pytesseract.image_to_string(Image.open(image_path))
|
| 192 |
+
return tool_response(True, text.strip())
|
| 193 |
+
except Exception as e:
|
| 194 |
+
logger.error("extract_text_from_image failed: %s", str(e))
|
| 195 |
+
return tool_response(False, error=f"OCR error: {e}")
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
@tool
|
| 199 |
+
def analyze_image(image_path: str):
|
| 200 |
+
"""Return basic analysis (size, mode) of an image."""
|
| 201 |
+
logger.info("analyze_image called with image_path=%s", image_path)
|
| 202 |
+
try:
|
| 203 |
+
with Image.open(image_path) as img:
|
| 204 |
+
data = {"format": img.format, "mode": img.mode, "size": img.size}
|
| 205 |
+
return tool_response(True, data)
|
| 206 |
+
except Exception as e:
|
| 207 |
+
logger.error("analyze_image failed: %s", str(e))
|
| 208 |
+
return tool_response(False, error=f"Image analysis error: {e}")
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
@tool
|
| 212 |
+
def transform_image(image_path: str, operation: str):
|
| 213 |
+
"""Apply a simple transform (grayscale, blur, sharpen)."""
|
| 214 |
+
logger.info("transform_image called with image_path=%s operation=%s", image_path, operation)
|
| 215 |
+
try:
|
| 216 |
+
img = Image.open(image_path)
|
| 217 |
+
if operation == "grayscale":
|
| 218 |
+
img = img.convert("L")
|
| 219 |
+
elif operation == "blur":
|
| 220 |
+
img = img.filter(ImageFilter.BLUR)
|
| 221 |
+
elif operation == "sharpen":
|
| 222 |
+
img = img.filter(ImageFilter.SHARPEN)
|
| 223 |
+
else:
|
| 224 |
+
raise ValueError(f"Unsupported operation: {operation}")
|
| 225 |
+
output_path = f"transformed_{uuid.uuid4()}.png"
|
| 226 |
+
img.save(output_path)
|
| 227 |
+
return tool_response(True, output_path)
|
| 228 |
+
except Exception as e:
|
| 229 |
+
logger.error("transform_image failed: %s", str(e))
|
| 230 |
+
return tool_response(False, error=f"Transform error: {e}")
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
@tool
|
| 234 |
+
def draw_on_image(image_path: str, text: str):
|
| 235 |
+
"""Draw text on an image."""
|
| 236 |
+
logger.info("draw_on_image called with image_path=%s text=%s", image_path, text)
|
| 237 |
+
try:
|
| 238 |
+
img = Image.open(image_path)
|
| 239 |
+
draw = ImageDraw.Draw(img)
|
| 240 |
+
draw.text((10, 10), text, fill="black")
|
| 241 |
+
output_path = f"drawn_{uuid.uuid4()}.png"
|
| 242 |
+
img.save(output_path)
|
| 243 |
+
return tool_response(True, output_path)
|
| 244 |
+
except Exception as e:
|
| 245 |
+
logger.error("draw_on_image failed: %s", str(e))
|
| 246 |
+
return tool_response(False, error=f"Draw error: {e}")
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
@tool
|
| 250 |
+
def generate_simple_image(text: str):
|
| 251 |
+
"""Generate a simple image with text."""
|
| 252 |
+
logger.info("generate_simple_image called with text=%s", text)
|
| 253 |
+
try:
|
| 254 |
+
img = Image.new("RGB", (200, 100), color="white")
|
| 255 |
+
draw = ImageDraw.Draw(img)
|
| 256 |
+
draw.text((10, 40), text, fill="black")
|
| 257 |
+
output_path = f"generated_{uuid.uuid4()}.png"
|
| 258 |
+
img.save(output_path)
|
| 259 |
+
return tool_response(True, output_path)
|
| 260 |
+
except Exception as e:
|
| 261 |
+
logger.error("generate_simple_image failed: %s", str(e))
|
| 262 |
+
return tool_response(False, error=f"Image generation error: {e}")
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
@tool
|
| 266 |
+
def combine_images(image1_path: str, image2_path: str):
|
| 267 |
+
"""Combine two images side by side."""
|
| 268 |
+
logger.info("combine_images called with %s and %s", image1_path, image2_path)
|
| 269 |
+
try:
|
| 270 |
+
img1 = Image.open(image1_path)
|
| 271 |
+
img2 = Image.open(image2_path)
|
| 272 |
+
combined = Image.new("RGB", (img1.width + img2.width, max(img1.height, img2.height)))
|
| 273 |
+
combined.paste(img1, (0, 0))
|
| 274 |
+
combined.paste(img2, (img1.width, 0))
|
| 275 |
+
output_path = f"combined_{uuid.uuid4()}.png"
|
| 276 |
+
combined.save(output_path)
|
| 277 |
+
return tool_response(True, output_path)
|
| 278 |
+
except Exception as e:
|
| 279 |
+
logger.error("combine_images failed: %s", str(e))
|
| 280 |
+
return tool_response(False, error=f"Combine error: {e}")
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
# =========================
|
| 284 |
+
# π Data Tools
|
| 285 |
+
# =========================
|
| 286 |
+
|
| 287 |
+
@tool
|
| 288 |
+
def analyze_csv_file(file_path: str):
|
| 289 |
+
"""Analyze a CSV file and return basic info."""
|
| 290 |
+
logger.info("analyze_csv_file called with file_path=%s", file_path)
|
| 291 |
+
try:
|
| 292 |
+
df = pd.read_csv(file_path)
|
| 293 |
+
summary = {"shape": df.shape, "columns": df.columns.tolist(), "head": df.head(3).to_dict()}
|
| 294 |
+
return tool_response(True, summary)
|
| 295 |
+
except Exception as e:
|
| 296 |
+
logger.error("analyze_csv_file failed: %s", str(e))
|
| 297 |
+
return tool_response(False, error=f"CSV analysis error: {e}")
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
@tool
|
| 301 |
+
def analyze_excel_file(file_path: str):
|
| 302 |
+
"""Analyze an Excel file and return basic info."""
|
| 303 |
+
logger.info("analyze_excel_file called with file_path=%s", file_path)
|
| 304 |
+
try:
|
| 305 |
+
df = pd.read_excel(file_path)
|
| 306 |
+
summary = {"shape": df.shape, "columns": df.columns.tolist(), "head": df.head(3).to_dict()}
|
| 307 |
+
return tool_response(True, summary)
|
| 308 |
+
except Exception as e:
|
| 309 |
+
logger.error("analyze_excel_file failed: %s", str(e))
|
| 310 |
+
return tool_response(False, error=f"Excel analysis error: {e}")
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
# =========================
|
| 314 |
+
# π» Code Tool
|
| 315 |
+
# =========================
|
| 316 |
+
|
| 317 |
+
@tool
|
| 318 |
+
def execute_code_multilang(code: str, language: str = "python"):
|
| 319 |
+
"""Execute code in multiple languages using CodeInterpreter."""
|
| 320 |
+
logger.info("execute_code_multilang called with language=%s", language)
|
| 321 |
+
try:
|
| 322 |
+
result = interpreter_instance.execute_code(code, language)
|
| 323 |
+
return tool_response(True, result)
|
| 324 |
+
except Exception as e:
|
| 325 |
+
logger.error("execute_code_multilang failed: %s", str(e))
|
| 326 |
+
return tool_response(False, error=f"Code execution error: {e}")
|
| 327 |
+
|
| 328 |
+
# =========================
|
| 329 |
+
# π Search Tools
|
| 330 |
+
# =========================
|
| 331 |
+
|
| 332 |
+
@tool
|
| 333 |
+
def web_search(query: str, max_results: int = 3):
|
| 334 |
+
"""Perform a web search using TavilySearchResults."""
|
| 335 |
+
logger.info("web_search called with query=%s", query)
|
| 336 |
+
try:
|
| 337 |
+
tavily = TavilySearchResults(max_results=max_results)
|
| 338 |
+
results = tavily.invoke(query)
|
| 339 |
+
return tool_response(True, results)
|
| 340 |
+
except Exception as e:
|
| 341 |
+
logger.error("web_search failed: %s", str(e))
|
| 342 |
+
return tool_response(False, error=f"Web search error: {e}")
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
@tool
|
| 346 |
+
def wiki_search(query: str):
|
| 347 |
+
"""Search Wikipedia and return documents."""
|
| 348 |
+
logger.info("wiki_search called with query=%s", query)
|
| 349 |
+
try:
|
| 350 |
+
loader = WikipediaLoader(query=query, load_max_docs=3)
|
| 351 |
+
docs = loader.load()
|
| 352 |
+
results = [doc.page_content for doc in docs]
|
| 353 |
+
return tool_response(True, results)
|
| 354 |
+
except Exception as e:
|
| 355 |
+
logger.error("wiki_search failed: %s", str(e))
|
| 356 |
+
return tool_response(False, error=f"Wikipedia error: {e}")
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
@tool
|
| 360 |
+
def arxiv_search(query: str):
|
| 361 |
+
"""Search Arxiv and return documents."""
|
| 362 |
+
logger.info("arxiv_search called with query=%s", query)
|
| 363 |
+
try:
|
| 364 |
+
loader = ArxivLoader(query=query, load_max_docs=3)
|
| 365 |
+
docs = loader.load()
|
| 366 |
+
results = [doc.page_content for doc in docs]
|
| 367 |
+
return tool_response(True, results)
|
| 368 |
+
except Exception as e:
|
| 369 |
+
logger.error("arxiv_search failed: %s", str(e))
|
| 370 |
+
return tool_response(False, error=f"Arxiv error: {e}")
|
| 371 |
+
|
| 372 |
+
if __name__ == "__main__":
|
| 373 |
+
logger.info("=== Running Tool Tests ===")
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
# =========================
|
| 377 |
+
# π Tested for tools
|
| 378 |
+
# =========================
|
| 379 |
+
# π Search Tools
|
| 380 |
+
# print("\n--- web_search ---")
|
| 381 |
+
# print(web_search.invoke({"query": "latest AI research", "max_results": 2}))
|
| 382 |
+
|
| 383 |
+
# print("\n--- wiki_search ---")
|
| 384 |
+
# print(wiki_search.invoke({"query": "LangChain"}))
|
| 385 |
+
|
| 386 |
+
# print("\n--- arxiv_search ---")
|
| 387 |
+
# print(arxiv_search.invoke({"query": "transformers"}))
|
| 388 |
+
|
| 389 |
+
# π» Code Execution
|
| 390 |
+
# print("\n--- execute_code_multilang ---")
|
| 391 |
+
# print(execute_code_multilang.invoke({"code": "print(2+3)", "language": "python"}))
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
# load the system prompt from the file
|
| 395 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
| 396 |
+
system_prompt = f.read()
|
| 397 |
+
print(system_prompt)
|
| 398 |
+
|
| 399 |
+
# System message
|
| 400 |
+
sys_msg = SystemMessage(content=system_prompt)
|
| 401 |
+
|
| 402 |
+
# build a retriever
|
| 403 |
+
embeddings = HuggingFaceEmbeddings(
|
| 404 |
+
model_name="sentence-transformers/all-mpnet-base-v2"
|
| 405 |
+
) # dim=768
|
| 406 |
+
from dotenv import load_dotenv
|
| 407 |
+
load_dotenv()
|
| 408 |
+
supabase_url = os.environ.get("SUPABASE_URL")
|
| 409 |
+
supabase_key = os.environ.get("SUPABASE_KEY")
|
| 410 |
+
supabase: Client = create_client(
|
| 411 |
+
supabase_url, supabase_key
|
| 412 |
+
)
|
| 413 |
+
vector_store = SupabaseVectorStore(
|
| 414 |
+
client=supabase,
|
| 415 |
+
embedding=embeddings,
|
| 416 |
+
table_name="documents2",
|
| 417 |
+
query_name="match_documents_2",
|
| 418 |
+
)
|
| 419 |
+
create_retriever_tool = create_retriever_tool(
|
| 420 |
+
retriever=vector_store.as_retriever(),
|
| 421 |
+
name="Question Search",
|
| 422 |
+
description="A tool to retrieve similar questions from a vector store.",
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
tools = [
|
| 427 |
+
web_search,
|
| 428 |
+
wiki_search,
|
| 429 |
+
arxiv_search,
|
| 430 |
+
multiply,
|
| 431 |
+
add,
|
| 432 |
+
subtract,
|
| 433 |
+
divide,
|
| 434 |
+
modulus,
|
| 435 |
+
power,
|
| 436 |
+
square_root,
|
| 437 |
+
save_and_read_file,
|
| 438 |
+
download_file_from_url,
|
| 439 |
+
extract_text_from_image,
|
| 440 |
+
analyze_csv_file,
|
| 441 |
+
analyze_excel_file,
|
| 442 |
+
execute_code_multilang,
|
| 443 |
+
analyze_image,
|
| 444 |
+
transform_image,
|
| 445 |
+
draw_on_image,
|
| 446 |
+
generate_simple_image,
|
| 447 |
+
combine_images,
|
| 448 |
+
]
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
# Build graph function
|
| 452 |
+
def build_graph(provider: str = "groq"):
|
| 453 |
+
"""Build the graph"""
|
| 454 |
+
# Load environment variables from .env file
|
| 455 |
+
if provider == "groq":
|
| 456 |
+
# Groq https://console.groq.com/docs/models
|
| 457 |
+
llm = ChatGroq(model="qwen/qwen3-32b", temperature=0)
|
| 458 |
+
elif provider == "huggingface":
|
| 459 |
+
# TODO: Add huggingface endpoint
|
| 460 |
+
llm = ChatHuggingFace(
|
| 461 |
+
llm=HuggingFaceEndpoint(
|
| 462 |
+
repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
| 463 |
+
task="text-generation", # for chatβstyle use βtext-generationβ
|
| 464 |
+
max_new_tokens=1024,
|
| 465 |
+
do_sample=False,
|
| 466 |
+
repetition_penalty=1.03,
|
| 467 |
+
temperature=0,
|
| 468 |
+
),
|
| 469 |
+
verbose=True,
|
| 470 |
+
)
|
| 471 |
+
else:
|
| 472 |
+
raise ValueError("Invalid provider. Choose 'groq' or 'huggingface'.")
|
| 473 |
+
# Bind tools to LLM
|
| 474 |
+
llm_with_tools = llm.bind_tools(tools)
|
| 475 |
+
|
| 476 |
+
# Node
|
| 477 |
+
def assistant(state: MessagesState):
|
| 478 |
+
"""Assistant node"""
|
| 479 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
| 480 |
+
|
| 481 |
+
def retriever(state: MessagesState):
|
| 482 |
+
"""Retriever node"""
|
| 483 |
+
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
| 484 |
+
|
| 485 |
+
if similar_question: # Check if the list is not empty
|
| 486 |
+
example_msg = HumanMessage(
|
| 487 |
+
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
| 488 |
+
)
|
| 489 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
| 490 |
+
else:
|
| 491 |
+
# Handle the case when no similar questions are found
|
| 492 |
+
return {"messages": [sys_msg] + state["messages"]}
|
| 493 |
+
|
| 494 |
+
builder = StateGraph(MessagesState)
|
| 495 |
+
builder.add_node("retriever", retriever)
|
| 496 |
+
builder.add_node("assistant", assistant)
|
| 497 |
+
builder.add_node("tools", ToolNode(tools))
|
| 498 |
+
builder.add_edge(START, "retriever")
|
| 499 |
+
builder.add_edge("retriever", "assistant")
|
| 500 |
+
builder.add_conditional_edges(
|
| 501 |
+
"assistant",
|
| 502 |
+
tools_condition,
|
| 503 |
+
)
|
| 504 |
+
builder.add_edge("tools", "assistant")
|
| 505 |
+
|
| 506 |
+
# Compile graph
|
| 507 |
+
return builder.compile()
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
# test
|
| 511 |
+
if __name__ == "__main__":
|
| 512 |
+
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
| 513 |
+
graph = build_graph(provider="groq")
|
| 514 |
+
messages = [HumanMessage(content=question)]
|
| 515 |
+
messages = graph.invoke({"messages": messages})
|
| 516 |
+
for m in messages["messages"]:
|
| 517 |
+
m.pretty_print()
|
| 518 |
+
|
app.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import requests
|
| 4 |
+
import inspect
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
# (Keep Constants as is)
|
| 8 |
+
# --- Constants ---
|
| 9 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 10 |
+
|
| 11 |
+
# --- Basic Agent Definition ---
|
| 12 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 13 |
+
class BasicAgent:
|
| 14 |
+
def __init__(self):
|
| 15 |
+
print("BasicAgent initialized.")
|
| 16 |
+
def __call__(self, question: str) -> str:
|
| 17 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 18 |
+
fixed_answer = "This is a default answer."
|
| 19 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 20 |
+
return fixed_answer
|
| 21 |
+
|
| 22 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 23 |
+
"""
|
| 24 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 25 |
+
and displays the results.
|
| 26 |
+
"""
|
| 27 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 28 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
| 29 |
+
|
| 30 |
+
if profile:
|
| 31 |
+
username= f"{profile.username}"
|
| 32 |
+
print(f"User logged in: {username}")
|
| 33 |
+
else:
|
| 34 |
+
print("User not logged in.")
|
| 35 |
+
return "Please Login to Hugging Face with the button.", None
|
| 36 |
+
|
| 37 |
+
api_url = DEFAULT_API_URL
|
| 38 |
+
questions_url = f"{api_url}/questions"
|
| 39 |
+
submit_url = f"{api_url}/submit"
|
| 40 |
+
|
| 41 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 42 |
+
try:
|
| 43 |
+
agent = BasicAgent()
|
| 44 |
+
except Exception as e:
|
| 45 |
+
print(f"Error instantiating agent: {e}")
|
| 46 |
+
return f"Error initializing agent: {e}", None
|
| 47 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 48 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 49 |
+
print(agent_code)
|
| 50 |
+
|
| 51 |
+
# 2. Fetch Questions
|
| 52 |
+
print(f"Fetching questions from: {questions_url}")
|
| 53 |
+
try:
|
| 54 |
+
response = requests.get(questions_url, timeout=15)
|
| 55 |
+
response.raise_for_status()
|
| 56 |
+
questions_data = response.json()
|
| 57 |
+
if not questions_data:
|
| 58 |
+
print("Fetched questions list is empty.")
|
| 59 |
+
return "Fetched questions list is empty or invalid format.", None
|
| 60 |
+
print(f"Fetched {len(questions_data)} questions.")
|
| 61 |
+
except requests.exceptions.RequestException as e:
|
| 62 |
+
print(f"Error fetching questions: {e}")
|
| 63 |
+
return f"Error fetching questions: {e}", None
|
| 64 |
+
except requests.exceptions.JSONDecodeError as e:
|
| 65 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 66 |
+
print(f"Response text: {response.text[:500]}")
|
| 67 |
+
return f"Error decoding server response for questions: {e}", None
|
| 68 |
+
except Exception as e:
|
| 69 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
| 70 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
| 71 |
+
|
| 72 |
+
# 3. Run your Agent
|
| 73 |
+
results_log = []
|
| 74 |
+
answers_payload = []
|
| 75 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
| 76 |
+
for item in questions_data:
|
| 77 |
+
task_id = item.get("task_id")
|
| 78 |
+
question_text = item.get("question")
|
| 79 |
+
if not task_id or question_text is None:
|
| 80 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
| 81 |
+
continue
|
| 82 |
+
try:
|
| 83 |
+
submitted_answer = agent(question_text)
|
| 84 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 85 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 86 |
+
except Exception as e:
|
| 87 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 88 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 89 |
+
|
| 90 |
+
if not answers_payload:
|
| 91 |
+
print("Agent did not produce any answers to submit.")
|
| 92 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 93 |
+
|
| 94 |
+
# 4. Prepare Submission
|
| 95 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 96 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 97 |
+
print(status_update)
|
| 98 |
+
|
| 99 |
+
# 5. Submit
|
| 100 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 101 |
+
try:
|
| 102 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 103 |
+
response.raise_for_status()
|
| 104 |
+
result_data = response.json()
|
| 105 |
+
final_status = (
|
| 106 |
+
f"Submission Successful!\n"
|
| 107 |
+
f"User: {result_data.get('username')}\n"
|
| 108 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 109 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 110 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
| 111 |
+
)
|
| 112 |
+
print("Submission successful.")
|
| 113 |
+
results_df = pd.DataFrame(results_log)
|
| 114 |
+
return final_status, results_df
|
| 115 |
+
except requests.exceptions.HTTPError as e:
|
| 116 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
| 117 |
+
try:
|
| 118 |
+
error_json = e.response.json()
|
| 119 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 120 |
+
except requests.exceptions.JSONDecodeError:
|
| 121 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
| 122 |
+
status_message = f"Submission Failed: {error_detail}"
|
| 123 |
+
print(status_message)
|
| 124 |
+
results_df = pd.DataFrame(results_log)
|
| 125 |
+
return status_message, results_df
|
| 126 |
+
except requests.exceptions.Timeout:
|
| 127 |
+
status_message = "Submission Failed: The request timed out."
|
| 128 |
+
print(status_message)
|
| 129 |
+
results_df = pd.DataFrame(results_log)
|
| 130 |
+
return status_message, results_df
|
| 131 |
+
except requests.exceptions.RequestException as e:
|
| 132 |
+
status_message = f"Submission Failed: Network error - {e}"
|
| 133 |
+
print(status_message)
|
| 134 |
+
results_df = pd.DataFrame(results_log)
|
| 135 |
+
return status_message, results_df
|
| 136 |
+
except Exception as e:
|
| 137 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
| 138 |
+
print(status_message)
|
| 139 |
+
results_df = pd.DataFrame(results_log)
|
| 140 |
+
return status_message, results_df
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
# --- Build Gradio Interface using Blocks ---
|
| 144 |
+
with gr.Blocks() as demo:
|
| 145 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 146 |
+
gr.Markdown(
|
| 147 |
+
"""
|
| 148 |
+
**Instructions:**
|
| 149 |
+
|
| 150 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 151 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 152 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 153 |
+
|
| 154 |
+
---
|
| 155 |
+
**Disclaimers:**
|
| 156 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 157 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 158 |
+
"""
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
gr.LoginButton()
|
| 162 |
+
|
| 163 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 164 |
+
|
| 165 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 166 |
+
# Removed max_rows=10 from DataFrame constructor
|
| 167 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 168 |
+
|
| 169 |
+
run_button.click(
|
| 170 |
+
fn=run_and_submit_all,
|
| 171 |
+
outputs=[status_output, results_table]
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
if __name__ == "__main__":
|
| 175 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 176 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 177 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
| 178 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 179 |
+
|
| 180 |
+
if space_host_startup:
|
| 181 |
+
print(f"β
SPACE_HOST found: {space_host_startup}")
|
| 182 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 183 |
+
else:
|
| 184 |
+
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
|
| 185 |
+
|
| 186 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 187 |
+
print(f"β
SPACE_ID found: {space_id_startup}")
|
| 188 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 189 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 190 |
+
else:
|
| 191 |
+
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 192 |
+
|
| 193 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 194 |
+
|
| 195 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 196 |
+
demo.launch(debug=True, share=False)
|
code_interpreter.py
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import io
|
| 3 |
+
import sys
|
| 4 |
+
import uuid
|
| 5 |
+
import base64
|
| 6 |
+
import traceback
|
| 7 |
+
import contextlib
|
| 8 |
+
import tempfile
|
| 9 |
+
import subprocess
|
| 10 |
+
import sqlite3
|
| 11 |
+
from typing import Dict, List, Any, Optional, Union
|
| 12 |
+
import numpy as np
|
| 13 |
+
import pandas as pd
|
| 14 |
+
import matplotlib.pyplot as plt
|
| 15 |
+
from PIL import Image
|
| 16 |
+
|
| 17 |
+
class CodeInterpreter:
|
| 18 |
+
def __init__(self, allowed_modules=None, max_execution_time=30, working_directory=None):
|
| 19 |
+
"""Initialize the code interpreter with safety measures."""
|
| 20 |
+
self.allowed_modules = allowed_modules or [
|
| 21 |
+
"numpy", "pandas", "matplotlib", "scipy", "sklearn",
|
| 22 |
+
"math", "random", "statistics", "datetime", "collections",
|
| 23 |
+
"itertools", "functools", "operator", "re", "json",
|
| 24 |
+
"sympy", "networkx", "nltk", "PIL", "pytesseract",
|
| 25 |
+
"cmath", "uuid", "tempfile", "requests", "urllib"
|
| 26 |
+
]
|
| 27 |
+
self.max_execution_time = max_execution_time
|
| 28 |
+
self.working_directory = working_directory or os.path.join(os.getcwd())
|
| 29 |
+
if not os.path.exists(self.working_directory):
|
| 30 |
+
os.makedirs(self.working_directory)
|
| 31 |
+
|
| 32 |
+
self.globals = {
|
| 33 |
+
"__builtins__": __builtins__,
|
| 34 |
+
"np": np,
|
| 35 |
+
"pd": pd,
|
| 36 |
+
"plt": plt,
|
| 37 |
+
"Image": Image,
|
| 38 |
+
}
|
| 39 |
+
self.temp_sqlite_db = os.path.join(tempfile.gettempdir(), "code_exec.db")
|
| 40 |
+
|
| 41 |
+
def execute_code(self, code: str, language: str = "python") -> Dict[str, Any]:
|
| 42 |
+
"""Execute the provided code in the selected programming language."""
|
| 43 |
+
language = language.lower()
|
| 44 |
+
execution_id = str(uuid.uuid4())
|
| 45 |
+
|
| 46 |
+
result = {
|
| 47 |
+
"execution_id": execution_id,
|
| 48 |
+
"status": "error",
|
| 49 |
+
"stdout": "",
|
| 50 |
+
"stderr": "",
|
| 51 |
+
"result": None,
|
| 52 |
+
"plots": [],
|
| 53 |
+
"dataframes": []
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
try:
|
| 57 |
+
if language == "python":
|
| 58 |
+
return self._execute_python(code, execution_id)
|
| 59 |
+
elif language == "bash":
|
| 60 |
+
return self._execute_bash(code, execution_id)
|
| 61 |
+
elif language == "sql":
|
| 62 |
+
return self._execute_sql(code, execution_id)
|
| 63 |
+
elif language == "c":
|
| 64 |
+
return self._execute_c(code, execution_id)
|
| 65 |
+
elif language == "java":
|
| 66 |
+
return self._execute_java(code, execution_id)
|
| 67 |
+
else:
|
| 68 |
+
result["stderr"] = f"Unsupported language: {language}"
|
| 69 |
+
except Exception as e:
|
| 70 |
+
result["stderr"] = str(e)
|
| 71 |
+
|
| 72 |
+
return result
|
| 73 |
+
|
| 74 |
+
def _execute_python(self, code: str, execution_id: str) -> dict:
|
| 75 |
+
output_buffer = io.StringIO()
|
| 76 |
+
error_buffer = io.StringIO()
|
| 77 |
+
result = {
|
| 78 |
+
"execution_id": execution_id,
|
| 79 |
+
"status": "error",
|
| 80 |
+
"stdout": "",
|
| 81 |
+
"stderr": "",
|
| 82 |
+
"result": None,
|
| 83 |
+
"plots": [],
|
| 84 |
+
"dataframes": []
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
try:
|
| 88 |
+
exec_dir = os.path.join(self.working_directory, execution_id)
|
| 89 |
+
os.makedirs(exec_dir, exist_ok=True)
|
| 90 |
+
plt.switch_backend('Agg')
|
| 91 |
+
|
| 92 |
+
with contextlib.redirect_stdout(output_buffer), contextlib.redirect_stderr(error_buffer):
|
| 93 |
+
exec_result = exec(code, self.globals)
|
| 94 |
+
|
| 95 |
+
if plt.get_fignums():
|
| 96 |
+
for i, fig_num in enumerate(plt.get_fignums()):
|
| 97 |
+
fig = plt.figure(fig_num)
|
| 98 |
+
img_path = os.path.join(exec_dir, f"plot_{i}.png")
|
| 99 |
+
fig.savefig(img_path)
|
| 100 |
+
with open(img_path, "rb") as img_file:
|
| 101 |
+
img_data = base64.b64encode(img_file.read()).decode('utf-8')
|
| 102 |
+
result["plots"].append({
|
| 103 |
+
"figure_number": fig_num,
|
| 104 |
+
"data": img_data
|
| 105 |
+
})
|
| 106 |
+
|
| 107 |
+
for var_name, var_value in self.globals.items():
|
| 108 |
+
if isinstance(var_value, pd.DataFrame) and len(var_value) > 0:
|
| 109 |
+
result["dataframes"].append({
|
| 110 |
+
"name": var_name,
|
| 111 |
+
"head": var_value.head().to_dict(),
|
| 112 |
+
"shape": var_value.shape,
|
| 113 |
+
"dtypes": str(var_value.dtypes)
|
| 114 |
+
})
|
| 115 |
+
|
| 116 |
+
result["status"] = "success"
|
| 117 |
+
result["stdout"] = output_buffer.getvalue()
|
| 118 |
+
result["result"] = exec_result
|
| 119 |
+
|
| 120 |
+
except Exception as e:
|
| 121 |
+
result["status"] = "error"
|
| 122 |
+
result["stderr"] = f"{error_buffer.getvalue()}\n{traceback.format_exc()}"
|
| 123 |
+
|
| 124 |
+
return result
|
| 125 |
+
|
| 126 |
+
def _execute_bash(self, code: str, execution_id: str) -> dict:
|
| 127 |
+
try:
|
| 128 |
+
completed = subprocess.run(
|
| 129 |
+
code, shell=True, capture_output=True, text=True, timeout=self.max_execution_time
|
| 130 |
+
)
|
| 131 |
+
return {
|
| 132 |
+
"execution_id": execution_id,
|
| 133 |
+
"status": "success" if completed.returncode == 0 else "error",
|
| 134 |
+
"stdout": completed.stdout,
|
| 135 |
+
"stderr": completed.stderr,
|
| 136 |
+
"result": None,
|
| 137 |
+
"plots": [],
|
| 138 |
+
"dataframes": []
|
| 139 |
+
}
|
| 140 |
+
except subprocess.TimeoutExpired:
|
| 141 |
+
return {
|
| 142 |
+
"execution_id": execution_id,
|
| 143 |
+
"status": "error",
|
| 144 |
+
"stdout": "",
|
| 145 |
+
"stderr": "Execution timed out.",
|
| 146 |
+
"result": None,
|
| 147 |
+
"plots": [],
|
| 148 |
+
"dataframes": []
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
def _execute_sql(self, code: str, execution_id: str) -> dict:
|
| 152 |
+
result = {
|
| 153 |
+
"execution_id": execution_id,
|
| 154 |
+
"status": "error",
|
| 155 |
+
"stdout": "",
|
| 156 |
+
"stderr": "",
|
| 157 |
+
"result": None,
|
| 158 |
+
"plots": [],
|
| 159 |
+
"dataframes": []
|
| 160 |
+
}
|
| 161 |
+
try:
|
| 162 |
+
conn = sqlite3.connect(self.temp_sqlite_db)
|
| 163 |
+
cur = conn.cursor()
|
| 164 |
+
cur.execute(code)
|
| 165 |
+
if code.strip().lower().startswith("select"):
|
| 166 |
+
columns = [description[0] for description in cur.description]
|
| 167 |
+
rows = cur.fetchall()
|
| 168 |
+
df = pd.DataFrame(rows, columns=columns)
|
| 169 |
+
result["dataframes"].append({
|
| 170 |
+
"name": "query_result",
|
| 171 |
+
"head": df.head().to_dict(),
|
| 172 |
+
"shape": df.shape,
|
| 173 |
+
"dtypes": str(df.dtypes)
|
| 174 |
+
})
|
| 175 |
+
else:
|
| 176 |
+
conn.commit()
|
| 177 |
+
|
| 178 |
+
result["status"] = "success"
|
| 179 |
+
result["stdout"] = "Query executed successfully."
|
| 180 |
+
|
| 181 |
+
except Exception as e:
|
| 182 |
+
result["stderr"] = str(e)
|
| 183 |
+
finally:
|
| 184 |
+
conn.close()
|
| 185 |
+
|
| 186 |
+
return result
|
| 187 |
+
|
| 188 |
+
def _execute_c(self, code: str, execution_id: str) -> dict:
|
| 189 |
+
temp_dir = tempfile.mkdtemp()
|
| 190 |
+
source_path = os.path.join(temp_dir, "program.c")
|
| 191 |
+
binary_path = os.path.join(temp_dir, "program")
|
| 192 |
+
|
| 193 |
+
try:
|
| 194 |
+
with open(source_path, "w") as f:
|
| 195 |
+
f.write(code)
|
| 196 |
+
|
| 197 |
+
compile_proc = subprocess.run(
|
| 198 |
+
["gcc", source_path, "-o", binary_path],
|
| 199 |
+
capture_output=True, text=True, timeout=self.max_execution_time
|
| 200 |
+
)
|
| 201 |
+
if compile_proc.returncode != 0:
|
| 202 |
+
return {
|
| 203 |
+
"execution_id": execution_id,
|
| 204 |
+
"status": "error",
|
| 205 |
+
"stdout": compile_proc.stdout,
|
| 206 |
+
"stderr": compile_proc.stderr,
|
| 207 |
+
"result": None,
|
| 208 |
+
"plots": [],
|
| 209 |
+
"dataframes": []
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
run_proc = subprocess.run(
|
| 213 |
+
[binary_path],
|
| 214 |
+
capture_output=True, text=True, timeout=self.max_execution_time
|
| 215 |
+
)
|
| 216 |
+
return {
|
| 217 |
+
"execution_id": execution_id,
|
| 218 |
+
"status": "success" if run_proc.returncode == 0 else "error",
|
| 219 |
+
"stdout": run_proc.stdout,
|
| 220 |
+
"stderr": run_proc.stderr,
|
| 221 |
+
"result": None,
|
| 222 |
+
"plots": [],
|
| 223 |
+
"dataframes": []
|
| 224 |
+
}
|
| 225 |
+
except Exception as e:
|
| 226 |
+
return {
|
| 227 |
+
"execution_id": execution_id,
|
| 228 |
+
"status": "error",
|
| 229 |
+
"stdout": "",
|
| 230 |
+
"stderr": str(e),
|
| 231 |
+
"result": None,
|
| 232 |
+
"plots": [],
|
| 233 |
+
"dataframes": []
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
def _execute_java(self, code: str, execution_id: str) -> dict:
|
| 237 |
+
temp_dir = tempfile.mkdtemp()
|
| 238 |
+
source_path = os.path.join(temp_dir, "Main.java")
|
| 239 |
+
|
| 240 |
+
try:
|
| 241 |
+
with open(source_path, "w") as f:
|
| 242 |
+
f.write(code)
|
| 243 |
+
|
| 244 |
+
compile_proc = subprocess.run(
|
| 245 |
+
["javac", source_path],
|
| 246 |
+
capture_output=True, text=True, timeout=self.max_execution_time
|
| 247 |
+
)
|
| 248 |
+
if compile_proc.returncode != 0:
|
| 249 |
+
return {
|
| 250 |
+
"execution_id": execution_id,
|
| 251 |
+
"status": "error",
|
| 252 |
+
"stdout": compile_proc.stdout,
|
| 253 |
+
"stderr": compile_proc.stderr,
|
| 254 |
+
"result": None,
|
| 255 |
+
"plots": [],
|
| 256 |
+
"dataframes": []
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
run_proc = subprocess.run(
|
| 260 |
+
["java", "-cp", temp_dir, "Main"],
|
| 261 |
+
capture_output=True, text=True, timeout=self.max_execution_time
|
| 262 |
+
)
|
| 263 |
+
return {
|
| 264 |
+
"execution_id": execution_id,
|
| 265 |
+
"status": "success" if run_proc.returncode == 0 else "error",
|
| 266 |
+
"stdout": run_proc.stdout,
|
| 267 |
+
"stderr": run_proc.stderr,
|
| 268 |
+
"result": None,
|
| 269 |
+
"plots": [],
|
| 270 |
+
"dataframes": []
|
| 271 |
+
}
|
| 272 |
+
except Exception as e:
|
| 273 |
+
return {
|
| 274 |
+
"execution_id": execution_id,
|
| 275 |
+
"status": "error",
|
| 276 |
+
"stdout": "",
|
| 277 |
+
"stderr": str(e),
|
| 278 |
+
"result": None,
|
| 279 |
+
"plots": [],
|
| 280 |
+
"dataframes": []
|
| 281 |
+
}
|
huggingface.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import login
|
| 2 |
+
import os
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
|
| 5 |
+
load_dotenv()
|
| 6 |
+
# Make sure you have set your token as an environment variable
|
| 7 |
+
# e.g., in your terminal: export HUGGINGFACEHUB_API_TOKEN="your_token_here"
|
| 8 |
+
token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 9 |
+
|
| 10 |
+
if not token:
|
| 11 |
+
raise ValueError("Please set the environment variable HUGGINGFACEHUB_API_TOKEN")
|
| 12 |
+
|
| 13 |
+
# Login programmatically
|
| 14 |
+
login(token=token)
|
| 15 |
+
print("β
Logged in to Hugging Face Hub successfully!")
|
image_processing.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import io
|
| 3 |
+
import base64
|
| 4 |
+
import uuid
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
# Helper functions for image processing
|
| 8 |
+
def encode_image(image_path: str) -> str:
|
| 9 |
+
"""Convert an image file to base64 string."""
|
| 10 |
+
with open(image_path, "rb") as image_file:
|
| 11 |
+
return base64.b64encode(image_file.read()).decode("utf-8")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def decode_image(base64_string: str) -> Image.Image:
|
| 15 |
+
"""Convert a base64 string to a PIL Image."""
|
| 16 |
+
image_data = base64.b64decode(base64_string)
|
| 17 |
+
return Image.open(io.BytesIO(image_data))
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def save_image(image: Image.Image, directory: str = "image_outputs") -> str:
|
| 21 |
+
"""Save a PIL Image to disk and return the path."""
|
| 22 |
+
os.makedirs(directory, exist_ok=True)
|
| 23 |
+
image_id = str(uuid.uuid4())
|
| 24 |
+
image_path = os.path.join(directory, f"{image_id}.png")
|
| 25 |
+
image.save(image_path)
|
| 26 |
+
return image_path
|
mcp/__init__.py
ADDED
|
File without changes
|
mcp/tavily_client.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_mcp_adapters.client import MultiServerMCPClient
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
client = MultiServerMCPClient({
|
| 5 |
+
"tavily_mcp": {
|
| 6 |
+
"command": "npx",
|
| 7 |
+
"args": ["-y", "tavily-mcp@latest"],
|
| 8 |
+
"env": {"TAVILY_API_KEY": os.environ["TAVILY_API_KEY"]}
|
| 9 |
+
}
|
| 10 |
+
# Or use remote URL instead of local command...
|
| 11 |
+
})
|
metadata.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,568 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
absl-py==2.1.0
|
| 2 |
+
accelerate==1.2.1
|
| 3 |
+
addict==2.4.0
|
| 4 |
+
aiobotocore==2.23.0
|
| 5 |
+
aiofiles==24.1.0
|
| 6 |
+
aiohappyeyeballs==2.6.1
|
| 7 |
+
aiohttp==3.12.13
|
| 8 |
+
aiohttp-cors==0.8.1
|
| 9 |
+
aioitertools==0.12.0
|
| 10 |
+
aiosignal==1.3.1
|
| 11 |
+
altair==5.4.1
|
| 12 |
+
altgraph==0.17.4
|
| 13 |
+
annotated-types==0.7.0
|
| 14 |
+
anyascii==0.3.3
|
| 15 |
+
anyio==3.7.1
|
| 16 |
+
appdirs==1.4.4
|
| 17 |
+
apriori==1.0.0
|
| 18 |
+
argon2-cffi==21.3.0
|
| 19 |
+
argon2-cffi-bindings==21.2.0
|
| 20 |
+
arrow==1.2.3
|
| 21 |
+
astor==0.8.1
|
| 22 |
+
asttokens==2.2.1
|
| 23 |
+
astunparse==1.6.3
|
| 24 |
+
async-lru==2.0.3
|
| 25 |
+
async-timeout==4.0.2
|
| 26 |
+
asyncpg==0.30.0
|
| 27 |
+
attrs==24.2.0
|
| 28 |
+
audioread==3.0.1
|
| 29 |
+
Babel==2.12.1
|
| 30 |
+
backcall==0.2.0
|
| 31 |
+
backoff==2.2.1
|
| 32 |
+
backrefs==5.9
|
| 33 |
+
bangla==0.0.5
|
| 34 |
+
basicsr==1.4.2
|
| 35 |
+
bcrypt==4.3.0
|
| 36 |
+
beautifulsoup4==4.12.2
|
| 37 |
+
blake3==1.0.5
|
| 38 |
+
bleach==6.0.0
|
| 39 |
+
blinker==1.9.0
|
| 40 |
+
blis==1.2.1
|
| 41 |
+
bnnumerizer==0.0.2
|
| 42 |
+
bnunicodenormalizer==0.1.7
|
| 43 |
+
botocore==1.38.27
|
| 44 |
+
build==1.2.2.post1
|
| 45 |
+
cachetools==5.5.0
|
| 46 |
+
camelot-py==0.11.0
|
| 47 |
+
catalogue==2.0.10
|
| 48 |
+
cbor2==5.7.0
|
| 49 |
+
certifi==2024.7.4
|
| 50 |
+
cffi==1.15.1
|
| 51 |
+
cfgv==3.4.0
|
| 52 |
+
chardet==5.2.0
|
| 53 |
+
charset-normalizer==3.2.0
|
| 54 |
+
chromadb==1.0.15
|
| 55 |
+
click==8.1.8
|
| 56 |
+
cloudpathlib==0.21.1
|
| 57 |
+
cloudpickle==2.2.1
|
| 58 |
+
cmake==4.0.0
|
| 59 |
+
colorama==0.4.6
|
| 60 |
+
coloredlogs==15.0.1
|
| 61 |
+
colorful==0.5.7
|
| 62 |
+
colorlog==6.9.0
|
| 63 |
+
comm==0.1.3
|
| 64 |
+
compressed-tensors==0.10.2
|
| 65 |
+
comtypes==1.4.11
|
| 66 |
+
confection==0.1.5
|
| 67 |
+
contourpy==1.3.1
|
| 68 |
+
coqpit==0.0.17
|
| 69 |
+
cramjam==2.11.0
|
| 70 |
+
crewai==0.140.0
|
| 71 |
+
cryptography==43.0.3
|
| 72 |
+
cssselect==1.3.0
|
| 73 |
+
cssutils==2.11.1
|
| 74 |
+
cycler==0.12.1
|
| 75 |
+
cymem==2.0.11
|
| 76 |
+
Cython==3.1.2
|
| 77 |
+
dataclasses-json==0.6.7
|
| 78 |
+
dateparser==1.1.8
|
| 79 |
+
debugpy==1.6.7
|
| 80 |
+
decorator==5.1.1
|
| 81 |
+
defusedxml==0.7.1
|
| 82 |
+
Deprecated==1.2.18
|
| 83 |
+
depyf==0.19.0
|
| 84 |
+
dill==0.4.0
|
| 85 |
+
diskcache==5.6.3
|
| 86 |
+
distlib==0.3.9
|
| 87 |
+
distro==1.9.0
|
| 88 |
+
dlib==19.24.8
|
| 89 |
+
dnspython==2.7.0
|
| 90 |
+
docopt==0.6.2
|
| 91 |
+
docstring_parser==0.16
|
| 92 |
+
dotenv==0.9.9
|
| 93 |
+
duckduckgo_search==8.0.4
|
| 94 |
+
durationpy==0.10
|
| 95 |
+
ecdsa==0.19.1
|
| 96 |
+
efficientnet-pytorch==0.7.1
|
| 97 |
+
einops==0.8.1
|
| 98 |
+
elevenlabs==2.6.0
|
| 99 |
+
email-validator==2.3.0
|
| 100 |
+
encodec==0.1.1
|
| 101 |
+
environs==14.1.0
|
| 102 |
+
et_xmlfile==2.0.0
|
| 103 |
+
executing==1.2.0
|
| 104 |
+
exllamav2==0.3.2
|
| 105 |
+
extra-streamlit-components==0.1.80
|
| 106 |
+
facenet-pytorch==2.6.0
|
| 107 |
+
facexlib==0.3.0
|
| 108 |
+
fastapi==0.115.6
|
| 109 |
+
fastapi-cli==0.0.10
|
| 110 |
+
fastapi-cloud-cli==0.1.5
|
| 111 |
+
fastapi_cors==0.0.6
|
| 112 |
+
fastjsonschema==2.18.0
|
| 113 |
+
fastparquet==2024.11.0
|
| 114 |
+
ffmpeg-python==0.2.0
|
| 115 |
+
filelock==3.16.1
|
| 116 |
+
filterpy==1.4.5
|
| 117 |
+
Flask==3.1.0
|
| 118 |
+
flask-cors==5.0.1
|
| 119 |
+
Flask-PyMongo==3.0.1
|
| 120 |
+
flatbuffers==24.3.25
|
| 121 |
+
fonttools==4.55.0
|
| 122 |
+
fqdn==1.5.1
|
| 123 |
+
frozenlist==1.4.0
|
| 124 |
+
fsspec==2025.5.1
|
| 125 |
+
ftfy==6.3.1
|
| 126 |
+
future==1.0.0
|
| 127 |
+
g2pkk==0.1.2
|
| 128 |
+
gast==0.6.0
|
| 129 |
+
geocoder==1.38.1
|
| 130 |
+
gfpgan==1.3.8
|
| 131 |
+
gguf==0.17.1
|
| 132 |
+
ghostscript==0.7
|
| 133 |
+
ghp-import==2.1.0
|
| 134 |
+
git-filter-repo==2.47.0
|
| 135 |
+
gitdb==4.0.11
|
| 136 |
+
GitPython==3.1.43
|
| 137 |
+
google-ai-generativelanguage==0.6.15
|
| 138 |
+
google-api-core==2.25.1
|
| 139 |
+
google-api-python-client==2.175.0
|
| 140 |
+
google-auth==2.40.3
|
| 141 |
+
google-auth-httplib2==0.2.0
|
| 142 |
+
google-auth-oauthlib==1.2.2
|
| 143 |
+
google-generativeai==0.8.5
|
| 144 |
+
google-pasta==0.2.0
|
| 145 |
+
googleapis-common-protos==1.70.0
|
| 146 |
+
GPUtil==1.4.0
|
| 147 |
+
graphviz==0.21
|
| 148 |
+
greenlet==3.1.1
|
| 149 |
+
groq==0.29.0
|
| 150 |
+
grpcio==1.74.0
|
| 151 |
+
grpcio-status==1.71.2
|
| 152 |
+
gruut==2.2.3
|
| 153 |
+
gruut-ipa==0.13.0
|
| 154 |
+
gruut-lang-de==2.0.1
|
| 155 |
+
gruut-lang-en==2.0.1
|
| 156 |
+
gruut-lang-es==2.0.1
|
| 157 |
+
gruut-lang-fr==2.0.2
|
| 158 |
+
gTTS==2.5.4
|
| 159 |
+
gunicorn==23.0.0
|
| 160 |
+
h11==0.14.0
|
| 161 |
+
h5py==3.14.0
|
| 162 |
+
hangul-romanize==0.1.0
|
| 163 |
+
httpcore==1.0.7
|
| 164 |
+
httplib2==0.22.0
|
| 165 |
+
httptools==0.6.4
|
| 166 |
+
httpx==0.28.1
|
| 167 |
+
httpx-sse==0.4.1
|
| 168 |
+
huggingface-hub==0.34.4
|
| 169 |
+
humanfriendly==10.0
|
| 170 |
+
ibm-cloud-sdk-core==3.24.1
|
| 171 |
+
ibm-platform-services==0.66.1
|
| 172 |
+
identify==2.6.12
|
| 173 |
+
idna==3.4
|
| 174 |
+
imageio==2.37.0
|
| 175 |
+
imagesize==1.4.1
|
| 176 |
+
importlib_metadata==8.4.0
|
| 177 |
+
importlib_resources==6.5.2
|
| 178 |
+
inflect==7.5.0
|
| 179 |
+
iniconfig==2.1.0
|
| 180 |
+
instructor==1.9.1
|
| 181 |
+
interegular==0.3.3
|
| 182 |
+
ipycytoscape==1.3.3
|
| 183 |
+
ipykernel==6.24.0
|
| 184 |
+
ipython==8.14.0
|
| 185 |
+
ipython-genutils==0.2.0
|
| 186 |
+
ipywidgets==8.1.7
|
| 187 |
+
isoduration==20.11.0
|
| 188 |
+
itsdangerous==2.2.0
|
| 189 |
+
jamo==0.4.1
|
| 190 |
+
jedi==0.18.2
|
| 191 |
+
jieba==0.42.1
|
| 192 |
+
Jinja2==3.1.6
|
| 193 |
+
jiter==0.8.2
|
| 194 |
+
jmespath==1.0.1
|
| 195 |
+
joblib==1.4.2
|
| 196 |
+
Js2Py==0.74
|
| 197 |
+
json5==0.12.0
|
| 198 |
+
json_repair==0.25.2
|
| 199 |
+
jsonlines==1.2.0
|
| 200 |
+
jsonpatch==1.33
|
| 201 |
+
jsonpickle==3.0.3
|
| 202 |
+
jsonpointer==2.4
|
| 203 |
+
jsonref==1.1.0
|
| 204 |
+
jsonschema==4.24.0
|
| 205 |
+
jsonschema-specifications==2023.7.1
|
| 206 |
+
jupyter==1.0.0
|
| 207 |
+
jupyter-console==6.6.3
|
| 208 |
+
jupyter-events==0.6.3
|
| 209 |
+
jupyter-lsp==2.2.0
|
| 210 |
+
jupyter_client==8.3.0
|
| 211 |
+
jupyter_core==5.3.1
|
| 212 |
+
jupyter_server==2.7.0
|
| 213 |
+
jupyter_server_terminals==0.4.4
|
| 214 |
+
jupyterlab==4.0.3
|
| 215 |
+
jupyterlab-pygments==0.2.2
|
| 216 |
+
jupyterlab_server==2.23.0
|
| 217 |
+
jupyterlab_widgets==3.0.15
|
| 218 |
+
kaggle==1.7.4.2
|
| 219 |
+
keras==3.9.2
|
| 220 |
+
kiwisolver==1.4.7
|
| 221 |
+
kubernetes==33.1.0
|
| 222 |
+
lab==8.3
|
| 223 |
+
langchain==0.3.26
|
| 224 |
+
langchain-community==0.3.27
|
| 225 |
+
langchain-core==0.3.68
|
| 226 |
+
langchain-openai==0.3.27
|
| 227 |
+
langchain-text-splitters==0.3.8
|
| 228 |
+
langcodes==3.5.0
|
| 229 |
+
langsmith==0.4.4
|
| 230 |
+
language_data==1.3.0
|
| 231 |
+
lark==1.2.2
|
| 232 |
+
lazy_loader==0.4
|
| 233 |
+
libclang==18.1.1
|
| 234 |
+
librosa==0.11.0
|
| 235 |
+
litellm==1.72.6
|
| 236 |
+
llvmlite==0.44.0
|
| 237 |
+
lm-format-enforcer==0.10.12
|
| 238 |
+
lmdb==1.6.2
|
| 239 |
+
load-dotenv==0.1.0
|
| 240 |
+
lxml==5.3.0
|
| 241 |
+
lz4==4.4.4
|
| 242 |
+
marisa-trie==1.2.1
|
| 243 |
+
Markdown==3.6
|
| 244 |
+
markdown-it-py==3.0.0
|
| 245 |
+
MarkupSafe==2.1.3
|
| 246 |
+
marshmallow==3.25.1
|
| 247 |
+
matplotlib==3.9.2
|
| 248 |
+
matplotlib-inline==0.1.6
|
| 249 |
+
mdurl==0.1.2
|
| 250 |
+
mergedeep==1.3.4
|
| 251 |
+
mistral_common==1.8.4
|
| 252 |
+
mistune==3.0.1
|
| 253 |
+
mkdocs==1.6.1
|
| 254 |
+
mkdocs-get-deps==0.2.0
|
| 255 |
+
mkdocs-material==9.6.15
|
| 256 |
+
mkdocs-material-extensions==1.3.1
|
| 257 |
+
ml_dtypes==0.5.1
|
| 258 |
+
mmh3==5.1.0
|
| 259 |
+
mock==5.2.0
|
| 260 |
+
more-itertools==10.7.0
|
| 261 |
+
MouseInfo==0.1.3
|
| 262 |
+
mpmath==1.3.0
|
| 263 |
+
msgpack==1.1.1
|
| 264 |
+
msgspec==0.19.0
|
| 265 |
+
mtcnn==1.0.0
|
| 266 |
+
multidict==6.0.4
|
| 267 |
+
munch==4.0.0
|
| 268 |
+
murmurhash==1.0.13
|
| 269 |
+
mypy_extensions==1.1.0
|
| 270 |
+
mysql-connector-python==9.2.0
|
| 271 |
+
namex==0.0.8
|
| 272 |
+
narwhals==1.47.0
|
| 273 |
+
nbclient==0.8.0
|
| 274 |
+
nbconvert==7.7.2
|
| 275 |
+
nbformat==5.9.1
|
| 276 |
+
neo4j==5.28.1
|
| 277 |
+
nest-asyncio==1.5.6
|
| 278 |
+
networkx==3.2.1
|
| 279 |
+
ninja==1.13.0
|
| 280 |
+
nltk==3.9.1
|
| 281 |
+
nodeenv==1.9.1
|
| 282 |
+
notebook==7.0.3
|
| 283 |
+
notebook_shim==0.2.3
|
| 284 |
+
num2words==0.5.14
|
| 285 |
+
numba==0.61.2
|
| 286 |
+
numpy==2.2.6
|
| 287 |
+
oauthlib==3.3.1
|
| 288 |
+
onnxruntime==1.22.0
|
| 289 |
+
openai==1.104.2
|
| 290 |
+
openai-harmony==0.0.4
|
| 291 |
+
opencensus==0.11.4
|
| 292 |
+
opencensus-context==0.1.3
|
| 293 |
+
opencv-contrib-python==4.10.0.84
|
| 294 |
+
opencv-python==4.11.0.86
|
| 295 |
+
opencv-python-headless==4.12.0.88
|
| 296 |
+
openpyxl==3.1.5
|
| 297 |
+
opentelemetry-api==1.33.0
|
| 298 |
+
opentelemetry-exporter-otlp-proto-common==1.33.0
|
| 299 |
+
opentelemetry-exporter-otlp-proto-grpc==1.33.0
|
| 300 |
+
opentelemetry-exporter-otlp-proto-http==1.34.1
|
| 301 |
+
opentelemetry-exporter-prometheus==0.54b0
|
| 302 |
+
opentelemetry-instrumentation==0.54b0
|
| 303 |
+
opentelemetry-instrumentation-requests==0.54b0
|
| 304 |
+
opentelemetry-proto==1.33.0
|
| 305 |
+
opentelemetry-sdk==1.33.0
|
| 306 |
+
opentelemetry-semantic-conventions==0.54b0
|
| 307 |
+
opentelemetry-util-http==0.54b0
|
| 308 |
+
opt-einsum==3.3.0
|
| 309 |
+
optree==0.14.1
|
| 310 |
+
orjson==3.10.18
|
| 311 |
+
outcome==1.3.0.post0
|
| 312 |
+
outlines_core==0.2.10
|
| 313 |
+
overrides==7.3.1
|
| 314 |
+
packaging==24.2
|
| 315 |
+
paddleocr==3.1.0
|
| 316 |
+
paddlex==3.1.1
|
| 317 |
+
paginate==0.5.7
|
| 318 |
+
pandas==1.5.3
|
| 319 |
+
pandocfilters==1.5.0
|
| 320 |
+
parso==0.8.3
|
| 321 |
+
partial-json-parser==0.2.1.1.post6
|
| 322 |
+
passlib==1.7.4
|
| 323 |
+
pathspec==0.12.1
|
| 324 |
+
pbr==6.1.1
|
| 325 |
+
pdfminer.six==20250506
|
| 326 |
+
pdfplumber==0.11.7
|
| 327 |
+
pefile==2023.2.7
|
| 328 |
+
pgvector==0.4.1
|
| 329 |
+
pickleshare==0.7.5
|
| 330 |
+
pillow==11.2.1
|
| 331 |
+
pipwin==0.5.2
|
| 332 |
+
platformdirs==3.9.1
|
| 333 |
+
playsound==1.3.0
|
| 334 |
+
plotly==6.2.0
|
| 335 |
+
pluggy==1.5.0
|
| 336 |
+
pooch==1.8.2
|
| 337 |
+
posthog==5.4.0
|
| 338 |
+
pre_commit==4.2.0
|
| 339 |
+
premailer==3.10.0
|
| 340 |
+
preprocessing==0.1.13
|
| 341 |
+
preshed==3.0.10
|
| 342 |
+
pretrainedmodels==0.7.4
|
| 343 |
+
prettytable==3.16.0
|
| 344 |
+
primp==0.15.0
|
| 345 |
+
prometheus-fastapi-instrumentator==7.1.0
|
| 346 |
+
prometheus_client==0.22.1
|
| 347 |
+
prompt-toolkit==3.0.39
|
| 348 |
+
propcache==0.3.2
|
| 349 |
+
proto-plus==1.26.1
|
| 350 |
+
protobuf==5.29.5
|
| 351 |
+
psutil==5.9.5
|
| 352 |
+
psycopg2-binary==2.9.10
|
| 353 |
+
pure-eval==0.2.2
|
| 354 |
+
py-cpuinfo==9.0.0
|
| 355 |
+
py-spy==0.4.0
|
| 356 |
+
pyarrow==18.0.0
|
| 357 |
+
pyasn1==0.6.1
|
| 358 |
+
pyasn1_modules==0.4.2
|
| 359 |
+
PyAudio==0.2.14
|
| 360 |
+
PyAutoGUI==0.9.54
|
| 361 |
+
pybase64==1.4.1
|
| 362 |
+
pyclipper==1.3.0.post6
|
| 363 |
+
pycountry==24.6.1
|
| 364 |
+
pycparser==2.21
|
| 365 |
+
pydantic==2.11.7
|
| 366 |
+
pydantic-extra-types==2.10.5
|
| 367 |
+
pydantic-settings==2.10.1
|
| 368 |
+
pydantic_core==2.33.2
|
| 369 |
+
pydeck==0.9.1
|
| 370 |
+
pydot==4.0.1
|
| 371 |
+
pydub==0.25.1
|
| 372 |
+
pygame==2.6.1
|
| 373 |
+
PyGetWindow==0.0.9
|
| 374 |
+
Pygments==2.19.2
|
| 375 |
+
pyinstaller==6.11.1
|
| 376 |
+
pyinstaller-hooks-contrib==2024.10
|
| 377 |
+
pyjsparser==2.7.1
|
| 378 |
+
PyJWT==2.10.1
|
| 379 |
+
pylatexenc==2.10
|
| 380 |
+
PyMatting==1.1.14
|
| 381 |
+
pymdown-extensions==10.16
|
| 382 |
+
pymongo==4.12.0
|
| 383 |
+
PyMsgBox==1.0.9
|
| 384 |
+
pynndescent==0.5.13
|
| 385 |
+
pyparsing==3.2.0
|
| 386 |
+
pypdf==5.1.0
|
| 387 |
+
PyPDF2==3.0.1
|
| 388 |
+
pypdfium2==4.30.1
|
| 389 |
+
pyperclip==1.9.0
|
| 390 |
+
PyPika==0.48.9
|
| 391 |
+
pypinyin==0.54.0
|
| 392 |
+
pypiwin32==223
|
| 393 |
+
PyPrind==2.11.3
|
| 394 |
+
pyproject_hooks==1.2.0
|
| 395 |
+
pyreadline3==3.5.4
|
| 396 |
+
PyRect==0.2.0
|
| 397 |
+
pysbd==0.3.4
|
| 398 |
+
PyScreeze==1.0.1
|
| 399 |
+
pySmartDL==1.3.4
|
| 400 |
+
PySocks==1.7.1
|
| 401 |
+
pyspnego==0.11.2
|
| 402 |
+
pytesseract==0.3.13
|
| 403 |
+
pytest==8.3.5
|
| 404 |
+
pytest-asyncio==1.1.0
|
| 405 |
+
pytest-mock==3.14.1
|
| 406 |
+
python-crfsuite==0.9.11
|
| 407 |
+
python-dateutil==2.8.2
|
| 408 |
+
python-dotenv==1.0.0
|
| 409 |
+
python-jose==3.5.0
|
| 410 |
+
python-json-logger==2.0.7
|
| 411 |
+
python-multipart==0.0.20
|
| 412 |
+
python-slugify==8.0.4
|
| 413 |
+
pyttsx3==2.98
|
| 414 |
+
pytweening==1.2.0
|
| 415 |
+
pytz==2023.3.post1
|
| 416 |
+
pyvis==0.3.2
|
| 417 |
+
pywhatkit==5.4
|
| 418 |
+
pywin32==306
|
| 419 |
+
pywin32-ctypes==0.2.3
|
| 420 |
+
pywinpty==2.0.11
|
| 421 |
+
PyYAML==6.0.2
|
| 422 |
+
pyyaml_env_tag==1.1
|
| 423 |
+
pyzmq==25.1.0
|
| 424 |
+
qc-grader @ git+https://github.com/qiskit-community/Quantum-Challenge-Grader.git@1d7a6915623b0cfeac4c114391c279e9d98eb7f9
|
| 425 |
+
qiskit==2.1.1
|
| 426 |
+
qiskit-aer==0.17.1
|
| 427 |
+
qiskit-ibm-runtime==0.40.1
|
| 428 |
+
qiskit-serverless==0.25.1
|
| 429 |
+
qtconsole==5.4.4
|
| 430 |
+
QtPy==2.4.0
|
| 431 |
+
ratelim==0.1.6
|
| 432 |
+
ray==2.47.1
|
| 433 |
+
# Editable install with no version control (realesrgan==0.3.0)
|
| 434 |
+
-e c:\python311\lib\site-packages
|
| 435 |
+
referencing==0.30.0
|
| 436 |
+
regex==2024.11.6
|
| 437 |
+
relaxml==0.1.3
|
| 438 |
+
rembg==2.0.66
|
| 439 |
+
requests==2.32.3
|
| 440 |
+
requests-oauthlib==2.0.0
|
| 441 |
+
requests-toolbelt==1.0.0
|
| 442 |
+
requests_ntlm==1.3.0
|
| 443 |
+
rfc3339-validator==0.1.4
|
| 444 |
+
rfc3986-validator==0.1.1
|
| 445 |
+
rich==13.9.4
|
| 446 |
+
rich-toolkit==0.15.0
|
| 447 |
+
rignore==0.6.4
|
| 448 |
+
rpds-py==0.9.2
|
| 449 |
+
rsa==4.9.1
|
| 450 |
+
ruamel.yaml==0.18.14
|
| 451 |
+
ruamel.yaml.clib==0.2.12
|
| 452 |
+
rustworkx==0.16.0
|
| 453 |
+
s3fs==2025.5.1
|
| 454 |
+
safetensors==0.5.2
|
| 455 |
+
scikit-image==0.25.2
|
| 456 |
+
scikit-learn==1.6.0
|
| 457 |
+
scipy==1.14.1
|
| 458 |
+
seaborn==0.13.2
|
| 459 |
+
selenium==4.27.1
|
| 460 |
+
Send2Trash==1.8.2
|
| 461 |
+
sentencepiece==0.2.1
|
| 462 |
+
sentry-sdk==2.35.2
|
| 463 |
+
serpapi==0.1.5
|
| 464 |
+
setproctitle==1.3.6
|
| 465 |
+
shapely==2.1.1
|
| 466 |
+
shellingham==1.5.4
|
| 467 |
+
simplejson==3.19.3
|
| 468 |
+
six==1.16.0
|
| 469 |
+
smart_open==7.3.0.post1
|
| 470 |
+
smmap==5.0.1
|
| 471 |
+
smolagents==1.18.0
|
| 472 |
+
sniffio==1.3.0
|
| 473 |
+
sortedcontainers==2.4.0
|
| 474 |
+
soundfile==0.13.1
|
| 475 |
+
soupsieve==2.4.1
|
| 476 |
+
soxr==0.5.0.post1
|
| 477 |
+
spacy==3.8.7
|
| 478 |
+
spacy-legacy==3.0.12
|
| 479 |
+
spacy-loggers==1.0.5
|
| 480 |
+
spectate==1.0.1
|
| 481 |
+
SpeechRecognition==3.14.3
|
| 482 |
+
sphinx-rtd-theme==0.2.4
|
| 483 |
+
SQLAlchemy==2.0.40
|
| 484 |
+
srsly==2.5.1
|
| 485 |
+
sspilib==0.3.1
|
| 486 |
+
stack-data==0.6.2
|
| 487 |
+
starlette==0.41.3
|
| 488 |
+
stevedore==5.4.1
|
| 489 |
+
streamlit==1.40.1
|
| 490 |
+
streamlit_mic_recorder==0.0.8
|
| 491 |
+
streamlit_TTS==0.0.7
|
| 492 |
+
stripe==12.3.0
|
| 493 |
+
SudachiDict-core==20250515
|
| 494 |
+
SudachiPy==0.6.10
|
| 495 |
+
symengine==0.13.0
|
| 496 |
+
sympy==1.14.0
|
| 497 |
+
tabulate==0.9.0
|
| 498 |
+
tb-nightly==2.20.0a20250621
|
| 499 |
+
tenacity==9.0.0
|
| 500 |
+
tensorboard==2.19.0
|
| 501 |
+
tensorboard-data-server==0.7.2
|
| 502 |
+
tensorflow==2.19.0
|
| 503 |
+
tensorflow-intel==2.16.2
|
| 504 |
+
tensorflow-io-gcs-filesystem==0.31.0
|
| 505 |
+
termcolor==2.4.0
|
| 506 |
+
terminado==0.17.1
|
| 507 |
+
tesseract==0.1.3
|
| 508 |
+
text-unidecode==1.3
|
| 509 |
+
thinc==8.3.4
|
| 510 |
+
threadpoolctl==3.5.0
|
| 511 |
+
three==0.8.0
|
| 512 |
+
tifffile==2025.6.11
|
| 513 |
+
tiktoken==0.9.0
|
| 514 |
+
tinycss2==1.2.1
|
| 515 |
+
tk==0.1.0
|
| 516 |
+
tokenizers==0.22.0
|
| 517 |
+
toml==0.10.2
|
| 518 |
+
tomli==2.2.1
|
| 519 |
+
tomli_w==1.2.0
|
| 520 |
+
torch==2.7.1
|
| 521 |
+
torchvision==0.22.1
|
| 522 |
+
tornado==6.3.2
|
| 523 |
+
tqdm==4.67.1
|
| 524 |
+
trainer==0.0.36
|
| 525 |
+
traitlets==5.9.0
|
| 526 |
+
transformers==4.56.0
|
| 527 |
+
trio==0.27.0
|
| 528 |
+
trio-websocket==0.11.1
|
| 529 |
+
TTS==0.22.0
|
| 530 |
+
txt2tags==3.9
|
| 531 |
+
typeguard==4.4.4
|
| 532 |
+
typer==0.16.0
|
| 533 |
+
typing-inspect==0.9.0
|
| 534 |
+
typing-inspection==0.4.1
|
| 535 |
+
typing_extensions==4.14.1
|
| 536 |
+
tzdata==2023.3
|
| 537 |
+
tzlocal==5.3.1
|
| 538 |
+
ujson==5.10.0
|
| 539 |
+
umap-learn==0.5.9.post2
|
| 540 |
+
Unidecode==1.4.0
|
| 541 |
+
uri-template==1.3.0
|
| 542 |
+
uritemplate==4.2.0
|
| 543 |
+
urllib3==2.5.0
|
| 544 |
+
utils==1.0.2
|
| 545 |
+
uv==0.7.19
|
| 546 |
+
uvicorn==0.34.0
|
| 547 |
+
virtualenv==20.31.2
|
| 548 |
+
vllm==0.10.1.1
|
| 549 |
+
wasabi==1.1.3
|
| 550 |
+
watchdog==6.0.0
|
| 551 |
+
watchfiles==1.1.0
|
| 552 |
+
wcwidth==0.2.6
|
| 553 |
+
weasel==0.4.1
|
| 554 |
+
webcolors==24.11.1
|
| 555 |
+
webencodings==0.5.1
|
| 556 |
+
websocket-client==1.8.0
|
| 557 |
+
websockets==15.0.1
|
| 558 |
+
Werkzeug==3.1.3
|
| 559 |
+
whisper-openai==1.0.0
|
| 560 |
+
widgetsnbextension==4.0.14
|
| 561 |
+
wikipedia==1.4.0
|
| 562 |
+
wrapt==1.16.0
|
| 563 |
+
wsproto==1.2.0
|
| 564 |
+
yapf==0.43.0
|
| 565 |
+
yarl==1.20.1
|
| 566 |
+
zipp==3.19.1
|
| 567 |
+
zstandard==0.23.0
|
| 568 |
+
gradio[oauth]
|
system_prompt.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
You are a helpful assistant tasked with answering questions using a set of tools.
|
| 2 |
+
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
| 3 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
| 4 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, Apply the rules above for each element (number or string), ensure there is exactly one space after each comma.
|
| 5 |
+
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.
|
test_agent.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import unittest
|
| 2 |
+
import os
|
| 3 |
+
from unittest.mock import patch, MagicMock
|
| 4 |
+
from agent import (
|
| 5 |
+
build_graph,
|
| 6 |
+
multiply,
|
| 7 |
+
add,
|
| 8 |
+
subtract,
|
| 9 |
+
divide,
|
| 10 |
+
modulus,
|
| 11 |
+
power,
|
| 12 |
+
square_root,
|
| 13 |
+
save_and_read_file,
|
| 14 |
+
download_file_from_url,
|
| 15 |
+
extract_text_from_image,
|
| 16 |
+
analyze_image,
|
| 17 |
+
transform_image,
|
| 18 |
+
draw_on_image,
|
| 19 |
+
generate_simple_image,
|
| 20 |
+
combine_images,
|
| 21 |
+
analyze_csv_file,
|
| 22 |
+
analyze_excel_file,
|
| 23 |
+
execute_code_multilang,
|
| 24 |
+
web_search,
|
| 25 |
+
wiki_search,
|
| 26 |
+
arxiv_search,
|
| 27 |
+
vector_store,
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
class TestAgent(unittest.TestCase):
|
| 31 |
+
def test_multiply(self):
|
| 32 |
+
response = multiply.invoke({"a": 6, "b": 7})
|
| 33 |
+
self.assertTrue(response["status"])
|
| 34 |
+
self.assertEqual(response["data"], 42)
|
| 35 |
+
|
| 36 |
+
def test_add(self):
|
| 37 |
+
response = add.invoke({"a": 5, "b": 3})
|
| 38 |
+
self.assertTrue(response["status"])
|
| 39 |
+
self.assertEqual(response["data"], 8)
|
| 40 |
+
|
| 41 |
+
def test_llm(self):
|
| 42 |
+
graph = build_graph()
|
| 43 |
+
response = graph.invoke({"messages": ["what is 1 + 1"]})
|
| 44 |
+
self.assertIsNotNone(response)
|
| 45 |
+
print(response)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
if __name__ == '__main__':
|
| 49 |
+
unittest.main()
|
test_llm.py
ADDED
|
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Complete LLM Testing Script
|
| 4 |
+
Supports Groq and local HuggingFace LLMs with proper LangChain integration.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import sys
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
|
| 11 |
+
# LangChain & LangGraph imports
|
| 12 |
+
try:
|
| 13 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
| 14 |
+
from langchain_groq import ChatGroq
|
| 15 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
| 16 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
| 17 |
+
print("β
LangChain imports successful")
|
| 18 |
+
except ImportError as e:
|
| 19 |
+
print(f"β Import error: {e}")
|
| 20 |
+
print("π‘ Install missing packages: pip install langchain-groq langgraph")
|
| 21 |
+
sys.exit(1)
|
| 22 |
+
|
| 23 |
+
load_dotenv()
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class LocalHuggingFaceLLM:
|
| 27 |
+
"""Custom wrapper for local HuggingFace models"""
|
| 28 |
+
def __init__(self, model, tokenizer, device):
|
| 29 |
+
self.model = model
|
| 30 |
+
self.tokenizer = tokenizer
|
| 31 |
+
self.device = device
|
| 32 |
+
self.model.eval()
|
| 33 |
+
|
| 34 |
+
def invoke(self, messages):
|
| 35 |
+
"""Generate response from local model, return AIMessage"""
|
| 36 |
+
from langchain_core.messages import AIMessage
|
| 37 |
+
import torch
|
| 38 |
+
|
| 39 |
+
# Convert messages to text
|
| 40 |
+
if isinstance(messages, list):
|
| 41 |
+
text = ""
|
| 42 |
+
for msg in messages:
|
| 43 |
+
if hasattr(msg, 'content'):
|
| 44 |
+
if hasattr(msg, 'type'):
|
| 45 |
+
if msg.type == "system":
|
| 46 |
+
text += f"System: {msg.content}\n"
|
| 47 |
+
elif msg.type == "human":
|
| 48 |
+
text += f"Human: {msg.content}\n"
|
| 49 |
+
else:
|
| 50 |
+
text += f"{msg.content}\n"
|
| 51 |
+
else:
|
| 52 |
+
text += f"Human: {msg.content}\n"
|
| 53 |
+
else:
|
| 54 |
+
text += str(msg) + "\n"
|
| 55 |
+
text += "Assistant:"
|
| 56 |
+
else:
|
| 57 |
+
text = str(messages)
|
| 58 |
+
|
| 59 |
+
try:
|
| 60 |
+
inputs = self.tokenizer.encode(text, return_tensors="pt", max_length=512, truncation=True)
|
| 61 |
+
if self.device == "cuda" and torch.cuda.is_available():
|
| 62 |
+
inputs = inputs.to(self.device)
|
| 63 |
+
self.model = self.model.to(self.device)
|
| 64 |
+
|
| 65 |
+
outputs = self.model.generate(
|
| 66 |
+
inputs,
|
| 67 |
+
max_new_tokens=100,
|
| 68 |
+
do_sample=True,
|
| 69 |
+
temperature=0.7,
|
| 70 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
| 71 |
+
attention_mask=torch.ones_like(inputs),
|
| 72 |
+
no_repeat_ngram_size=2,
|
| 73 |
+
early_stopping=True
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
response_text = self.tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True).strip()
|
| 77 |
+
return AIMessage(content=response_text if response_text else "I understand.")
|
| 78 |
+
|
| 79 |
+
except Exception as e:
|
| 80 |
+
return AIMessage(content=f"Error generating response: {str(e)}")
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def create_local_huggingface_llm():
|
| 84 |
+
"""Initialize local HuggingFace model"""
|
| 85 |
+
try:
|
| 86 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 87 |
+
import torch
|
| 88 |
+
|
| 89 |
+
model_name = "microsoft/DialoGPT-small"
|
| 90 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 91 |
+
|
| 92 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
| 93 |
+
if tokenizer.pad_token is None:
|
| 94 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 95 |
+
|
| 96 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16 if device == "cuda" else torch.float32)
|
| 97 |
+
return LocalHuggingFaceLLM(model, tokenizer, device)
|
| 98 |
+
|
| 99 |
+
except Exception as e:
|
| 100 |
+
print(f"β Failed to load local HuggingFace model: {e}")
|
| 101 |
+
return None
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def create_minimal_graph(provider: str = "groq"):
|
| 105 |
+
"""Create a minimal graph for testing"""
|
| 106 |
+
try:
|
| 107 |
+
if provider == "groq":
|
| 108 |
+
if not os.getenv("GROQ_API_KEY"):
|
| 109 |
+
raise ValueError("GROQ_API_KEY not found")
|
| 110 |
+
llm = ChatGroq(model="qwen/qwen3-32b", temperature=0)
|
| 111 |
+
|
| 112 |
+
def assistant(state: MessagesState):
|
| 113 |
+
return {"messages": [llm.invoke(state["messages"])]}
|
| 114 |
+
|
| 115 |
+
builder = StateGraph(MessagesState)
|
| 116 |
+
builder.add_node("assistant", assistant)
|
| 117 |
+
builder.add_edge(START, "assistant")
|
| 118 |
+
return builder.compile()
|
| 119 |
+
|
| 120 |
+
elif provider == "huggingface_local":
|
| 121 |
+
llm = create_local_huggingface_llm()
|
| 122 |
+
if llm is None:
|
| 123 |
+
raise ValueError("Failed to create local HuggingFace model")
|
| 124 |
+
|
| 125 |
+
def assistant(state: MessagesState):
|
| 126 |
+
# Return AIMessage directly
|
| 127 |
+
return {"messages": [llm.invoke(state["messages"])]}
|
| 128 |
+
|
| 129 |
+
builder = StateGraph(MessagesState)
|
| 130 |
+
builder.add_node("assistant", assistant)
|
| 131 |
+
builder.add_edge(START, "assistant")
|
| 132 |
+
return builder.compile()
|
| 133 |
+
|
| 134 |
+
else:
|
| 135 |
+
raise ValueError(f"Unknown provider: {provider}")
|
| 136 |
+
|
| 137 |
+
except Exception as e:
|
| 138 |
+
print(f"β Failed to create minimal graph: {e}")
|
| 139 |
+
return None
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def test_basic_llm_response(provider: str = "groq"):
|
| 143 |
+
"""Test basic LLM response"""
|
| 144 |
+
print(f"\nπ§ͺ Testing Basic LLM Response ({provider})")
|
| 145 |
+
try:
|
| 146 |
+
if provider == "groq":
|
| 147 |
+
if not os.getenv("GROQ_API_KEY"):
|
| 148 |
+
return {"status": "error", "error": "GROQ_API_KEY not found"}
|
| 149 |
+
llm = ChatGroq(model="qwen/qwen3-32b", temperature=0)
|
| 150 |
+
elif provider == "huggingface_local":
|
| 151 |
+
llm = create_local_huggingface_llm()
|
| 152 |
+
if llm is None:
|
| 153 |
+
return {"status": "error", "error": "Failed to create local HuggingFace model"}
|
| 154 |
+
else:
|
| 155 |
+
return {"status": "error", "error": f"Unknown provider: {provider}"}
|
| 156 |
+
|
| 157 |
+
test_message = "Hello! Please respond with 'LLM is working correctly'"
|
| 158 |
+
response = llm.invoke([HumanMessage(content=test_message)])
|
| 159 |
+
print(f"π₯ Response: {response.content[:200]}")
|
| 160 |
+
return {"status": "success", "provider": provider, "response": response.content}
|
| 161 |
+
|
| 162 |
+
except Exception as e:
|
| 163 |
+
return {"status": "error", "error": str(e)}
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def test_llm_with_system_prompt(provider: str = "groq"):
|
| 167 |
+
"""Test LLM with system prompt"""
|
| 168 |
+
print(f"\nπ§ͺ Testing LLM with System Prompt ({provider})")
|
| 169 |
+
try:
|
| 170 |
+
if provider == "groq":
|
| 171 |
+
llm = ChatGroq(model="qwen/qwen3-32b", temperature=0)
|
| 172 |
+
elif provider == "huggingface_local":
|
| 173 |
+
llm = create_local_huggingface_llm()
|
| 174 |
+
if llm is None:
|
| 175 |
+
return {"status": "error", "error": "Failed to create local HuggingFace model"}
|
| 176 |
+
else:
|
| 177 |
+
return {"status": "error", "error": f"Unknown provider: {provider}"}
|
| 178 |
+
|
| 179 |
+
system_msg = SystemMessage(content="You are a helpful assistant. Answer briefly and clearly.")
|
| 180 |
+
user_msg = HumanMessage(content="What is 2+2? Just give me the number.")
|
| 181 |
+
|
| 182 |
+
response = llm.invoke([system_msg, user_msg])
|
| 183 |
+
print(f"π₯ Response: {response.content}")
|
| 184 |
+
return {"status": "success", "provider": provider, "response": response.content}
|
| 185 |
+
|
| 186 |
+
except Exception as e:
|
| 187 |
+
return {"status": "error", "error": str(e)}
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def test_graph_workflow(provider: str = "groq"):
|
| 191 |
+
"""Test graph workflow"""
|
| 192 |
+
print(f"\nπ§ͺ Testing Graph Workflow ({provider})")
|
| 193 |
+
try:
|
| 194 |
+
graph = create_minimal_graph(provider)
|
| 195 |
+
if graph is None:
|
| 196 |
+
return {"status": "error", "error": "Failed to create graph"}
|
| 197 |
+
|
| 198 |
+
test_query = "What is 5 + 3? Just give me the answer."
|
| 199 |
+
result = graph.invoke({"messages": [HumanMessage(content=test_query)]})
|
| 200 |
+
|
| 201 |
+
if result and "messages" in result:
|
| 202 |
+
last_message = result["messages"][-1]
|
| 203 |
+
print(f"π₯ Final response: {last_message.content}")
|
| 204 |
+
return {"status": "success", "response": last_message.content, "message_count": len(result["messages"])}
|
| 205 |
+
else:
|
| 206 |
+
return {"status": "error", "error": "No valid response from graph"}
|
| 207 |
+
|
| 208 |
+
except Exception as e:
|
| 209 |
+
return {"status": "error", "error": str(e)}
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def run_all_tests():
|
| 213 |
+
"""Run all LLM tests"""
|
| 214 |
+
results = {}
|
| 215 |
+
# Groq tests
|
| 216 |
+
results["groq_basic"] = test_basic_llm_response("groq")
|
| 217 |
+
results["groq_system_prompt"] = test_llm_with_system_prompt("groq")
|
| 218 |
+
results["groq_graph"] = test_graph_workflow("groq")
|
| 219 |
+
# HuggingFace local tests
|
| 220 |
+
results["huggingface_local_basic"] = test_basic_llm_response("huggingface_local")
|
| 221 |
+
results["huggingface_local_system_prompt"] = test_llm_with_system_prompt("huggingface_local")
|
| 222 |
+
results["huggingface_local_graph"] = test_graph_workflow("huggingface_local")
|
| 223 |
+
return results
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
if __name__ == "__main__":
|
| 227 |
+
test_results = run_all_tests()
|
| 228 |
+
print("\nπ Test Results:")
|
| 229 |
+
for k, v in test_results.items():
|
| 230 |
+
print(f"{k}: {v}")
|
test_local_hf.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""Simple test for local HuggingFace models"""
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
+
|
| 7 |
+
def test_local_model():
|
| 8 |
+
print("π§ͺ Testing Local HuggingFace Model...")
|
| 9 |
+
|
| 10 |
+
# Check device
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
print(f"π₯οΈ Using device: {device}")
|
| 13 |
+
|
| 14 |
+
# Load model
|
| 15 |
+
model_name = "microsoft/DialoGPT-small"
|
| 16 |
+
print(f"π¦ Loading {model_name}...")
|
| 17 |
+
|
| 18 |
+
try:
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 20 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 21 |
+
|
| 22 |
+
if tokenizer.pad_token is None:
|
| 23 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 24 |
+
|
| 25 |
+
print("β
Model loaded successfully!")
|
| 26 |
+
|
| 27 |
+
# Test generation
|
| 28 |
+
text = "Hello, how are you?"
|
| 29 |
+
inputs = tokenizer.encode(text, return_tensors="pt")
|
| 30 |
+
|
| 31 |
+
with torch.no_grad():
|
| 32 |
+
outputs = model.generate(
|
| 33 |
+
inputs,
|
| 34 |
+
max_new_tokens=50,
|
| 35 |
+
do_sample=True,
|
| 36 |
+
temperature=0.7,
|
| 37 |
+
pad_token_id=tokenizer.eos_token_id
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
response = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
| 41 |
+
print(f"π€ Model response: {response}")
|
| 42 |
+
print("β
Local HuggingFace model is working!")
|
| 43 |
+
|
| 44 |
+
return True
|
| 45 |
+
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"β Error: {e}")
|
| 48 |
+
return False
|
| 49 |
+
|
| 50 |
+
if __name__ == "__main__":
|
| 51 |
+
success = test_local_model()
|
| 52 |
+
if success:
|
| 53 |
+
print("\nπ You can now run the main test with local HuggingFace models!")
|
| 54 |
+
else:
|
| 55 |
+
print("\nβ Setup incomplete. Check the error messages above.")
|
validation_json/metadata.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|