Spaces:
Running
Running
Update Space (evaluate main: e4a27243)
Browse files- requirements.txt +1 -1
- squad_v2.py +23 -4
requirements.txt
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
git+https://github.com/huggingface/evaluate@
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/evaluate@e4a2724377909fe2aeb4357e3971e5a569673b39
|
squad_v2.py
CHANGED
|
@@ -13,6 +13,8 @@
|
|
| 13 |
# limitations under the License.
|
| 14 |
""" SQuAD v2 metric. """
|
| 15 |
|
|
|
|
|
|
|
| 16 |
import datasets
|
| 17 |
|
| 18 |
import evaluate
|
|
@@ -87,13 +89,26 @@ Examples:
|
|
| 87 |
"""
|
| 88 |
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 91 |
class SquadV2(evaluate.Metric):
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
return evaluate.MetricInfo(
|
| 94 |
description=_DESCRIPTION,
|
| 95 |
citation=_CITATION,
|
| 96 |
inputs_description=_KWARGS_DESCRIPTION,
|
|
|
|
| 97 |
features=datasets.Features(
|
| 98 |
{
|
| 99 |
"predictions": {
|
|
@@ -113,7 +128,7 @@ class SquadV2(evaluate.Metric):
|
|
| 113 |
reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"],
|
| 114 |
)
|
| 115 |
|
| 116 |
-
def _compute(self, predictions, references
|
| 117 |
no_answer_probabilities = {p["id"]: p["no_answer_probability"] for p in predictions}
|
| 118 |
dataset = [{"paragraphs": [{"qas": references}]}]
|
| 119 |
predictions = {p["id"]: p["prediction_text"] for p in predictions}
|
|
@@ -123,8 +138,12 @@ class SquadV2(evaluate.Metric):
|
|
| 123 |
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
|
| 124 |
|
| 125 |
exact_raw, f1_raw = get_raw_scores(dataset, predictions)
|
| 126 |
-
exact_thresh = apply_no_ans_threshold(
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
out_eval = make_eval_dict(exact_thresh, f1_thresh)
|
| 129 |
|
| 130 |
if has_ans_qids:
|
|
|
|
| 13 |
# limitations under the License.
|
| 14 |
""" SQuAD v2 metric. """
|
| 15 |
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
|
| 18 |
import datasets
|
| 19 |
|
| 20 |
import evaluate
|
|
|
|
| 89 |
"""
|
| 90 |
|
| 91 |
|
| 92 |
+
@dataclass
|
| 93 |
+
class SquadV2Config(evaluate.info.Config):
|
| 94 |
+
|
| 95 |
+
name: str = "default"
|
| 96 |
+
|
| 97 |
+
no_answer_threshold: float = 1.0
|
| 98 |
+
|
| 99 |
+
|
| 100 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 101 |
class SquadV2(evaluate.Metric):
|
| 102 |
+
|
| 103 |
+
CONFIG_CLASS = SquadV2Config
|
| 104 |
+
ALLOWED_CONFIG_NAMES = ["default"]
|
| 105 |
+
|
| 106 |
+
def _info(self, config):
|
| 107 |
return evaluate.MetricInfo(
|
| 108 |
description=_DESCRIPTION,
|
| 109 |
citation=_CITATION,
|
| 110 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 111 |
+
config=config,
|
| 112 |
features=datasets.Features(
|
| 113 |
{
|
| 114 |
"predictions": {
|
|
|
|
| 128 |
reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"],
|
| 129 |
)
|
| 130 |
|
| 131 |
+
def _compute(self, predictions, references):
|
| 132 |
no_answer_probabilities = {p["id"]: p["no_answer_probability"] for p in predictions}
|
| 133 |
dataset = [{"paragraphs": [{"qas": references}]}]
|
| 134 |
predictions = {p["id"]: p["prediction_text"] for p in predictions}
|
|
|
|
| 138 |
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
|
| 139 |
|
| 140 |
exact_raw, f1_raw = get_raw_scores(dataset, predictions)
|
| 141 |
+
exact_thresh = apply_no_ans_threshold(
|
| 142 |
+
exact_raw, no_answer_probabilities, qid_to_has_ans, self.config.no_answer_threshold
|
| 143 |
+
)
|
| 144 |
+
f1_thresh = apply_no_ans_threshold(
|
| 145 |
+
f1_raw, no_answer_probabilities, qid_to_has_ans, self.config.no_answer_threshold
|
| 146 |
+
)
|
| 147 |
out_eval = make_eval_dict(exact_thresh, f1_thresh)
|
| 148 |
|
| 149 |
if has_ans_qids:
|