Spaces:
Running
Running
RobertoBarrosoLuque
commited on
Commit
Β·
fefbd93
1
Parent(s):
5515ef5
Update working verion
Browse files- .pre-commit-config.yaml +0 -2
- assets/Accuracy-precision-recall.png +0 -0
- assets/Accuracy.png +0 -0
- notebooks/02-model-evals.ipynb +0 -0
- src/app.py +370 -0
.pre-commit-config.yaml
CHANGED
|
@@ -5,8 +5,6 @@ repos:
|
|
| 5 |
- id: trailing-whitespace
|
| 6 |
- id: end-of-file-fixer
|
| 7 |
exclude: docs/badges
|
| 8 |
-
- id: check-added-large-files
|
| 9 |
-
args: ["--maxkb=1024"] # allow up to 1MB
|
| 10 |
- id: check-json
|
| 11 |
- id: check-yaml
|
| 12 |
args: ["--unsafe"] # needed for some mkdocs extensions
|
|
|
|
| 5 |
- id: trailing-whitespace
|
| 6 |
- id: end-of-file-fixer
|
| 7 |
exclude: docs/badges
|
|
|
|
|
|
|
| 8 |
- id: check-json
|
| 9 |
- id: check-yaml
|
| 10 |
args: ["--unsafe"] # needed for some mkdocs extensions
|
assets/Accuracy-precision-recall.png
CHANGED
|
|
assets/Accuracy.png
CHANGED
|
|
notebooks/02-model-evals.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
src/app.py
CHANGED
|
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import Optional
|
| 5 |
+
import os
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import io
|
| 9 |
+
|
| 10 |
+
from src.modules.vlm_inference import analyze_product_image
|
| 11 |
+
from src.modules.data_processing import pil_to_base64
|
| 12 |
+
from src.modules.evals import run_inference_on_dataframe
|
| 13 |
+
|
| 14 |
+
# Constants
|
| 15 |
+
AVAILABLE_MODELS = {
|
| 16 |
+
"Qwen2.5-VL-32B": "accounts/fireworks/models/qwen2p5-vl-32b-instruct",
|
| 17 |
+
"Llama Maverick": "accounts/fireworks/models/llama4-maverick-instruct-basic",
|
| 18 |
+
"Llama Scout": "accounts/fireworks/models/llama4-scout-instruct-basic",
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
EXAMPLE_IMAGES_DIR = Path("data/examples")
|
| 22 |
+
MAX_CONCURRENT_REQUESTS = 10
|
| 23 |
+
|
| 24 |
+
FILE_PATH = Path(__file__).parents[1]
|
| 25 |
+
ASSETS_PATH = FILE_PATH / "assets"
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def analyze_single_image(
|
| 29 |
+
image_input, model_name: str, api_key: Optional[str] = None
|
| 30 |
+
) -> tuple[str, str, str, str]:
|
| 31 |
+
"""
|
| 32 |
+
Process a single product image and return classification results
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
image_input: PIL Image or file path
|
| 36 |
+
model_name: Selected model name
|
| 37 |
+
api_key: Optional API key override
|
| 38 |
+
|
| 39 |
+
Returns:
|
| 40 |
+
tuple: (master_category, gender, sub_category, description)
|
| 41 |
+
"""
|
| 42 |
+
if image_input is None:
|
| 43 |
+
return "No image provided", "", "", ""
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
# Convert PIL Image to base64
|
| 47 |
+
img_b64 = pil_to_base64(image_input)
|
| 48 |
+
|
| 49 |
+
# Determine provider from model name
|
| 50 |
+
model_id = AVAILABLE_MODELS[model_name]
|
| 51 |
+
|
| 52 |
+
# Get API key from environment if not provided
|
| 53 |
+
if api_key is None:
|
| 54 |
+
api_key = os.getenv("FIREWORKS_API_KEY")
|
| 55 |
+
|
| 56 |
+
result = analyze_product_image(
|
| 57 |
+
image_url=img_b64, model=model_id, api_key=api_key, provider="Fireworks"
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Format results
|
| 61 |
+
master_cat = result.master_category
|
| 62 |
+
gender = result.gender
|
| 63 |
+
sub_cat = result.sub_category
|
| 64 |
+
description = result.description
|
| 65 |
+
|
| 66 |
+
return master_cat, gender, sub_cat, description
|
| 67 |
+
|
| 68 |
+
except Exception as e:
|
| 69 |
+
error_msg = f"Error: {str(e)}"
|
| 70 |
+
return error_msg, "", "", ""
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def process_batch_dataset(
|
| 74 |
+
csv_file,
|
| 75 |
+
model_name: str,
|
| 76 |
+
api_key: Optional[str] = None,
|
| 77 |
+
max_concurrent: int = MAX_CONCURRENT_REQUESTS,
|
| 78 |
+
) -> tuple[pd.DataFrame, str]:
|
| 79 |
+
"""
|
| 80 |
+
Process uploaded CSV dataset with product images
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
csv_file: Uploaded CSV file with image data
|
| 84 |
+
model_name: Selected model name
|
| 85 |
+
api_key: Optional API key override
|
| 86 |
+
max_concurrent: Max concurrent API requests
|
| 87 |
+
|
| 88 |
+
Returns:
|
| 89 |
+
tuple: (results_dataframe, summary_statistics)
|
| 90 |
+
"""
|
| 91 |
+
if csv_file is None:
|
| 92 |
+
return None, "No dataset uploaded"
|
| 93 |
+
|
| 94 |
+
try:
|
| 95 |
+
# Load dataset
|
| 96 |
+
df = pd.read_csv(csv_file.name)
|
| 97 |
+
|
| 98 |
+
# Validate required columns
|
| 99 |
+
required_cols = ["id", "image"]
|
| 100 |
+
if not all(col in df.columns for col in required_cols):
|
| 101 |
+
return None, f"Dataset must contain columns: {required_cols}"
|
| 102 |
+
|
| 103 |
+
# Determine provider
|
| 104 |
+
model_id = AVAILABLE_MODELS[model_name]
|
| 105 |
+
|
| 106 |
+
# Get API key
|
| 107 |
+
if api_key is None:
|
| 108 |
+
api_key = os.getenv("FIREWORKS_API_KEY")
|
| 109 |
+
|
| 110 |
+
# Run batch inference
|
| 111 |
+
results_df = run_inference_on_dataframe(
|
| 112 |
+
df=df,
|
| 113 |
+
model=model_id,
|
| 114 |
+
api_key=api_key,
|
| 115 |
+
provider="Fireworks",
|
| 116 |
+
max_concurrent_requests=max_concurrent,
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
# Generate summary statistics
|
| 120 |
+
total_processed = len(results_df)
|
| 121 |
+
successful = results_df["pred_masterCategory"].notna().sum()
|
| 122 |
+
failed = total_processed - successful
|
| 123 |
+
|
| 124 |
+
summary = f"""
|
| 125 |
+
Batch Processing Complete:
|
| 126 |
+
- Total images: {total_processed}
|
| 127 |
+
- Successfully classified: {successful}
|
| 128 |
+
- Failed: {failed}
|
| 129 |
+
- Success rate: {(successful / total_processed) * 100:.1f}%
|
| 130 |
+
"""
|
| 131 |
+
|
| 132 |
+
return results_df, summary
|
| 133 |
+
|
| 134 |
+
except Exception as e:
|
| 135 |
+
return None, f"Error processing dataset: {str(e)}"
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def load_example_data() -> pd.DataFrame:
|
| 139 |
+
"""Load example product images from HuggingFace dataset"""
|
| 140 |
+
# Load dataset from HuggingFace
|
| 141 |
+
ds = load_dataset("ceyda/fashion-products-small")
|
| 142 |
+
df = ds["train"].to_pandas()
|
| 143 |
+
|
| 144 |
+
# Select 20 random samples
|
| 145 |
+
sample_df = df.sample(n=20, random_state=42).reset_index(drop=True)
|
| 146 |
+
|
| 147 |
+
# Keep only relevant columns for display
|
| 148 |
+
display_df = sample_df[["id", "masterCategory", "gender", "subCategory"]].copy()
|
| 149 |
+
display_df["image_data"] = sample_df["image"]
|
| 150 |
+
|
| 151 |
+
return display_df
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def get_image_from_row(examples_df: pd.DataFrame, evt: gr.SelectData) -> Image.Image:
|
| 155 |
+
"""Get PIL Image from selected row in examples table"""
|
| 156 |
+
if evt.index is None or len(evt.index) == 0:
|
| 157 |
+
return None
|
| 158 |
+
|
| 159 |
+
row_idx = evt.index[0]
|
| 160 |
+
if row_idx >= len(examples_df):
|
| 161 |
+
return None
|
| 162 |
+
|
| 163 |
+
# Get the image data from the stored row
|
| 164 |
+
image_data = examples_df.iloc[row_idx]["image_data"]
|
| 165 |
+
|
| 166 |
+
# Convert to PIL Image if it's a dict (from HuggingFace datasets)
|
| 167 |
+
if isinstance(image_data, dict):
|
| 168 |
+
if "bytes" in image_data:
|
| 169 |
+
return Image.open(io.BytesIO(image_data["bytes"]))
|
| 170 |
+
elif "path" in image_data:
|
| 171 |
+
return Image.open(image_data["path"])
|
| 172 |
+
|
| 173 |
+
# Return as-is if already a PIL Image
|
| 174 |
+
return image_data
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def create_demo_interface():
|
| 178 |
+
"""
|
| 179 |
+
Create the Gradio interface with custom theme and layout
|
| 180 |
+
"""
|
| 181 |
+
# Load example data at startup
|
| 182 |
+
example_data = load_example_data()
|
| 183 |
+
|
| 184 |
+
with gr.Blocks(
|
| 185 |
+
title="Product Catalog Cleansing",
|
| 186 |
+
theme=gr.themes.Soft(),
|
| 187 |
+
) as demo:
|
| 188 |
+
# Store examples dataframe in state
|
| 189 |
+
examples_state = gr.State(value=example_data)
|
| 190 |
+
|
| 191 |
+
# Header
|
| 192 |
+
gr.Markdown(
|
| 193 |
+
"""
|
| 194 |
+
# Product Catalog Cleansing
|
| 195 |
+
|
| 196 |
+
Automate product classification, attribute extraction, and catalog enrichment
|
| 197 |
+
using state-of-the-art multimodal AI. Fine-tuned SOTA OSS models on FireworksAI.
|
| 198 |
+
"""
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
# Model Selection (shared across tabs)
|
| 202 |
+
with gr.Row():
|
| 203 |
+
with gr.Column(scale=1):
|
| 204 |
+
gr.Markdown("### Powered by")
|
| 205 |
+
gr.Image(
|
| 206 |
+
value=str(ASSETS_PATH / "fireworks_logo.png"),
|
| 207 |
+
height=60,
|
| 208 |
+
width=200,
|
| 209 |
+
show_label=False,
|
| 210 |
+
show_download_button=False,
|
| 211 |
+
container=False,
|
| 212 |
+
show_fullscreen_button=False,
|
| 213 |
+
show_share_button=False,
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
model_selector = gr.Dropdown(
|
| 217 |
+
choices=list(AVAILABLE_MODELS.keys()),
|
| 218 |
+
value=list(AVAILABLE_MODELS.keys())[0],
|
| 219 |
+
label="Select Model",
|
| 220 |
+
)
|
| 221 |
+
api_key_input = gr.Textbox(
|
| 222 |
+
label="API Key",
|
| 223 |
+
type="password",
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
with gr.Tabs():
|
| 227 |
+
with gr.TabItem("πΈ Single Image Analysis"):
|
| 228 |
+
gr.Markdown("### Upload a product image for instant classification")
|
| 229 |
+
|
| 230 |
+
with gr.Row():
|
| 231 |
+
# Left column - Input
|
| 232 |
+
with gr.Column(scale=1):
|
| 233 |
+
image_input = gr.Image(
|
| 234 |
+
label="Upload Product Image", type="pil", height=400
|
| 235 |
+
)
|
| 236 |
+
analyze_btn = gr.Button(
|
| 237 |
+
"π Analyze Product", variant="primary", size="lg"
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
# Right column - Results
|
| 241 |
+
with gr.Column(scale=1):
|
| 242 |
+
gr.Markdown("### Classification Results")
|
| 243 |
+
master_category_output = gr.Textbox(
|
| 244 |
+
label="Master Category", interactive=False
|
| 245 |
+
)
|
| 246 |
+
gender_output = gr.Textbox(label="Gender", interactive=False)
|
| 247 |
+
subcategory_output = gr.Textbox(
|
| 248 |
+
label="Sub-Category", interactive=False
|
| 249 |
+
)
|
| 250 |
+
description_output = gr.Textbox(
|
| 251 |
+
label="AI-Generated Description", interactive=False, lines=4
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
# Example Products Table
|
| 255 |
+
gr.Markdown("### π Example Products (Click a row to load image)")
|
| 256 |
+
examples_table = gr.Dataframe(
|
| 257 |
+
value=example_data[
|
| 258 |
+
["id", "masterCategory", "gender", "subCategory"]
|
| 259 |
+
],
|
| 260 |
+
label="Select a product to analyze",
|
| 261 |
+
interactive=False,
|
| 262 |
+
wrap=True,
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
# Wire up single image analysis
|
| 266 |
+
analyze_btn.click(
|
| 267 |
+
fn=analyze_single_image,
|
| 268 |
+
inputs=[image_input, model_selector, api_key_input],
|
| 269 |
+
outputs=[
|
| 270 |
+
master_category_output,
|
| 271 |
+
gender_output,
|
| 272 |
+
subcategory_output,
|
| 273 |
+
description_output,
|
| 274 |
+
],
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
# Allow clicking table row to load image
|
| 278 |
+
examples_table.select(
|
| 279 |
+
fn=get_image_from_row,
|
| 280 |
+
inputs=[examples_state],
|
| 281 |
+
outputs=[image_input],
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
with gr.Row():
|
| 285 |
+
# Left - Upload
|
| 286 |
+
with gr.Column(scale=1):
|
| 287 |
+
dataset_upload = gr.File(
|
| 288 |
+
label="Upload Dataset (CSV)", file_types=[".csv"]
|
| 289 |
+
)
|
| 290 |
+
concurrent_slider = gr.Slider(
|
| 291 |
+
minimum=1,
|
| 292 |
+
maximum=50,
|
| 293 |
+
value=10,
|
| 294 |
+
step=1,
|
| 295 |
+
label="Concurrent Requests",
|
| 296 |
+
info="Higher = faster but may hit rate limits",
|
| 297 |
+
)
|
| 298 |
+
process_btn = gr.Button(
|
| 299 |
+
"β‘ Process Dataset", variant="primary", size="lg"
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
# Right - Results summary
|
| 303 |
+
with gr.Column(scale=1):
|
| 304 |
+
summary_output = gr.Textbox(
|
| 305 |
+
label="Processing Summary", interactive=False, lines=8
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
# Results dataframe
|
| 309 |
+
results_dataframe = gr.Dataframe(
|
| 310 |
+
label="Classification Results", interactive=False, wrap=True
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
# Wire up batch processing
|
| 314 |
+
process_btn.click(
|
| 315 |
+
fn=process_batch_dataset,
|
| 316 |
+
inputs=[
|
| 317 |
+
dataset_upload,
|
| 318 |
+
model_selector,
|
| 319 |
+
api_key_input,
|
| 320 |
+
concurrent_slider,
|
| 321 |
+
],
|
| 322 |
+
outputs=[results_dataframe, summary_output],
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
# Tab 3: Model Evaluation (show uploaded charts)
|
| 326 |
+
with gr.TabItem("π Model Performance"):
|
| 327 |
+
gr.Markdown(
|
| 328 |
+
"""
|
| 329 |
+
### Evaluation Results on Fashion Product Dataset
|
| 330 |
+
|
| 331 |
+
Model fine tuned on over 14k images and tested on a validation set of 1000 images.
|
| 332 |
+
|
| 333 |
+
Images pulled from [HuggingFace Datasets](https://huggingface.co/datasets/ceyda/fashion-products-small)
|
| 334 |
+
"""
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
# Display uploaded evaluation charts
|
| 338 |
+
with gr.Row():
|
| 339 |
+
gr.Image(
|
| 340 |
+
value=str(ASSETS_PATH / "Accuracy.png"),
|
| 341 |
+
interactive=False,
|
| 342 |
+
show_label=False,
|
| 343 |
+
)
|
| 344 |
+
gr.Image(
|
| 345 |
+
value=str(ASSETS_PATH / "Accuracy-precision-recall.png"),
|
| 346 |
+
interactive=False,
|
| 347 |
+
show_label=False,
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
gr.Markdown(
|
| 351 |
+
"""
|
| 352 |
+
**Key Findings:**
|
| 353 |
+
- Qwen2.5-VL-72B-SFT achieves >95% accuracy on masterCategory
|
| 354 |
+
- Fine-tuned model shows 18% improvement on subCategory vs base model
|
| 355 |
+
- All models maintain >90% precision and recall on gender classification
|
| 356 |
+
"""
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
return demo
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
if __name__ == "__main__":
|
| 363 |
+
# Launch demo
|
| 364 |
+
demo = create_demo_interface()
|
| 365 |
+
demo.launch(
|
| 366 |
+
server_name="0.0.0.0",
|
| 367 |
+
server_port=7860,
|
| 368 |
+
share=False,
|
| 369 |
+
show_error=True,
|
| 370 |
+
)
|