Spaces:
Build error
Build error
| from datasets import load_dataset | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForCausalLM, | |
| TrainingArguments, | |
| Trainer, | |
| DataCollatorForLanguageModeling | |
| ) | |
| import torch | |
| import os | |
| model_output_path = "./model/medical_llama_3b" | |
| os.makedirs(model_output_path, exist_ok=True) | |
| model_name = "nvidia/Meta-Llama-3.2-3B-Instruct-ONNX-INT4" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) | |
| dataset = load_dataset("json", data_files="medical_dataset.json") | |
| def preprocess_function(examples): | |
| return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512) | |
| tokenized_dataset = dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| remove_columns=dataset["train"].column_names | |
| ) | |
| training_args = TrainingArguments( | |
| output_dir="./model/medical_llama_3b/checkpoints", | |
| per_device_train_batch_size=4, | |
| gradient_accumulation_steps=4, | |
| num_train_epochs=3, | |
| learning_rate=2e-5, | |
| fp16=True, | |
| save_steps=500, | |
| logging_steps=100, | |
| ) | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=tokenized_dataset["train"], | |
| data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False), | |
| ) | |
| trainer.train() | |
| model.save_pretrained(model_output_path) | |
| tokenizer.save_pretrained(model_output_path) | |
| print(f"Model and tokenizer saved to: {model_output_path}") |