Spaces:
Build error
Build error
fullstuckdev
commited on
Commit
·
ce875c8
1
Parent(s):
93374aa
update script
Browse files
app.py
CHANGED
|
@@ -93,48 +93,77 @@ async def root():
|
|
| 93 |
async def generate_text(request: GenerateRequest):
|
| 94 |
"""
|
| 95 |
Generate medical text based on input prompt
|
| 96 |
-
|
| 97 |
-
Parameters:
|
| 98 |
-
- text: Input text prompt
|
| 99 |
-
- max_length: Maximum length of generated text
|
| 100 |
-
- temperature: Sampling temperature (0.0 to 1.0)
|
| 101 |
-
- num_return_sequences: Number of sequences to generate
|
| 102 |
-
|
| 103 |
-
Returns:
|
| 104 |
-
- List of generated text sequences
|
| 105 |
"""
|
| 106 |
try:
|
|
|
|
| 107 |
if model is None or tokenizer is None:
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
max_length=request.max_length
|
| 116 |
-
).to(model.device)
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
return GenerateResponse(generated_text=generated_texts)
|
| 134 |
|
|
|
|
|
|
|
| 135 |
except Exception as e:
|
| 136 |
-
logger.error(f"
|
| 137 |
-
raise HTTPException(
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
@app.get("/health", tags=["Health"])
|
| 140 |
async def health_check():
|
|
@@ -297,25 +326,80 @@ def init_model():
|
|
| 297 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 298 |
logger.info(f"Loading model on device: {device}")
|
| 299 |
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
|
|
|
|
| 318 |
return tokenizer, model
|
|
|
|
| 319 |
except Exception as e:
|
| 320 |
logger.error(f"Model initialization error: {str(e)}")
|
| 321 |
-
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
async def generate_text(request: GenerateRequest):
|
| 94 |
"""
|
| 95 |
Generate medical text based on input prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
"""
|
| 97 |
try:
|
| 98 |
+
# Check if model is loaded
|
| 99 |
if model is None or tokenizer is None:
|
| 100 |
+
logger.error("Model or tokenizer not initialized")
|
| 101 |
+
raise HTTPException(
|
| 102 |
+
status_code=500,
|
| 103 |
+
detail="Model not loaded. Please check if model was initialized correctly."
|
| 104 |
+
)
|
| 105 |
|
| 106 |
+
logger.info(f"Generating text for input: {request.text[:50]}...")
|
| 107 |
+
|
| 108 |
+
# Log device information
|
| 109 |
+
device_info = f"Using device: {model.device}"
|
| 110 |
+
logger.info(device_info)
|
|
|
|
|
|
|
| 111 |
|
| 112 |
+
# Tokenize input
|
| 113 |
+
try:
|
| 114 |
+
inputs = tokenizer(
|
| 115 |
+
request.text,
|
| 116 |
+
return_tensors="pt",
|
| 117 |
+
padding=True,
|
| 118 |
+
truncation=True,
|
| 119 |
+
max_length=request.max_length
|
| 120 |
)
|
| 121 |
+
logger.info("Input tokenized successfully")
|
| 122 |
+
|
| 123 |
+
# Move inputs to correct device
|
| 124 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 125 |
+
|
| 126 |
+
except Exception as e:
|
| 127 |
+
logger.error(f"Tokenization error: {str(e)}")
|
| 128 |
+
raise HTTPException(status_code=500, detail=f"Tokenization failed: {str(e)}")
|
| 129 |
+
|
| 130 |
+
# Generate text
|
| 131 |
+
try:
|
| 132 |
+
with torch.no_grad():
|
| 133 |
+
generated_ids = model.generate(
|
| 134 |
+
inputs.input_ids,
|
| 135 |
+
max_length=request.max_length,
|
| 136 |
+
num_return_sequences=request.num_return_sequences,
|
| 137 |
+
temperature=request.temperature,
|
| 138 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 139 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 140 |
+
)
|
| 141 |
+
logger.info("Text generated successfully")
|
| 142 |
+
except Exception as e:
|
| 143 |
+
logger.error(f"Generation error: {str(e)}")
|
| 144 |
+
raise HTTPException(status_code=500, detail=f"Text generation failed: {str(e)}")
|
| 145 |
|
| 146 |
+
# Decode generated text
|
| 147 |
+
try:
|
| 148 |
+
generated_texts = [
|
| 149 |
+
tokenizer.decode(g, skip_special_tokens=True)
|
| 150 |
+
for g in generated_ids
|
| 151 |
+
]
|
| 152 |
+
logger.info("Text decoded successfully")
|
| 153 |
+
except Exception as e:
|
| 154 |
+
logger.error(f"Decoding error: {str(e)}")
|
| 155 |
+
raise HTTPException(status_code=500, detail=f"Text decoding failed: {str(e)}")
|
| 156 |
|
| 157 |
return GenerateResponse(generated_text=generated_texts)
|
| 158 |
|
| 159 |
+
except HTTPException as he:
|
| 160 |
+
raise he
|
| 161 |
except Exception as e:
|
| 162 |
+
logger.error(f"Unexpected error: {str(e)}")
|
| 163 |
+
raise HTTPException(
|
| 164 |
+
status_code=500,
|
| 165 |
+
detail=f"An unexpected error occurred: {str(e)}"
|
| 166 |
+
)
|
| 167 |
|
| 168 |
@app.get("/health", tags=["Health"])
|
| 169 |
async def health_check():
|
|
|
|
| 326 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 327 |
logger.info(f"Loading model on device: {device}")
|
| 328 |
|
| 329 |
+
model_name = "nvidia/Meta-Llama-3.2-3B-Instruct-ONNX-INT4"
|
| 330 |
+
|
| 331 |
+
# Load tokenizer
|
| 332 |
+
logger.info("Loading tokenizer...")
|
| 333 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 334 |
+
model_name,
|
| 335 |
+
cache_dir="/app/cache",
|
| 336 |
+
trust_remote_code=True
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
# Add padding token if not present
|
| 340 |
+
if tokenizer.pad_token is None:
|
| 341 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 342 |
+
|
| 343 |
+
logger.info("Loading model...")
|
| 344 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 345 |
+
model_name,
|
| 346 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 347 |
+
device_map="auto",
|
| 348 |
+
cache_dir="/app/cache",
|
| 349 |
+
trust_remote_code=True
|
| 350 |
+
)
|
| 351 |
|
| 352 |
+
logger.info(f"Model loaded successfully on {device}")
|
| 353 |
return tokenizer, model
|
| 354 |
+
|
| 355 |
except Exception as e:
|
| 356 |
logger.error(f"Model initialization error: {str(e)}")
|
| 357 |
+
raise
|
| 358 |
+
|
| 359 |
+
@app.get("/model-status", tags=["Health"])
|
| 360 |
+
async def model_status():
|
| 361 |
+
"""
|
| 362 |
+
Get detailed model status
|
| 363 |
+
"""
|
| 364 |
+
try:
|
| 365 |
+
model_info = {
|
| 366 |
+
"model_loaded": model is not None,
|
| 367 |
+
"tokenizer_loaded": tokenizer is not None,
|
| 368 |
+
"model_device": str(model.device) if model else None,
|
| 369 |
+
"gpu_available": torch.cuda.is_available(),
|
| 370 |
+
"cuda_device_count": torch.cuda.device_count() if torch.cuda.is_available() else 0,
|
| 371 |
+
"cuda_device_name": torch.cuda.get_device_name(0) if torch.cuda.is_available() else None,
|
| 372 |
+
"model_type": type(model).__name__ if model else None,
|
| 373 |
+
"tokenizer_type": type(tokenizer).__name__ if tokenizer else None,
|
| 374 |
+
}
|
| 375 |
+
|
| 376 |
+
if model is not None:
|
| 377 |
+
try:
|
| 378 |
+
# Test tokenizer
|
| 379 |
+
test_input = tokenizer("test", return_tensors="pt")
|
| 380 |
+
model_info["tokenizer_working"] = True
|
| 381 |
+
except Exception as e:
|
| 382 |
+
model_info["tokenizer_working"] = False
|
| 383 |
+
model_info["tokenizer_error"] = str(e)
|
| 384 |
+
|
| 385 |
+
try:
|
| 386 |
+
# Test model forward pass
|
| 387 |
+
with torch.no_grad():
|
| 388 |
+
test_output = model.generate(
|
| 389 |
+
test_input.input_ids.to(model.device),
|
| 390 |
+
max_length=10
|
| 391 |
+
)
|
| 392 |
+
model_info["model_working"] = True
|
| 393 |
+
except Exception as e:
|
| 394 |
+
model_info["model_working"] = False
|
| 395 |
+
model_info["model_error"] = str(e)
|
| 396 |
+
|
| 397 |
+
return model_info
|
| 398 |
+
|
| 399 |
+
except Exception as e:
|
| 400 |
+
logger.error(f"Error checking model status: {str(e)}")
|
| 401 |
+
return {
|
| 402 |
+
"error": str(e),
|
| 403 |
+
"model_loaded": model is not None,
|
| 404 |
+
"tokenizer_loaded": tokenizer is not None
|
| 405 |
+
}
|