File size: 6,755 Bytes
69f4f56 1d6ec77 3cddaf8 69f4f56 e7cbaa4 69f4f56 3cddaf8 69f4f56 3cddaf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
---
title: SAM2 Video Background Remover
emoji: ๐ฅ
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
license: apache-2.0
tags:
- computer-vision
- video
- segmentation
- sam2
- background-removal
- object-tracking
---
# ๐ฅ SAM2 Video Background Remover
Remove backgrounds from videos by tracking objects using Meta's **Segment Anything Model 2 (SAM2)**.
## Features
โจ **Background Removal**: Automatically remove backgrounds and keep only tracked objects
๐ฏ **Object Tracking**: Track multiple objects across video frames
๐ฅ๏ธ **Interactive UI**: Easy-to-use Gradio interface
๐ **REST API**: Programmatic access via API endpoints
โก **GPU Accelerated**: Fast processing with CUDA support
## How It Works
SAM2 is a foundation model for video segmentation that can:
1. **Segment objects** based on point or box annotations
2. **Track objects** automatically across all video frames
3. **Handle occlusions** and object reappearance
4. **Process multiple objects** simultaneously
## Usage
### ๐ฑ๏ธ Simple Mode (Web UI)
1. Upload your video
2. Specify X,Y coordinates of the object you want to track (from first frame)
3. Click "Process Video"
4. Download the result with background removed!
**Example**: For a 640x480 video with a person in the center, use X=320, Y=240
### ๐ง Advanced Mode (JSON Annotations)
For more control, use JSON annotations:
```json
[
{
"frame_idx": 0,
"object_id": 1,
"points": [[320, 240]],
"labels": [1]
}
]
```
**Parameters**:
- `frame_idx`: Frame number to annotate (0 = first frame)
- `object_id`: Unique ID for each object (1, 2, 3, ...)
- `points`: List of [x, y] coordinates on the object
- `labels`: `1` for foreground point, `0` for background point
### ๐ก API Usage
You can call this Space programmatically using the Gradio Client:
#### Python Example
```python
from gradio_client import Client
import json
# Connect to the Space
client = Client("YOUR_USERNAME/sam2-video-bg-remover")
# Define what to track
annotations = [
{
"frame_idx": 0,
"object_id": 1,
"points": [[320, 240]], # x, y coordinates
"labels": [1] # 1 = foreground
}
]
# Process video
result = client.predict(
video_file="./input_video.mp4",
annotations_json=json.dumps(annotations),
remove_background=True,
max_frames=300, # Limit frames for faster processing
api_name="/segment_video_api"
)
print(f"Output video saved to: {result}")
```
#### Track Multiple Objects
```python
annotations = [
# First object (person)
{
"frame_idx": 0,
"object_id": 1,
"points": [[320, 240]],
"labels": [1]
},
# Second object (ball)
{
"frame_idx": 0,
"object_id": 2,
"points": [[500, 300]],
"labels": [1]
}
]
```
#### Refine Segmentation with Background Points
```python
annotations = [
{
"frame_idx": 0,
"object_id": 1,
"points": [
[320, 240], # Point ON the object
[100, 100] # Point on background to exclude
],
"labels": [1, 0] # 1=foreground, 0=background
}
]
```
### ๐ HTTP API
You can also call the API directly via HTTP:
```bash
curl -X POST https://YOUR_USERNAME-sam2-video-bg-remover.hf.space/api/predict \
-F "video_file=@input_video.mp4" \
-F 'annotations_json=[{"frame_idx":0,"object_id":1,"points":[[320,240]],"labels":[1]}]' \
-F "remove_background=true" \
-F "max_frames=300"
```
## Parameters
| Parameter | Type | Default | Description |
|-----------|------|---------|-------------|
| `video_file` | File | - | Input video file (required) |
| `annotations_json` | String | - | JSON array of annotations (required) |
| `remove_background` | Boolean | `true` | Remove background or just highlight objects |
| `max_frames` | Integer | `null` | Limit frames for faster processing |
## Tips & Best Practices
### ๐ฏ Getting Good Results
1. **Choose Clear Points**: Click on the center/most distinctive part of your object
2. **Add Multiple Points**: For complex objects, add 2-3 points on different parts
3. **Use Background Points**: Add points with `label: 0` on areas you DON'T want
4. **Annotate Key Frames**: If object changes significantly, add annotations on multiple frames
### โก Performance Tips
1. **Limit Frames**: Use `max_frames` parameter for long videos
2. **Use Smaller Model**: Default is `sam2.1-hiera-tiny` for speed
3. **Process Shorter Clips**: Split long videos into segments
### ๐ Troubleshooting
| Issue | Solution |
|-------|----------|
| Object not tracked | Add more points on different parts of the object |
| Background leakage | Add background points with `label: 0` |
| Slow processing | Reduce `max_frames` or use a shorter video |
| Wrong object tracked | Be more precise with point coordinates |
## Model Information
This Space uses **facebook/sam2.1-hiera-tiny** for efficient processing. Other available models:
- `facebook/sam2.1-hiera-tiny` - Fastest, good quality โก
- `facebook/sam2.1-hiera-small` - Balanced
- `facebook/sam2.1-hiera-base-plus` - Higher quality
- `facebook/sam2.1-hiera-large` - Best quality, slower ๐ฏ
## Use Cases
- ๐ฌ **Video Production**: Remove backgrounds for green screen effects
- ๐ **Sports Analysis**: Isolate athletes for motion analysis
- ๐ฎ **Content Creation**: Extract game characters or objects
- ๐ฌ **Research**: Track objects in scientific videos
- ๐ฑ **Social Media**: Create engaging content with background removal
## Limitations
- Video length affects processing time (longer = slower)
- GPU recommended for videos > 10 seconds
- Very fast-moving objects may require multiple annotations
- Extreme lighting changes can affect tracking quality
## Citation
If you use this Space, please cite the SAM2 paper:
```bibtex
@article{ravi2024sam2,
title={Segment Anything in Images and Videos},
author={Ravi, Nikhila and Gabeur, Valentin and Hu, Yuan-Ting and Hu, Ronghang and Ryali, Chaitanya and Ma, Tengyu and Khedr, Haitham and R{\"a}dle, Roman and Rolland, Chloe and Gustafson, Laura and others},
journal={arXiv preprint arXiv:2408.00714},
year={2024}
}
```
## License
Apache 2.0
## Links
- ๐ [SAM2 Documentation](https://huggingface.co/docs/transformers/model_doc/sam2_video)
- ๐ค [Model on Hugging Face](https://huggingface.co/facebook/sam2.1-hiera-tiny)
- ๐ [Research Paper](https://arxiv.org/abs/2408.00714)
- ๐ป [Original Repository](https://github.com/facebookresearch/segment-anything-2)
---
Built with โค๏ธ using [Transformers](https://github.com/huggingface/transformers) and [Gradio](https://gradio.app)
|