Spaces:
Sleeping
Sleeping
v_gonghuilin
commited on
Commit
·
ea1186f
1
Parent(s):
194cca8
Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,544 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import argparse
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def num_floating_point_operations(args):
|
| 6 |
+
def calculate_layer_counts():
|
| 7 |
+
"""Calculate the number of attention, Mamba, and MLP layers."""
|
| 8 |
+
if args.hybrid_override_pattern:
|
| 9 |
+
counts = {"M": 0, "*": 0, "-": 0}
|
| 10 |
+
for layer_type in args.hybrid_override_pattern:
|
| 11 |
+
if layer_type in counts:
|
| 12 |
+
counts[layer_type] += 1
|
| 13 |
+
return counts["*"], counts["M"], counts["-"]
|
| 14 |
+
else:
|
| 15 |
+
num_attn_layers = round(args.num_layers * args.hybrid_attention_ratio)
|
| 16 |
+
num_mlp_layers = round(args.num_layers * args.hybrid_mlp_ratio)
|
| 17 |
+
num_mamba_layers = args.num_layers - num_attn_layers - num_mlp_layers
|
| 18 |
+
return num_attn_layers, num_mamba_layers, num_mlp_layers
|
| 19 |
+
|
| 20 |
+
def mlp_layer_flops(batch_size, seq_len, hidden_size, expansion=4.0, swiglu=False):
|
| 21 |
+
"""Calculate FLOPs for an MLP layer."""
|
| 22 |
+
scale_factor = 3.0 / 2.0 if swiglu else 1.0
|
| 23 |
+
return 4 * expansion * scale_factor * batch_size * seq_len * hidden_size**2
|
| 24 |
+
|
| 25 |
+
def attn_layer_flops(
|
| 26 |
+
batch_size,
|
| 27 |
+
seq_len,
|
| 28 |
+
hidden_size,
|
| 29 |
+
num_heads,
|
| 30 |
+
gqa=True,
|
| 31 |
+
gqa_groups=8,
|
| 32 |
+
kv_channels=None,
|
| 33 |
+
):
|
| 34 |
+
"""Calculate FLOPs for an attention layer."""
|
| 35 |
+
p = (kv_channels * num_heads / hidden_size) if kv_channels else 1
|
| 36 |
+
g = gqa_groups if gqa else num_heads
|
| 37 |
+
return (
|
| 38 |
+
4
|
| 39 |
+
* batch_size
|
| 40 |
+
* seq_len
|
| 41 |
+
* hidden_size
|
| 42 |
+
* p
|
| 43 |
+
* (hidden_size + (hidden_size * (g / num_heads)) + (seq_len / 2))
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
def mamba_layer_flops(
|
| 47 |
+
batch_size, seq_len, hidden_size, state_dim=16, head_dim=64, num_groups=1
|
| 48 |
+
):
|
| 49 |
+
"""Calculate FLOPs for a Mamba layer."""
|
| 50 |
+
# Note (rwaleffe): flops estimate for scan should be updated based on new SSD kernels,
|
| 51 |
+
# but small percent of overall layer flops
|
| 52 |
+
d_in = 2 * hidden_size
|
| 53 |
+
nheads = d_in // head_dim
|
| 54 |
+
return (
|
| 55 |
+
(
|
| 56 |
+
2
|
| 57 |
+
* batch_size
|
| 58 |
+
* seq_len
|
| 59 |
+
* hidden_size
|
| 60 |
+
* (2 * d_in + 2 * num_groups * state_dim + nheads)
|
| 61 |
+
) # in_proj
|
| 62 |
+
+ (7 * batch_size * seq_len * d_in * state_dim) # scan
|
| 63 |
+
+ (2 * batch_size * seq_len * d_in * hidden_size) # out_proj
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
def hybrid_flops(
|
| 67 |
+
batch_size,
|
| 68 |
+
seq_len,
|
| 69 |
+
hidden_size,
|
| 70 |
+
num_attn_layers,
|
| 71 |
+
num_mamba_layers,
|
| 72 |
+
num_mlp_layers,
|
| 73 |
+
mamba_state_dim=128,
|
| 74 |
+
mamba_head_dim=64,
|
| 75 |
+
mamba_num_groups=8,
|
| 76 |
+
num_attn_heads=32,
|
| 77 |
+
gqa=True,
|
| 78 |
+
gqa_groups=8,
|
| 79 |
+
kv_channels=None,
|
| 80 |
+
mlp_expansion=4.0,
|
| 81 |
+
swiglu=False,
|
| 82 |
+
vocab_size=256000,
|
| 83 |
+
):
|
| 84 |
+
"""Calculate total FLOPs for the hybrid model."""
|
| 85 |
+
flops_fwd = (
|
| 86 |
+
num_attn_layers
|
| 87 |
+
* attn_layer_flops(
|
| 88 |
+
batch_size,
|
| 89 |
+
seq_len,
|
| 90 |
+
hidden_size,
|
| 91 |
+
num_attn_heads,
|
| 92 |
+
gqa,
|
| 93 |
+
gqa_groups,
|
| 94 |
+
kv_channels,
|
| 95 |
+
)
|
| 96 |
+
+ num_mlp_layers
|
| 97 |
+
* mlp_layer_flops(batch_size, seq_len, hidden_size, mlp_expansion, swiglu)
|
| 98 |
+
+ num_mamba_layers
|
| 99 |
+
* mamba_layer_flops(
|
| 100 |
+
batch_size,
|
| 101 |
+
seq_len,
|
| 102 |
+
hidden_size,
|
| 103 |
+
mamba_state_dim,
|
| 104 |
+
mamba_head_dim,
|
| 105 |
+
mamba_num_groups,
|
| 106 |
+
)
|
| 107 |
+
+ (
|
| 108 |
+
2 * batch_size * seq_len * hidden_size * vocab_size
|
| 109 |
+
) # logits computation
|
| 110 |
+
)
|
| 111 |
+
return flops_fwd * 3
|
| 112 |
+
|
| 113 |
+
def transformer_flops():
|
| 114 |
+
"""Calculate FLOPs for a standard Transformer model."""
|
| 115 |
+
# TODO(helenn/dnarayanan): Refactor this to reuse the helper methods.
|
| 116 |
+
# Attention projection size.
|
| 117 |
+
query_projection_size = args.kv_channels * args.num_attention_heads
|
| 118 |
+
query_projection_to_hidden_size_ratio = query_projection_size / args.hidden_size
|
| 119 |
+
# Group Query Attention.
|
| 120 |
+
if not args.group_query_attention:
|
| 121 |
+
args.num_query_groups = args.num_attention_heads
|
| 122 |
+
# MoE.
|
| 123 |
+
if args.num_experts is None:
|
| 124 |
+
# Every Transformer MLP is dense.
|
| 125 |
+
num_dense_layers = args.num_layers
|
| 126 |
+
num_moe_layers = 0
|
| 127 |
+
num_experts_routed_to = 0
|
| 128 |
+
last_layer_is_moe = 0
|
| 129 |
+
else:
|
| 130 |
+
# Calculate number of dense and MoE Transformer MLPs.
|
| 131 |
+
if isinstance(args.moe_layer_freq, int):
|
| 132 |
+
moe_layer_pattern = [
|
| 133 |
+
1 if (i % args.moe_layer_freq == 0) else 0
|
| 134 |
+
for i in range(args.num_layers)
|
| 135 |
+
]
|
| 136 |
+
elif isinstance(args.moe_layer_freq, list):
|
| 137 |
+
moe_layer_pattern = args.moe_layer_freq
|
| 138 |
+
else:
|
| 139 |
+
raise RuntimeError("Illegal --moe-layer-freq argument provided!")
|
| 140 |
+
assert len(moe_layer_pattern) == args.num_layers, (
|
| 141 |
+
f"Invalid length of moe_layer_pattern: {len(moe_layer_pattern)}, "
|
| 142 |
+
f"expected {args.num_layers}, "
|
| 143 |
+
f"current moe layer pattern: {args.moe_layer_freq}"
|
| 144 |
+
)
|
| 145 |
+
num_moe_layers = sum(
|
| 146 |
+
moe_layer_pattern
|
| 147 |
+
) # Number of 1s in `moe_layer_pattern`.
|
| 148 |
+
num_dense_layers = args.num_layers - num_moe_layers
|
| 149 |
+
num_experts_routed_to = args.moe_router_topk
|
| 150 |
+
last_layer_is_moe = moe_layer_pattern[-1]
|
| 151 |
+
|
| 152 |
+
if args.mtp_num_layers is not None:
|
| 153 |
+
mtp_num_layers = args.mtp_num_layers
|
| 154 |
+
num_moe_layers += last_layer_is_moe * mtp_num_layers
|
| 155 |
+
num_dense_layers += (1 - last_layer_is_moe) * mtp_num_layers
|
| 156 |
+
num_layers = args.num_layers + mtp_num_layers
|
| 157 |
+
else:
|
| 158 |
+
mtp_num_layers = 0
|
| 159 |
+
num_layers = args.num_layers
|
| 160 |
+
|
| 161 |
+
moe_ffn_hidden_size = (
|
| 162 |
+
args.moe_ffn_hidden_size
|
| 163 |
+
if args.moe_ffn_hidden_size is not None
|
| 164 |
+
else args.ffn_hidden_size
|
| 165 |
+
)
|
| 166 |
+
shared_expert_ffn_hidden_size = (
|
| 167 |
+
0
|
| 168 |
+
if args.moe_shared_expert_intermediate_size is None
|
| 169 |
+
else args.moe_shared_expert_intermediate_size
|
| 170 |
+
)
|
| 171 |
+
# SwiGLU.
|
| 172 |
+
gated_linear_multiplier = 3 / 2 if args.swiglu else 1
|
| 173 |
+
|
| 174 |
+
# The 12x term below comes from the following factors; for more details, see
|
| 175 |
+
# "APPENDIX: FLOATING-POINT OPERATIONS" in https://arxiv.org/abs/2104.04473.
|
| 176 |
+
# - 3x: Each GEMM in the model needs to be performed 3 times (forward pass,
|
| 177 |
+
# backward wgrad [weight gradient], backward dgrad [data gradient]).
|
| 178 |
+
# - 2x: GEMMs of a particular size are stacked twice in the standard Transformer model
|
| 179 |
+
# architectures implemented in this codebase (e.g., h->ffn_h GEMM and ffn_h->h GEMM
|
| 180 |
+
# in MLP layer).
|
| 181 |
+
# - 2x: A GEMM of a m*n tensor with a n*k tensor requires 2mnk floating-point operations.
|
| 182 |
+
expansion_factor = 3 * 2 * 2
|
| 183 |
+
|
| 184 |
+
if args.multi_latent_attention:
|
| 185 |
+
assert not args.group_query_attention
|
| 186 |
+
"""
|
| 187 |
+
Basic arithmetic
|
| 188 |
+
let B is batch size, s is seq_len, h is embedding dim,
|
| 189 |
+
for one self_attnetion block (prenorm is not included)
|
| 190 |
+
qkv projection: 6Bsh^2
|
| 191 |
+
attn: 2Bs^2h
|
| 192 |
+
attn over value: 2Bs^2h
|
| 193 |
+
oproj: 2Bsh^2
|
| 194 |
+
|
| 195 |
+
references
|
| 196 |
+
https://arxiv.org/abs/2305.10403
|
| 197 |
+
https://arxiv.org/abs/2205.05198
|
| 198 |
+
"""
|
| 199 |
+
## MLA
|
| 200 |
+
if args.q_lora_rank is None:
|
| 201 |
+
q_term = (
|
| 202 |
+
args.hidden_size
|
| 203 |
+
* args.num_attention_heads
|
| 204 |
+
* (args.qk_head_dim + args.qk_pos_emb_head_dim)
|
| 205 |
+
)
|
| 206 |
+
else:
|
| 207 |
+
q_term = args.q_lora_rank * (
|
| 208 |
+
args.hidden_size
|
| 209 |
+
+ args.num_attention_heads
|
| 210 |
+
* (args.qk_head_dim + args.qk_pos_emb_head_dim)
|
| 211 |
+
+ 1
|
| 212 |
+
)
|
| 213 |
+
self_attn_term = (
|
| 214 |
+
3
|
| 215 |
+
* 2 # fwd(1) + bwd(2) *FMA
|
| 216 |
+
* num_layers
|
| 217 |
+
* (
|
| 218 |
+
## q lora + rope + q norm
|
| 219 |
+
q_term
|
| 220 |
+
## kv lora + rope + kv norm
|
| 221 |
+
+ args.kv_lora_rank
|
| 222 |
+
* (
|
| 223 |
+
args.hidden_size
|
| 224 |
+
+ args.num_attention_heads
|
| 225 |
+
* (args.qk_head_dim + args.v_head_dim)
|
| 226 |
+
+ 1
|
| 227 |
+
)
|
| 228 |
+
+ args.hidden_size * args.qk_pos_emb_head_dim
|
| 229 |
+
## o proj
|
| 230 |
+
+ (args.num_attention_heads * args.v_head_dim) * args.hidden_size
|
| 231 |
+
## core attn
|
| 232 |
+
+ args.seq_length
|
| 233 |
+
* (
|
| 234 |
+
args.num_attention_heads
|
| 235 |
+
* (args.qk_head_dim + args.qk_pos_emb_head_dim)
|
| 236 |
+
)
|
| 237 |
+
/ 2
|
| 238 |
+
+ args.seq_length * args.num_attention_heads * args.v_head_dim / 2
|
| 239 |
+
)
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
else:
|
| 243 |
+
## MHA or GQA
|
| 244 |
+
self_attn_term = (
|
| 245 |
+
expansion_factor
|
| 246 |
+
* num_layers
|
| 247 |
+
* args.hidden_size
|
| 248 |
+
* args.hidden_size
|
| 249 |
+
* (
|
| 250 |
+
(
|
| 251 |
+
1
|
| 252 |
+
+ (args.num_query_groups / args.num_attention_heads)
|
| 253 |
+
# # Only half of the attention matrix is non-zero and needs to be multiplied with V.
|
| 254 |
+
+ (args.seq_length / args.hidden_size / 2)
|
| 255 |
+
)
|
| 256 |
+
* query_projection_to_hidden_size_ratio
|
| 257 |
+
)
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
total_floating_point_operations = (
|
| 261 |
+
args.batch_size
|
| 262 |
+
* args.seq_length
|
| 263 |
+
* (
|
| 264 |
+
# MLP
|
| 265 |
+
expansion_factor
|
| 266 |
+
* num_layers
|
| 267 |
+
* args.hidden_size
|
| 268 |
+
* (
|
| 269 |
+
# dense layer (deepseek v2, v3 style)
|
| 270 |
+
(args.ffn_hidden_size * gated_linear_multiplier)
|
| 271 |
+
* (num_dense_layers / num_layers)
|
| 272 |
+
# routed experts
|
| 273 |
+
+ (
|
| 274 |
+
moe_ffn_hidden_size
|
| 275 |
+
* num_experts_routed_to
|
| 276 |
+
* gated_linear_multiplier
|
| 277 |
+
)
|
| 278 |
+
* (num_moe_layers / num_layers)
|
| 279 |
+
# Shared Experts.
|
| 280 |
+
+ (shared_expert_ffn_hidden_size * gated_linear_multiplier)
|
| 281 |
+
* (num_moe_layers / num_layers)
|
| 282 |
+
)
|
| 283 |
+
# Self Attention
|
| 284 |
+
+ self_attn_term
|
| 285 |
+
# MTP norms and proj
|
| 286 |
+
+ 3
|
| 287 |
+
* 2
|
| 288 |
+
* mtp_num_layers
|
| 289 |
+
* (
|
| 290 |
+
# MTP eh norm + final nrom
|
| 291 |
+
3 * args.hidden_size
|
| 292 |
+
# MTH eh proj
|
| 293 |
+
+ 2 * args.hidden_size * args.hidden_size
|
| 294 |
+
)
|
| 295 |
+
# Logit.
|
| 296 |
+
+ 3
|
| 297 |
+
* 2
|
| 298 |
+
* args.hidden_size
|
| 299 |
+
* args.padded_vocab_size
|
| 300 |
+
* (mtp_num_layers + 1)
|
| 301 |
+
)
|
| 302 |
+
)
|
| 303 |
+
return total_floating_point_operations
|
| 304 |
+
|
| 305 |
+
# Main entrypoint for FLOPs calculation.
|
| 306 |
+
if args.is_hybrid_model:
|
| 307 |
+
# Calculate the number of each type of layer.
|
| 308 |
+
num_attn_layers, num_mamba_layers, num_mlp_layers = calculate_layer_counts()
|
| 309 |
+
|
| 310 |
+
# Compute hybrid model FLOPs.
|
| 311 |
+
return hybrid_flops(
|
| 312 |
+
batch_size=args.batch_size,
|
| 313 |
+
seq_len=args.seq_length,
|
| 314 |
+
hidden_size=args.hidden_size,
|
| 315 |
+
num_attn_layers=num_attn_layers,
|
| 316 |
+
num_mamba_layers=num_mamba_layers,
|
| 317 |
+
num_mlp_layers=num_mlp_layers,
|
| 318 |
+
mamba_state_dim=args.mamba_state_dim,
|
| 319 |
+
mamba_head_dim=args.mamba_head_dim,
|
| 320 |
+
mamba_num_groups=args.mamba_num_groups,
|
| 321 |
+
num_attn_heads=args.num_attention_heads,
|
| 322 |
+
gqa=args.group_query_attention,
|
| 323 |
+
gqa_groups=args.num_query_groups,
|
| 324 |
+
kv_channels=args.kv_channels,
|
| 325 |
+
mlp_expansion=args.ffn_hidden_size / args.hidden_size,
|
| 326 |
+
swiglu=args.swiglu,
|
| 327 |
+
vocab_size=args.padded_vocab_size,
|
| 328 |
+
)
|
| 329 |
+
else:
|
| 330 |
+
# Compute standard Transformer model FLOPs.
|
| 331 |
+
return transformer_flops()
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
def calculate_flops(args):
|
| 335 |
+
model_flops = num_floating_point_operations(args)
|
| 336 |
+
flops_per_token = model_flops / (args.batch_size * args.seq_length)
|
| 337 |
+
print(f"FLOPs Per Iteration: {model_flops}\nFLOPs Per Token: {flops_per_token}")
|
| 338 |
+
return model_flops
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
def calculate_mfu(model_flops, *, iter_elapsed_time, num_p800_cards):
|
| 342 |
+
assert (
|
| 343 |
+
model_flops and iter_elapsed_time and num_p800_cards
|
| 344 |
+
), "Iter elapsed time and P800 cards must be provided"
|
| 345 |
+
mfu = model_flops / (iter_elapsed_time * num_p800_cards * 3.5e14)
|
| 346 |
+
print(f"MFU P800 bf16: {mfu:.2%}")
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
def calculate_mfu_web( is_hybrid_model, group_query_attention, swiglu, num_layers, hidden_size,
|
| 350 |
+
ffn_hidden_size, padded_vocab_size, num_attention_heads, kv_channels,
|
| 351 |
+
num_experts, moe_layer_freq, moe_router_topk, moe_ffn_hidden_size, moe_shared_expert_intermediate_size,
|
| 352 |
+
multi_latent_attention, q_lora_rank, kv_lora_rank, qk_head_dim, v_head_dim, qk_pos_emb_head_dim,
|
| 353 |
+
mtp_num_layers, seq_length, batch_size, iter_elapsed_time, num_p800_cards
|
| 354 |
+
):
|
| 355 |
+
is_hybrid_model = True if is_hybrid_model == "True" else False
|
| 356 |
+
group_query_attention = True if group_query_attention == "True" else False
|
| 357 |
+
swiglu = True if swiglu == "True" else False
|
| 358 |
+
multi_latent_attention = True if multi_latent_attention == "True" else False
|
| 359 |
+
|
| 360 |
+
'''
|
| 361 |
+
为了直接调用calculate_flops(args)接口,这里将参数直接打包
|
| 362 |
+
'''
|
| 363 |
+
class parameter:
|
| 364 |
+
def __init__(self,
|
| 365 |
+
is_hybrid_model, group_query_attention, swiglu, num_layers, hidden_size,
|
| 366 |
+
ffn_hidden_size, padded_vocab_size, num_attention_heads, kv_channels,
|
| 367 |
+
num_experts, moe_layer_freq, moe_router_topk, moe_ffn_hidden_size, moe_shared_expert_intermediate_size,
|
| 368 |
+
multi_latent_attention, q_lora_rank, kv_lora_rank, qk_head_dim, v_head_dim, qk_pos_emb_head_dim,
|
| 369 |
+
mtp_num_layers, seq_length, batch_size, iter_elapsed_time, num_p800_cards,
|
| 370 |
+
hybrid_override_pattern=None):
|
| 371 |
+
self.is_hybrid_model = is_hybrid_model
|
| 372 |
+
self.group_query_attention = group_query_attention
|
| 373 |
+
self.swiglu = swiglu
|
| 374 |
+
self.num_layers = num_layers
|
| 375 |
+
self.hidden_size = hidden_size
|
| 376 |
+
self.ffn_hidden_size = ffn_hidden_size
|
| 377 |
+
self.padded_vocab_size = padded_vocab_size
|
| 378 |
+
self.num_attention_heads = num_attention_heads
|
| 379 |
+
self.kv_channels = kv_channels
|
| 380 |
+
self.num_experts = num_experts
|
| 381 |
+
self.moe_layer_freq = moe_layer_freq
|
| 382 |
+
self.moe_router_topk = moe_router_topk
|
| 383 |
+
self.moe_ffn_hidden_size = moe_ffn_hidden_size
|
| 384 |
+
self.moe_shared_expert_intermediate_size = moe_shared_expert_intermediate_size
|
| 385 |
+
self.multi_latent_attention = multi_latent_attention
|
| 386 |
+
self.q_lora_rank = q_lora_rank
|
| 387 |
+
self.kv_lora_rank = kv_lora_rank
|
| 388 |
+
self.qk_head_dim = qk_head_dim
|
| 389 |
+
self.v_head_dim = v_head_dim
|
| 390 |
+
self.qk_pos_emb_head_dim = qk_pos_emb_head_dim
|
| 391 |
+
self.mtp_num_layers = mtp_num_layers
|
| 392 |
+
self.seq_length = seq_length
|
| 393 |
+
self.batch_size = batch_size
|
| 394 |
+
self.iter_elapsed_time = iter_elapsed_time
|
| 395 |
+
self.num_p800_cards = num_p800_cards
|
| 396 |
+
self.hybrid_override_pattern = hybrid_override_pattern
|
| 397 |
+
|
| 398 |
+
mfu_parameter = parameter(is_hybrid_model, group_query_attention, swiglu, num_layers, hidden_size,
|
| 399 |
+
ffn_hidden_size, padded_vocab_size, num_attention_heads, kv_channels,
|
| 400 |
+
num_experts, moe_layer_freq, moe_router_topk, moe_ffn_hidden_size, moe_shared_expert_intermediate_size,
|
| 401 |
+
multi_latent_attention, q_lora_rank, kv_lora_rank, qk_head_dim, v_head_dim, qk_pos_emb_head_dim,
|
| 402 |
+
mtp_num_layers, seq_length, batch_size, iter_elapsed_time, num_p800_cards,
|
| 403 |
+
hybrid_override_pattern=None)
|
| 404 |
+
|
| 405 |
+
model_flops = num_floating_point_operations(mfu_parameter)
|
| 406 |
+
flops_per_token = model_flops / (batch_size * seq_length)
|
| 407 |
+
print(f"FLOPs Per Iteration: {model_flops}\nFLOPs Per Token: {flops_per_token}")
|
| 408 |
+
|
| 409 |
+
assert (
|
| 410 |
+
model_flops and iter_elapsed_time and num_p800_cards
|
| 411 |
+
), "Iter elapsed time and P800 cards must be provided"
|
| 412 |
+
|
| 413 |
+
mfu = model_flops / (iter_elapsed_time * num_p800_cards * 3.5e14)
|
| 414 |
+
print(f"MFU P800 bf16: {mfu:.2%}")
|
| 415 |
+
return model_flops, flops_per_token, "{:.2f}".format(mfu * 100)
|
| 416 |
+
|
| 417 |
+
if __name__ == "__main__":
|
| 418 |
+
parser = argparse.ArgumentParser()
|
| 419 |
+
args = parser.parse_args()
|
| 420 |
+
|
| 421 |
+
# Standard Transformer config
|
| 422 |
+
args.is_hybrid_model = False
|
| 423 |
+
args.group_query_attention = False
|
| 424 |
+
args.swiglu = True
|
| 425 |
+
args.num_layers = 61
|
| 426 |
+
args.hidden_size = 7168
|
| 427 |
+
args.ffn_hidden_size = 18432
|
| 428 |
+
args.padded_vocab_size = 100002
|
| 429 |
+
args.num_attention_heads = 128
|
| 430 |
+
args.kv_channels = 128
|
| 431 |
+
|
| 432 |
+
# MoE config
|
| 433 |
+
args.num_experts = 256
|
| 434 |
+
args.moe_layer_freq = 1
|
| 435 |
+
args.moe_router_topk = 8
|
| 436 |
+
args.moe_ffn_hidden_size = 2048
|
| 437 |
+
args.moe_shared_expert_intermediate_size = 2048
|
| 438 |
+
|
| 439 |
+
# MLA config
|
| 440 |
+
args.multi_latent_attention = True
|
| 441 |
+
args.q_lora_rank = 1536
|
| 442 |
+
args.kv_lora_rank = 512
|
| 443 |
+
args.qk_head_dim = 128
|
| 444 |
+
args.v_head_dim = 128
|
| 445 |
+
args.qk_pos_emb_head_dim = 64
|
| 446 |
+
|
| 447 |
+
# MTP config
|
| 448 |
+
args.mtp_num_layers = 1
|
| 449 |
+
|
| 450 |
+
# Data config
|
| 451 |
+
args.seq_length = 4096
|
| 452 |
+
args.batch_size = 1024
|
| 453 |
+
|
| 454 |
+
# mfu config
|
| 455 |
+
args.iter_elapsed_time = 100
|
| 456 |
+
args.num_p800_cards = 512
|
| 457 |
+
|
| 458 |
+
#calculate_mfu(calculate_flops(args), iter_elapsed_time=args.iter_elapsed_time, num_p800_cards=args.num_p800_cards)
|
| 459 |
+
with gr.Blocks(title="Compute MFU") as demo:
|
| 460 |
+
gr.Markdown("## Compute MFU")
|
| 461 |
+
|
| 462 |
+
with gr.Group() as custom_group:
|
| 463 |
+
gr.Markdown("Standard Transformer config:")
|
| 464 |
+
with gr.Row():
|
| 465 |
+
is_hybrid_model = gr.Dropdown(["True", "False"],
|
| 466 |
+
label="hybrid model",
|
| 467 |
+
value="True" if args.is_hybrid_model else "False")
|
| 468 |
+
|
| 469 |
+
group_query_attention = gr.Dropdown(["True", "False"],
|
| 470 |
+
label="group query attention",
|
| 471 |
+
value="True" if args.group_query_attention else "False")
|
| 472 |
+
|
| 473 |
+
swiglu = gr.Dropdown(["True", "False"],
|
| 474 |
+
label="swiglu",
|
| 475 |
+
value="True" if args.swiglu else "False")
|
| 476 |
+
|
| 477 |
+
num_layers = gr.Number(label="num layers", value=args.num_layers, precision=0)
|
| 478 |
+
hidden_size = gr.Number(label="hidden size", value=args.hidden_size, precision=0)
|
| 479 |
+
ffn_hidden_size = gr.Number(label="ffn hidden size", value=args.ffn_hidden_size, precision=0)
|
| 480 |
+
padded_vocab_size = gr.Number(label="padded vocab size", value=args.padded_vocab_size, precision=0)
|
| 481 |
+
num_attention_heads = gr.Number(label="num attention heads", value=args.num_attention_heads, precision=0)
|
| 482 |
+
kv_channels = gr.Number(label="kv channels", value=args.kv_channels, precision=0)
|
| 483 |
+
|
| 484 |
+
with gr.Group() as custom_group:
|
| 485 |
+
gr.Markdown("MoE config:")
|
| 486 |
+
with gr.Row():
|
| 487 |
+
num_experts = gr.Number(label="num experts", value=args.num_experts, precision=0)
|
| 488 |
+
moe_layer_freq = gr.Number(label="moe layer freq", value=args.moe_layer_freq, precision=0)
|
| 489 |
+
moe_router_topk = gr.Number(label="moe router topk", value=args.moe_router_topk, precision=0)
|
| 490 |
+
moe_ffn_hidden_size = gr.Number(label="moe ffn hidden size", value=args.moe_ffn_hidden_size, precision=0)
|
| 491 |
+
moe_shared_expert_intermediate_size = gr.Number(label="moe shared expert intermediate size", value=args.moe_shared_expert_intermediate_size, precision=0)
|
| 492 |
+
|
| 493 |
+
with gr.Group() as custom_group:
|
| 494 |
+
gr.Markdown("MLA config:")
|
| 495 |
+
with gr.Row():
|
| 496 |
+
multi_latent_attention = gr.Dropdown(["True", "False"],
|
| 497 |
+
label="multi_latent_attention",
|
| 498 |
+
value="True" if args.multi_latent_attention else "False")
|
| 499 |
+
q_lora_rank = gr.Number(label="q lora rank", value=args.q_lora_rank, precision=0)
|
| 500 |
+
kv_lora_rank = gr.Number(label="kv lora rank", value=args.kv_lora_rank, precision=0)
|
| 501 |
+
qk_head_dim = gr.Number(label="qk head dim", value=args.qk_head_dim, precision=0)
|
| 502 |
+
v_head_dim = gr.Number(label="v head dim", value=args.v_head_dim, precision=0)
|
| 503 |
+
qk_pos_emb_head_dim = gr.Number(label="qk pos emb head dim", value=args.qk_pos_emb_head_dim, precision=0)
|
| 504 |
+
|
| 505 |
+
with gr.Group() as custom_group:
|
| 506 |
+
with gr.Row():
|
| 507 |
+
with gr.Group():
|
| 508 |
+
gr.Markdown("MTP config:")
|
| 509 |
+
mtp_num_layers = gr.Number(label="mtp num layers", value=args.mtp_num_layers, precision=0)
|
| 510 |
+
|
| 511 |
+
with gr.Group():
|
| 512 |
+
gr.Markdown("Data config:")
|
| 513 |
+
with gr.Row():
|
| 514 |
+
seq_length = gr.Number(label="seq length", value=args.seq_length, precision=0)
|
| 515 |
+
batch_size = gr.Number(label="batch size", value=args.batch_size, precision=0)
|
| 516 |
+
|
| 517 |
+
with gr.Group():
|
| 518 |
+
gr.Markdown("MFU config:")
|
| 519 |
+
with gr.Row():
|
| 520 |
+
iter_elapsed_time = gr.Number(label="iter elapsed time", value=args.iter_elapsed_time, precision=0)
|
| 521 |
+
num_p800_cards = gr.Number(label="num p800 cards", value=args.num_p800_cards, precision=0)
|
| 522 |
+
|
| 523 |
+
# 计算结果显示控件
|
| 524 |
+
with gr.Group() as custom_group:
|
| 525 |
+
gr.Markdown("Compute results:")
|
| 526 |
+
with gr.Row():
|
| 527 |
+
model_flops = gr.Number(label="model flops", precision=0)
|
| 528 |
+
flops_per_token = gr.Number(label="flops per token", precision=0)
|
| 529 |
+
# mfu = gr.Number(label="mfu", precision=0)
|
| 530 |
+
mfu = gr.Textbox(label="MFU P800 bf16")
|
| 531 |
+
|
| 532 |
+
# 计算按钮
|
| 533 |
+
btn = gr.Button("Calculate")
|
| 534 |
+
btn.click( fn=calculate_mfu_web,
|
| 535 |
+
inputs=[is_hybrid_model, group_query_attention, swiglu, num_layers, hidden_size,
|
| 536 |
+
ffn_hidden_size, padded_vocab_size, num_attention_heads, kv_channels,
|
| 537 |
+
num_experts, moe_layer_freq, moe_router_topk, moe_ffn_hidden_size, moe_shared_expert_intermediate_size,
|
| 538 |
+
multi_latent_attention, q_lora_rank, kv_lora_rank, qk_head_dim, v_head_dim, qk_pos_emb_head_dim,
|
| 539 |
+
mtp_num_layers, seq_length, batch_size, iter_elapsed_time, num_p800_cards],
|
| 540 |
+
outputs=[model_flops, flops_per_token, mfu]
|
| 541 |
+
)
|
| 542 |
+
|
| 543 |
+
# 启动 Gradio 应用
|
| 544 |
+
demo.launch()
|