File size: 25,266 Bytes
e5d943e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f81eabd
e5d943e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f81eabd
 
 
 
e5d943e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f81eabd
 
 
 
 
 
e5d943e
 
 
f81eabd
 
 
e5d943e
f81eabd
e5d943e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f81eabd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5d943e
 
 
 
 
 
 
f81eabd
e5d943e
f81eabd
e5d943e
f81eabd
e5d943e
f81eabd
e5d943e
f81eabd
e5d943e
f81eabd
e5d943e
f81eabd
e5d943e
 
 
 
 
 
f81eabd
e5d943e
f81eabd
 
 
 
e5d943e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/**

 * 🌿 Ivy's GPU Art Studio

 * Tab 4: Generative Patterns

 *

 * Procedural pattern generation using fragment shaders

 * Perlin noise, Voronoi, waves, plasma, kaleidoscope, and more!

 */

class PatternsRenderer {
    constructor() {
        this.device = null;
        this.context = null;
        this.format = null;

        // Pattern parameters
        this.params = {
            type: 0, // 0=ivy (matches HTML select order), 1-9 other patterns
            palette: 0, // 0-8 palettes
            scale: 1.0,
            speed: 1.0,
            complexity: 5,
            intensity: 1.0,
            animate: true,
            mouseReact: false
        };

        this.input = null;
        this.animationLoop = null;
        this.isActive = false;
        this.time = 0;
    }

    async init(device, context, format, canvas) {
        this.device = device;
        this.context = context;
        this.format = format;
        this.canvas = canvas;

        // Create shader
        const shaderModule = device.createShaderModule({
            label: "Patterns Shader",
            code: this.getShaderCode()
        });

        // Create uniform buffer - increased size for new params
        this.uniformBuffer = device.createBuffer({
            label: "Patterns Uniforms",
            size: 80,
            usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST
        });

        // Create bind group layout
        const bindGroupLayout = device.createBindGroupLayout({
            entries: [
                {
                    binding: 0,
                    visibility: GPUShaderStage.FRAGMENT,
                    buffer: { type: "uniform" }
                }
            ]
        });

        // Create pipeline
        this.pipeline = device.createRenderPipeline({
            label: "Patterns Pipeline",
            layout: device.createPipelineLayout({
                bindGroupLayouts: [bindGroupLayout]
            }),
            vertex: {
                module: shaderModule,
                entryPoint: "vertexMain"
            },
            fragment: {
                module: shaderModule,
                entryPoint: "fragmentMain",
                targets: [{ format }]
            },
            primitive: {
                topology: "triangle-list"
            }
        });

        // Create bind group
        this.bindGroup = device.createBindGroup({
            layout: bindGroupLayout,
            entries: [
                {
                    binding: 0,
                    resource: { buffer: this.uniformBuffer }
                }
            ]
        });

        // Setup input
        this.input = new WebGPUUtils.InputHandler(canvas);

        // Create animation loop
        this.animationLoop = new WebGPUUtils.AnimationLoop((dt, time) => {
            // Only advance time if animation is enabled
            if (this.params.animate) {
                this.time += dt * this.params.speed;
            }
            this.render();
        });
    }

    start() {
        this.isActive = true;
        this.animationLoop.start();
    }

    stop() {
        this.isActive = false;
        this.animationLoop.stop();
    }

    reset() {
        this.time = 0;
    }

    setType(type) {
        const types = {
            ivy: 0, // First in HTML select = index 0
            noise: 1,
            voronoi: 2,
            waves: 3,
            plasma: 4,
            kaleidoscope: 5,
            hexagons: 6,
            spiral: 7,
            reaction: 8,
            circuits: 9,
            glitch: 10, // NEW: Glitch terrain mountains
            aurora: 11 // NEW: Aurora borealis
        };
        this.params.type = types[type] ?? 0; // Default to ivy
    }

    setPalette(palette) {
        const palettes = {
            ivy: 0,
            rainbow: 1,
            fire: 2,
            ocean: 3,
            neon: 4,
            sunset: 5,
            cosmic: 6,
            candy: 7,
            monochrome: 8
        };
        this.params.palette = palettes[palette] ?? 0;
    }

    setScale(scale) {
        this.params.scale = scale;
    }

    setSpeed(speed) {
        this.params.speed = speed;
    }

    setComplexity(complexity) {
        this.params.complexity = complexity;
    }

    setIntensity(intensity) {
        this.params.intensity = intensity;
    }

    setAnimate(animate) {
        this.params.animate = animate;
    }

    setMouseReact(react) {
        this.params.mouseReact = react;
    }

    updateUniforms() {
        const aspect = this.canvas.width / this.canvas.height;

        const data = new Float32Array([
            this.params.type, // 0
            this.params.palette, // 4
            this.params.scale, // 8
            this.params.complexity, // 12
            this.time, // 16
            aspect, // 20
            this.input.mouseX, // 24
            this.input.mouseY, // 28
            this.input.isPressed ? 1.0 : 0.0, // 32
            this.params.intensity, // 36
            this.params.animate ? 1.0 : 0.0, // 40
            this.params.mouseReact ? 1.0 : 0.0, // 44
            0.0,
            0.0,
            0.0,
            0.0 // padding
        ]);

        this.device.queue.writeBuffer(this.uniformBuffer, 0, data);
    }

    render() {
        if (!this.isActive) return;

        WebGPUUtils.resizeCanvasToDisplaySize(this.canvas, window.devicePixelRatio);
        this.updateUniforms();

        const commandEncoder = this.device.createCommandEncoder();
        const renderPass = commandEncoder.beginRenderPass({
            colorAttachments: [
                {
                    view: this.context.getCurrentTexture().createView(),
                    clearValue: { r: 0, g: 0, b: 0, a: 1 },
                    loadOp: "clear",
                    storeOp: "store"
                }
            ]
        });

        renderPass.setPipeline(this.pipeline);
        renderPass.setBindGroup(0, this.bindGroup);
        renderPass.draw(3);
        renderPass.end();

        this.device.queue.submit([commandEncoder.finish()]);
    }

    getShaderCode() {
        return /* wgsl */ `

            struct Uniforms {

                patternType: f32,

                palette: f32,

                scale: f32,

                complexity: f32,

                time: f32,

                aspect: f32,

                mouseX: f32,

                mouseY: f32,

                mousePressed: f32,

                intensity: f32,

                animate: f32,

                mouseReact: f32,

            }



            @group(0) @binding(0) var<uniform> u: Uniforms;



            struct VertexOutput {

                @builtin(position) position: vec4f,

                @location(0) uv: vec2f,

            }



            @vertex

            fn vertexMain(@builtin(vertex_index) vertexIndex: u32) -> VertexOutput {

                var pos = array<vec2f, 3>(

                    vec2f(-1.0, -1.0),

                    vec2f(3.0, -1.0),

                    vec2f(-1.0, 3.0)

                );



                var output: VertexOutput;

                output.position = vec4f(pos[vertexIndex], 0.0, 1.0);

                output.uv = pos[vertexIndex] * 0.5 + 0.5;

                return output;

            }



            // ============================================

            // Color Palettes

            // ============================================

            fn getPaletteColor(t: f32, paletteId: i32) -> vec3f {

                let tt = fract(t);



                // Ivy Green

                if (paletteId == 0) {

                    return vec3f(0.1 + 0.2 * tt, 0.4 + 0.5 * tt, 0.15 + 0.2 * tt);

                }

                // Rainbow

                else if (paletteId == 1) {

                    return vec3f(

                        0.5 + 0.5 * cos(6.28318 * (tt + 0.0)),

                        0.5 + 0.5 * cos(6.28318 * (tt + 0.33)),

                        0.5 + 0.5 * cos(6.28318 * (tt + 0.67))

                    );

                }

                // Fire

                else if (paletteId == 2) {

                    return vec3f(min(1.0, tt * 2.0), tt * tt, tt * tt * tt);

                }

                // Ocean

                else if (paletteId == 3) {

                    return vec3f(0.0 + 0.2 * tt, 0.3 + 0.4 * tt, 0.5 + 0.5 * tt);

                }

                // Neon

                else if (paletteId == 4) {

                    return vec3f(

                        0.5 + 0.5 * sin(tt * 6.28),

                        0.5 + 0.5 * sin(tt * 6.28 + 2.094),

                        0.5 + 0.5 * sin(tt * 6.28 + 4.188)

                    );

                }

                // Sunset

                else if (paletteId == 5) {

                    return vec3f(0.9 - 0.3 * tt, 0.3 + 0.3 * tt, 0.4 + 0.4 * tt);

                }

                // Cosmic

                else if (paletteId == 6) {

                    return vec3f(

                        0.1 + 0.4 * sin(tt * 6.28),

                        0.05 + 0.2 * sin(tt * 6.28 + 2.0),

                        0.3 + 0.6 * sin(tt * 6.28 + 4.0)

                    );

                }

                // Candy

                else if (paletteId == 7) {

                    return vec3f(

                        0.8 + 0.2 * sin(tt * 12.56),

                        0.4 + 0.4 * sin(tt * 12.56 + 2.0),

                        0.7 + 0.3 * sin(tt * 12.56 + 4.0)

                    );

                }

                // Monochrome

                else {

                    return vec3f(tt, tt, tt);

                }

            }



            // ============================================

            // Noise Functions

            // ============================================



            fn hash21(p: vec2f) -> f32 {

                var p3 = fract(vec3f(p.x, p.y, p.x) * 0.1031);

                p3 += dot(p3, p3.yzx + 33.33);

                return fract((p3.x + p3.y) * p3.z);

            }



            fn hash22(p: vec2f) -> vec2f {

                let n = sin(dot(p, vec2f(41.0, 289.0)));

                return fract(vec2f(262144.0, 32768.0) * n) * 2.0 - 1.0;

            }



            fn noise(p: vec2f) -> f32 {

                let i = floor(p);

                let f = fract(p);

                let u = f * f * (3.0 - 2.0 * f);



                return mix(

                    mix(hash21(i + vec2f(0.0, 0.0)), hash21(i + vec2f(1.0, 0.0)), u.x),

                    mix(hash21(i + vec2f(0.0, 1.0)), hash21(i + vec2f(1.0, 1.0)), u.x),

                    u.y

                );

            }



            fn fbm(p: vec2f, octaves: i32) -> f32 {

                var value = 0.0;

                var amplitude = 0.5;

                var frequency = 1.0;

                var pos = p;



                for (var i = 0; i < octaves; i++) {

                    value += amplitude * noise(pos * frequency);

                    amplitude *= 0.5;

                    frequency *= 2.0;

                }



                return value;

            }



            // Voronoi

            fn voronoi(p: vec2f) -> vec3f {

                let n = floor(p);

                let f = fract(p);



                var minDist = 1.0;

                var minDist2 = 1.0;

                var cellId = vec2f(0.0);



                for (var j = -1; j <= 1; j++) {

                    for (var i = -1; i <= 1; i++) {

                        let g = vec2f(f32(i), f32(j));

                        let o = hash22(n + g) * 0.5 + 0.5;

                        let r = g + o - f;

                        let d = dot(r, r);



                        if (d < minDist) {

                            minDist2 = minDist;

                            minDist = d;

                            cellId = n + g;

                        } else if (d < minDist2) {

                            minDist2 = d;

                        }

                    }

                }



                return vec3f(sqrt(minDist), sqrt(minDist2) - sqrt(minDist), hash21(cellId));

            }



            // ============================================

            // Pattern Functions

            // ============================================



            fn perlinPattern(uv: vec2f, t: f32) -> f32 {

                let p = uv * u.scale * 5.0;

                let animT = select(0.0, t, u.animate > 0.5);

                return fbm(p + vec2f(animT * 0.2, animT * 0.15), i32(u.complexity));

            }



            fn voronoiPattern(uv: vec2f, t: f32) -> f32 {

                let animT = select(0.0, t, u.animate > 0.5);

                let p = uv * u.scale * 5.0 + vec2f(animT * 0.1, animT * 0.05);

                let v = voronoi(p);

                return v.z + v.y * 0.5;

            }



            fn wavesPattern(uv: vec2f, t: f32) -> f32 {

                var p = (uv - 0.5) * 2.0;

                p.x *= u.aspect;

                p *= u.scale;



                var value = 0.0;

                let octaves = i32(u.complexity);

                let animT = select(0.0, t, u.animate > 0.5);



                for (var i = 0; i < octaves; i++) {

                    let freq = f32(i + 1) * 3.0;

                    let phase = animT * (0.5 + f32(i) * 0.1);

                    value += sin(p.x * freq + phase) * cos(p.y * freq * 0.7 + phase * 0.8) / freq;

                }



                return value * 0.5 + 0.5;

            }



            fn plasmaPattern(uv: vec2f, t: f32) -> f32 {

                var p = (uv - 0.5) * 2.0;

                p.x *= u.aspect;

                p *= u.scale * 2.0;



                let animT = select(0.0, t, u.animate > 0.5);



                var v = 0.0;

                v += sin(p.x * 10.0 + animT);

                v += sin(10.0 * (p.x * sin(animT / 2.0) + p.y * cos(animT / 3.0)) + animT);

                v += sin(sqrt(100.0 * (p.x * p.x + p.y * p.y) + 1.0) + animT);



                let cx = p.x + 0.5 * sin(animT / 5.0);

                let cy = p.y + 0.5 * cos(animT / 3.0);

                v += sin(sqrt(100.0 * (cx * cx + cy * cy) + 1.0) + animT);



                return (v / 4.0) * 0.5 + 0.5;

            }



            fn kaleidoscopePattern(uv: vec2f, t: f32) -> f32 {

                var p = (uv - 0.5) * 2.0;

                p.x *= u.aspect;



                var r = length(p);

                var a = atan2(p.y, p.x);



                let segments = f32(i32(u.complexity) + 3);

                a = abs(((a / 3.14159 * 0.5 + 0.5) * segments) % 2.0 - 1.0) * 3.14159;



                p = vec2f(cos(a), sin(a)) * r;

                p *= u.scale * 2.0;



                let animT = select(0.0, t, u.animate > 0.5);

                p += vec2f(animT * 0.3, animT * 0.2);



                let n = fbm(p, 4);

                let fade = 1.0 - smoothstep(0.5, 1.0, r);



                return n * fade + r * 0.3;

            }



            fn ivyPattern(uv: vec2f, t: f32) -> f32 {

                var p = (uv - 0.5) * 2.0 * u.scale;

                p.x *= u.aspect;



                var value = 0.0;

                let animT = select(0.0, t, u.animate > 0.5);



                for (var vine = 0; vine < 5; vine++) {

                    let vf = f32(vine);

                    let vineOffset = vec2f(sin(vf * 1.5 + animT * 0.2) * 0.3, vf * 0.4 - 1.0);

                    var vp = p - vineOffset;



                    let curve = sin(vp.y * 3.0 + animT * 0.5 + vf) * 0.2;

                    vp.x -= curve;



                    let stemDist = abs(vp.x);

                    let stemGlow = exp(-stemDist * 30.0);

                    value += stemGlow * 0.3;



                    for (var leaf = 0; leaf < 6; leaf++) {

                        let lf = f32(leaf);

                        let leafY = vf * 0.4 - 1.0 + lf * 0.3;

                        let side = select(-1.0, 1.0, leaf % 2 == 0);



                        let leafCenter = vec2f(

                            vineOffset.x + sin(leafY * 3.0 + animT * 0.5 + vf) * 0.2 + side * 0.15,

                            leafY

                        );



                        var lp = p - leafCenter;

                        let leafDist = length(lp * vec2f(1.0, 1.5)) - 0.06;

                        let leafGlow = exp(-max(0.0, leafDist) * 40.0);

                        value += leafGlow * 0.5;

                    }

                }



                return clamp(value, 0.0, 1.0);

            }



            fn hexagonsPattern(uv: vec2f, t: f32) -> f32 {

                var p = (uv - 0.5) * u.scale * 10.0;

                p.x *= u.aspect;



                let animT = select(0.0, t, u.animate > 0.5);



                // Hexagonal grid

                let s = vec2f(1.0, 1.732);

                let a = (p / s) % 2.0 - 1.0;

                let b = ((p + s * 0.5) / s) % 2.0 - 1.0;



                let gv = select(a, b, dot(a, a) > dot(b, b));

                let hexDist = max(abs(gv.x), abs(gv.y * 0.866 + gv.x * 0.5));



                let pulse = sin(animT * 2.0 + length(p) * 0.5) * 0.5 + 0.5;



                return (1.0 - smoothstep(0.4, 0.5, hexDist)) * pulse;

            }



            fn spiralPattern(uv: vec2f, t: f32) -> f32 {

                var p = (uv - 0.5) * 2.0;

                p.x *= u.aspect;



                let r = length(p);

                let a = atan2(p.y, p.x);

                let animT = select(0.0, t, u.animate > 0.5);



                let spiral = sin(a * u.complexity + r * 10.0 * u.scale - animT * 3.0);

                let rings = sin(r * 20.0 - animT * 2.0);



                return (spiral * 0.5 + 0.5) * (1.0 - r * 0.5);

            }



            fn reactionPattern(uv: vec2f, t: f32) -> f32 {

                var p = uv * u.scale * 8.0;

                let animT = select(0.0, t, u.animate > 0.5);



                var a = fbm(p + vec2f(animT * 0.1, 0.0), i32(u.complexity));

                var b = fbm(p + vec2f(0.0, animT * 0.1) + a * 2.0, i32(u.complexity));

                var c = fbm(p + b * 2.0 + vec2f(animT * 0.05), i32(u.complexity));



                return c;

            }



            fn circuitsPattern(uv: vec2f, t: f32) -> f32 {

                var p = uv * u.scale * 5.0;

                let animT = select(0.0, t, u.animate > 0.5);



                let grid = floor(p);

                let f = fract(p);



                let randVal = hash21(grid);

                let lineX = step(0.45, f.x) * step(f.x, 0.55);

                let lineY = step(0.45, f.y) * step(f.y, 0.55);



                var circuit = 0.0;

                if (randVal > 0.5) {

                    circuit = lineX;

                } else {

                    circuit = lineY;

                }



                // Nodes at intersections

                let nodeDist = length(f - 0.5);

                let node = 1.0 - smoothstep(0.1, 0.15, nodeDist);



                // Pulse animation

                let pulse = sin(animT * 3.0 + hash21(grid) * 6.28) * 0.5 + 0.5;



                return (circuit + node) * (0.5 + pulse * 0.5);

            }



            // 🏔️ GLITCH TERRAIN - Pixelated mountains with neon colors

            fn glitchTerrainPattern(uv: vec2f, t: f32) -> f32 {

                let animT = select(0.0, t, u.animate > 0.5);

                var p = uv;

                p.x *= u.aspect;



                // Create terrain height using layered noise

                var height = 0.0;

                var freq = 2.0 * u.scale;

                var amp = 0.5;



                for (var i = 0; i < 5; i++) {

                    let noiseVal = fbm(vec2f(p.x * freq + animT * 0.1, f32(i) * 0.5), 3);

                    height += noiseVal * amp;

                    freq *= 2.0;

                    amp *= 0.5;

                }



                // Convert to terrain silhouette

                let terrainLine = 0.3 + height * 0.4;

                let inTerrain = step(p.y, terrainLine);



                // Add glitch displacement

                let glitchX = floor(p.x * 50.0) / 50.0;

                let glitchOffset = hash21(vec2f(glitchX, floor(animT * 10.0))) * 0.1;

                let glitchedY = p.y + glitchOffset * inTerrain;



                // Layered mountains effect

                var layers = 0.0;

                for (var i = 0; i < 4; i++) {

                    let layerHeight = 0.2 + f32(i) * 0.15 + fbm(vec2f(p.x * (3.0 - f32(i) * 0.5) + animT * 0.05 * f32(i + 1), f32(i)), 3) * 0.3;

                    let layerMask = step(glitchedY, layerHeight);

                    layers = max(layers, layerMask * (0.3 + f32(i) * 0.2));

                }



                // Add scan lines for glitch effect

                let scanline = sin(p.y * 200.0 + animT * 50.0) * 0.1;



                // Color variation based on height

                let heightGradient = (terrainLine - p.y) / terrainLine;



                return layers + scanline * inTerrain + heightGradient * 0.3;

            }



            // 🌌 AURORA BOREALIS - Northern lights effect

            fn auroraPattern(uv: vec2f, t: f32) -> f32 {

                let animT = select(0.0, t, u.animate > 0.5);

                var p = uv;

                p.x *= u.aspect;



                // Create flowing curtains

                var aurora = 0.0;



                for (var i = 0; i < 5; i++) {

                    let offset = f32(i) * 0.2;

                    let freq = 2.0 + f32(i) * 0.5;

                    let speed = 0.3 + f32(i) * 0.1;



                    // Wave pattern for curtain shape

                    let wave = sin(p.x * freq * u.scale + animT * speed + offset * 10.0);

                    let curtainY = 0.5 + wave * 0.15 + offset * 0.1;



                    // Vertical gradient (aurora rises from bottom)

                    let vertGrad = smoothstep(curtainY - 0.3, curtainY, p.y) *

                                   smoothstep(curtainY + 0.2, curtainY, p.y);



                    // Add noise for organic feel

                    let noiseVal = fbm(vec2f(p.x * 3.0 + animT * 0.2, p.y * 2.0 + f32(i)), 3);



                    aurora += vertGrad * (0.3 + noiseVal * 0.4) * (1.0 - f32(i) * 0.15);

                }



                // Add shimmer

                let shimmer = sin(p.x * 30.0 + animT * 5.0) * sin(p.y * 20.0 + animT * 3.0) * 0.1;



                return aurora + shimmer * aurora;

            }



            @fragment

            fn fragmentMain(input: VertexOutput) -> @location(0) vec4f {

                let patternType = i32(u.patternType);

                let paletteId = i32(u.palette);

                var t = u.time;

                var value: f32 = 0.0;



                // Pattern order matches HTML select: ivy=0, noise=1, voronoi=2, waves=3, plasma=4, kaleidoscope=5, hexagons=6, spiral=7, reaction=8, circuits=9, glitch=10, aurora=11

                if (patternType == 0) {

                    value = ivyPattern(input.uv, t);

                } else if (patternType == 1) {

                    value = perlinPattern(input.uv, t);

                } else if (patternType == 2) {

                    value = voronoiPattern(input.uv, t);

                } else if (patternType == 3) {

                    value = wavesPattern(input.uv, t);

                } else if (patternType == 4) {

                    value = plasmaPattern(input.uv, t);

                } else if (patternType == 5) {

                    value = kaleidoscopePattern(input.uv, t);

                } else if (patternType == 6) {

                    value = hexagonsPattern(input.uv, t);

                } else if (patternType == 7) {

                    value = spiralPattern(input.uv, t);

                } else if (patternType == 8) {

                    value = reactionPattern(input.uv, t);

                } else if (patternType == 9) {

                    value = circuitsPattern(input.uv, t);

                } else if (patternType == 10) {

                    value = glitchTerrainPattern(input.uv, t);

                } else {

                    value = auroraPattern(input.uv, t);

                }



                // Apply intensity

                value *= u.intensity;



                // Get color from palette

                var color = getPaletteColor(value, paletteId);



                // Mouse interaction

                if (u.mouseReact > 0.5 || u.mousePressed > 0.5) {

                    let mouse = vec2f(u.mouseX, u.mouseY);

                    let dist = distance(input.uv, mouse);

                    let glow = exp(-dist * 8.0) * 0.6;

                    color += vec3f(glow, glow * 0.7, glow * 0.9);

                }



                return vec4f(color, 1.0);

            }

        `;
    }
}

// Export
window.PatternsRenderer = PatternsRenderer;