Spaces:
Running
Running
File size: 25,266 Bytes
e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e f81eabd e5d943e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
/**
* 🌿 Ivy's GPU Art Studio
* Tab 4: Generative Patterns
*
* Procedural pattern generation using fragment shaders
* Perlin noise, Voronoi, waves, plasma, kaleidoscope, and more!
*/
class PatternsRenderer {
constructor() {
this.device = null;
this.context = null;
this.format = null;
// Pattern parameters
this.params = {
type: 0, // 0=ivy (matches HTML select order), 1-9 other patterns
palette: 0, // 0-8 palettes
scale: 1.0,
speed: 1.0,
complexity: 5,
intensity: 1.0,
animate: true,
mouseReact: false
};
this.input = null;
this.animationLoop = null;
this.isActive = false;
this.time = 0;
}
async init(device, context, format, canvas) {
this.device = device;
this.context = context;
this.format = format;
this.canvas = canvas;
// Create shader
const shaderModule = device.createShaderModule({
label: "Patterns Shader",
code: this.getShaderCode()
});
// Create uniform buffer - increased size for new params
this.uniformBuffer = device.createBuffer({
label: "Patterns Uniforms",
size: 80,
usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST
});
// Create bind group layout
const bindGroupLayout = device.createBindGroupLayout({
entries: [
{
binding: 0,
visibility: GPUShaderStage.FRAGMENT,
buffer: { type: "uniform" }
}
]
});
// Create pipeline
this.pipeline = device.createRenderPipeline({
label: "Patterns Pipeline",
layout: device.createPipelineLayout({
bindGroupLayouts: [bindGroupLayout]
}),
vertex: {
module: shaderModule,
entryPoint: "vertexMain"
},
fragment: {
module: shaderModule,
entryPoint: "fragmentMain",
targets: [{ format }]
},
primitive: {
topology: "triangle-list"
}
});
// Create bind group
this.bindGroup = device.createBindGroup({
layout: bindGroupLayout,
entries: [
{
binding: 0,
resource: { buffer: this.uniformBuffer }
}
]
});
// Setup input
this.input = new WebGPUUtils.InputHandler(canvas);
// Create animation loop
this.animationLoop = new WebGPUUtils.AnimationLoop((dt, time) => {
// Only advance time if animation is enabled
if (this.params.animate) {
this.time += dt * this.params.speed;
}
this.render();
});
}
start() {
this.isActive = true;
this.animationLoop.start();
}
stop() {
this.isActive = false;
this.animationLoop.stop();
}
reset() {
this.time = 0;
}
setType(type) {
const types = {
ivy: 0, // First in HTML select = index 0
noise: 1,
voronoi: 2,
waves: 3,
plasma: 4,
kaleidoscope: 5,
hexagons: 6,
spiral: 7,
reaction: 8,
circuits: 9,
glitch: 10, // NEW: Glitch terrain mountains
aurora: 11 // NEW: Aurora borealis
};
this.params.type = types[type] ?? 0; // Default to ivy
}
setPalette(palette) {
const palettes = {
ivy: 0,
rainbow: 1,
fire: 2,
ocean: 3,
neon: 4,
sunset: 5,
cosmic: 6,
candy: 7,
monochrome: 8
};
this.params.palette = palettes[palette] ?? 0;
}
setScale(scale) {
this.params.scale = scale;
}
setSpeed(speed) {
this.params.speed = speed;
}
setComplexity(complexity) {
this.params.complexity = complexity;
}
setIntensity(intensity) {
this.params.intensity = intensity;
}
setAnimate(animate) {
this.params.animate = animate;
}
setMouseReact(react) {
this.params.mouseReact = react;
}
updateUniforms() {
const aspect = this.canvas.width / this.canvas.height;
const data = new Float32Array([
this.params.type, // 0
this.params.palette, // 4
this.params.scale, // 8
this.params.complexity, // 12
this.time, // 16
aspect, // 20
this.input.mouseX, // 24
this.input.mouseY, // 28
this.input.isPressed ? 1.0 : 0.0, // 32
this.params.intensity, // 36
this.params.animate ? 1.0 : 0.0, // 40
this.params.mouseReact ? 1.0 : 0.0, // 44
0.0,
0.0,
0.0,
0.0 // padding
]);
this.device.queue.writeBuffer(this.uniformBuffer, 0, data);
}
render() {
if (!this.isActive) return;
WebGPUUtils.resizeCanvasToDisplaySize(this.canvas, window.devicePixelRatio);
this.updateUniforms();
const commandEncoder = this.device.createCommandEncoder();
const renderPass = commandEncoder.beginRenderPass({
colorAttachments: [
{
view: this.context.getCurrentTexture().createView(),
clearValue: { r: 0, g: 0, b: 0, a: 1 },
loadOp: "clear",
storeOp: "store"
}
]
});
renderPass.setPipeline(this.pipeline);
renderPass.setBindGroup(0, this.bindGroup);
renderPass.draw(3);
renderPass.end();
this.device.queue.submit([commandEncoder.finish()]);
}
getShaderCode() {
return /* wgsl */ `
struct Uniforms {
patternType: f32,
palette: f32,
scale: f32,
complexity: f32,
time: f32,
aspect: f32,
mouseX: f32,
mouseY: f32,
mousePressed: f32,
intensity: f32,
animate: f32,
mouseReact: f32,
}
@group(0) @binding(0) var<uniform> u: Uniforms;
struct VertexOutput {
@builtin(position) position: vec4f,
@location(0) uv: vec2f,
}
@vertex
fn vertexMain(@builtin(vertex_index) vertexIndex: u32) -> VertexOutput {
var pos = array<vec2f, 3>(
vec2f(-1.0, -1.0),
vec2f(3.0, -1.0),
vec2f(-1.0, 3.0)
);
var output: VertexOutput;
output.position = vec4f(pos[vertexIndex], 0.0, 1.0);
output.uv = pos[vertexIndex] * 0.5 + 0.5;
return output;
}
// ============================================
// Color Palettes
// ============================================
fn getPaletteColor(t: f32, paletteId: i32) -> vec3f {
let tt = fract(t);
// Ivy Green
if (paletteId == 0) {
return vec3f(0.1 + 0.2 * tt, 0.4 + 0.5 * tt, 0.15 + 0.2 * tt);
}
// Rainbow
else if (paletteId == 1) {
return vec3f(
0.5 + 0.5 * cos(6.28318 * (tt + 0.0)),
0.5 + 0.5 * cos(6.28318 * (tt + 0.33)),
0.5 + 0.5 * cos(6.28318 * (tt + 0.67))
);
}
// Fire
else if (paletteId == 2) {
return vec3f(min(1.0, tt * 2.0), tt * tt, tt * tt * tt);
}
// Ocean
else if (paletteId == 3) {
return vec3f(0.0 + 0.2 * tt, 0.3 + 0.4 * tt, 0.5 + 0.5 * tt);
}
// Neon
else if (paletteId == 4) {
return vec3f(
0.5 + 0.5 * sin(tt * 6.28),
0.5 + 0.5 * sin(tt * 6.28 + 2.094),
0.5 + 0.5 * sin(tt * 6.28 + 4.188)
);
}
// Sunset
else if (paletteId == 5) {
return vec3f(0.9 - 0.3 * tt, 0.3 + 0.3 * tt, 0.4 + 0.4 * tt);
}
// Cosmic
else if (paletteId == 6) {
return vec3f(
0.1 + 0.4 * sin(tt * 6.28),
0.05 + 0.2 * sin(tt * 6.28 + 2.0),
0.3 + 0.6 * sin(tt * 6.28 + 4.0)
);
}
// Candy
else if (paletteId == 7) {
return vec3f(
0.8 + 0.2 * sin(tt * 12.56),
0.4 + 0.4 * sin(tt * 12.56 + 2.0),
0.7 + 0.3 * sin(tt * 12.56 + 4.0)
);
}
// Monochrome
else {
return vec3f(tt, tt, tt);
}
}
// ============================================
// Noise Functions
// ============================================
fn hash21(p: vec2f) -> f32 {
var p3 = fract(vec3f(p.x, p.y, p.x) * 0.1031);
p3 += dot(p3, p3.yzx + 33.33);
return fract((p3.x + p3.y) * p3.z);
}
fn hash22(p: vec2f) -> vec2f {
let n = sin(dot(p, vec2f(41.0, 289.0)));
return fract(vec2f(262144.0, 32768.0) * n) * 2.0 - 1.0;
}
fn noise(p: vec2f) -> f32 {
let i = floor(p);
let f = fract(p);
let u = f * f * (3.0 - 2.0 * f);
return mix(
mix(hash21(i + vec2f(0.0, 0.0)), hash21(i + vec2f(1.0, 0.0)), u.x),
mix(hash21(i + vec2f(0.0, 1.0)), hash21(i + vec2f(1.0, 1.0)), u.x),
u.y
);
}
fn fbm(p: vec2f, octaves: i32) -> f32 {
var value = 0.0;
var amplitude = 0.5;
var frequency = 1.0;
var pos = p;
for (var i = 0; i < octaves; i++) {
value += amplitude * noise(pos * frequency);
amplitude *= 0.5;
frequency *= 2.0;
}
return value;
}
// Voronoi
fn voronoi(p: vec2f) -> vec3f {
let n = floor(p);
let f = fract(p);
var minDist = 1.0;
var minDist2 = 1.0;
var cellId = vec2f(0.0);
for (var j = -1; j <= 1; j++) {
for (var i = -1; i <= 1; i++) {
let g = vec2f(f32(i), f32(j));
let o = hash22(n + g) * 0.5 + 0.5;
let r = g + o - f;
let d = dot(r, r);
if (d < minDist) {
minDist2 = minDist;
minDist = d;
cellId = n + g;
} else if (d < minDist2) {
minDist2 = d;
}
}
}
return vec3f(sqrt(minDist), sqrt(minDist2) - sqrt(minDist), hash21(cellId));
}
// ============================================
// Pattern Functions
// ============================================
fn perlinPattern(uv: vec2f, t: f32) -> f32 {
let p = uv * u.scale * 5.0;
let animT = select(0.0, t, u.animate > 0.5);
return fbm(p + vec2f(animT * 0.2, animT * 0.15), i32(u.complexity));
}
fn voronoiPattern(uv: vec2f, t: f32) -> f32 {
let animT = select(0.0, t, u.animate > 0.5);
let p = uv * u.scale * 5.0 + vec2f(animT * 0.1, animT * 0.05);
let v = voronoi(p);
return v.z + v.y * 0.5;
}
fn wavesPattern(uv: vec2f, t: f32) -> f32 {
var p = (uv - 0.5) * 2.0;
p.x *= u.aspect;
p *= u.scale;
var value = 0.0;
let octaves = i32(u.complexity);
let animT = select(0.0, t, u.animate > 0.5);
for (var i = 0; i < octaves; i++) {
let freq = f32(i + 1) * 3.0;
let phase = animT * (0.5 + f32(i) * 0.1);
value += sin(p.x * freq + phase) * cos(p.y * freq * 0.7 + phase * 0.8) / freq;
}
return value * 0.5 + 0.5;
}
fn plasmaPattern(uv: vec2f, t: f32) -> f32 {
var p = (uv - 0.5) * 2.0;
p.x *= u.aspect;
p *= u.scale * 2.0;
let animT = select(0.0, t, u.animate > 0.5);
var v = 0.0;
v += sin(p.x * 10.0 + animT);
v += sin(10.0 * (p.x * sin(animT / 2.0) + p.y * cos(animT / 3.0)) + animT);
v += sin(sqrt(100.0 * (p.x * p.x + p.y * p.y) + 1.0) + animT);
let cx = p.x + 0.5 * sin(animT / 5.0);
let cy = p.y + 0.5 * cos(animT / 3.0);
v += sin(sqrt(100.0 * (cx * cx + cy * cy) + 1.0) + animT);
return (v / 4.0) * 0.5 + 0.5;
}
fn kaleidoscopePattern(uv: vec2f, t: f32) -> f32 {
var p = (uv - 0.5) * 2.0;
p.x *= u.aspect;
var r = length(p);
var a = atan2(p.y, p.x);
let segments = f32(i32(u.complexity) + 3);
a = abs(((a / 3.14159 * 0.5 + 0.5) * segments) % 2.0 - 1.0) * 3.14159;
p = vec2f(cos(a), sin(a)) * r;
p *= u.scale * 2.0;
let animT = select(0.0, t, u.animate > 0.5);
p += vec2f(animT * 0.3, animT * 0.2);
let n = fbm(p, 4);
let fade = 1.0 - smoothstep(0.5, 1.0, r);
return n * fade + r * 0.3;
}
fn ivyPattern(uv: vec2f, t: f32) -> f32 {
var p = (uv - 0.5) * 2.0 * u.scale;
p.x *= u.aspect;
var value = 0.0;
let animT = select(0.0, t, u.animate > 0.5);
for (var vine = 0; vine < 5; vine++) {
let vf = f32(vine);
let vineOffset = vec2f(sin(vf * 1.5 + animT * 0.2) * 0.3, vf * 0.4 - 1.0);
var vp = p - vineOffset;
let curve = sin(vp.y * 3.0 + animT * 0.5 + vf) * 0.2;
vp.x -= curve;
let stemDist = abs(vp.x);
let stemGlow = exp(-stemDist * 30.0);
value += stemGlow * 0.3;
for (var leaf = 0; leaf < 6; leaf++) {
let lf = f32(leaf);
let leafY = vf * 0.4 - 1.0 + lf * 0.3;
let side = select(-1.0, 1.0, leaf % 2 == 0);
let leafCenter = vec2f(
vineOffset.x + sin(leafY * 3.0 + animT * 0.5 + vf) * 0.2 + side * 0.15,
leafY
);
var lp = p - leafCenter;
let leafDist = length(lp * vec2f(1.0, 1.5)) - 0.06;
let leafGlow = exp(-max(0.0, leafDist) * 40.0);
value += leafGlow * 0.5;
}
}
return clamp(value, 0.0, 1.0);
}
fn hexagonsPattern(uv: vec2f, t: f32) -> f32 {
var p = (uv - 0.5) * u.scale * 10.0;
p.x *= u.aspect;
let animT = select(0.0, t, u.animate > 0.5);
// Hexagonal grid
let s = vec2f(1.0, 1.732);
let a = (p / s) % 2.0 - 1.0;
let b = ((p + s * 0.5) / s) % 2.0 - 1.0;
let gv = select(a, b, dot(a, a) > dot(b, b));
let hexDist = max(abs(gv.x), abs(gv.y * 0.866 + gv.x * 0.5));
let pulse = sin(animT * 2.0 + length(p) * 0.5) * 0.5 + 0.5;
return (1.0 - smoothstep(0.4, 0.5, hexDist)) * pulse;
}
fn spiralPattern(uv: vec2f, t: f32) -> f32 {
var p = (uv - 0.5) * 2.0;
p.x *= u.aspect;
let r = length(p);
let a = atan2(p.y, p.x);
let animT = select(0.0, t, u.animate > 0.5);
let spiral = sin(a * u.complexity + r * 10.0 * u.scale - animT * 3.0);
let rings = sin(r * 20.0 - animT * 2.0);
return (spiral * 0.5 + 0.5) * (1.0 - r * 0.5);
}
fn reactionPattern(uv: vec2f, t: f32) -> f32 {
var p = uv * u.scale * 8.0;
let animT = select(0.0, t, u.animate > 0.5);
var a = fbm(p + vec2f(animT * 0.1, 0.0), i32(u.complexity));
var b = fbm(p + vec2f(0.0, animT * 0.1) + a * 2.0, i32(u.complexity));
var c = fbm(p + b * 2.0 + vec2f(animT * 0.05), i32(u.complexity));
return c;
}
fn circuitsPattern(uv: vec2f, t: f32) -> f32 {
var p = uv * u.scale * 5.0;
let animT = select(0.0, t, u.animate > 0.5);
let grid = floor(p);
let f = fract(p);
let randVal = hash21(grid);
let lineX = step(0.45, f.x) * step(f.x, 0.55);
let lineY = step(0.45, f.y) * step(f.y, 0.55);
var circuit = 0.0;
if (randVal > 0.5) {
circuit = lineX;
} else {
circuit = lineY;
}
// Nodes at intersections
let nodeDist = length(f - 0.5);
let node = 1.0 - smoothstep(0.1, 0.15, nodeDist);
// Pulse animation
let pulse = sin(animT * 3.0 + hash21(grid) * 6.28) * 0.5 + 0.5;
return (circuit + node) * (0.5 + pulse * 0.5);
}
// 🏔️ GLITCH TERRAIN - Pixelated mountains with neon colors
fn glitchTerrainPattern(uv: vec2f, t: f32) -> f32 {
let animT = select(0.0, t, u.animate > 0.5);
var p = uv;
p.x *= u.aspect;
// Create terrain height using layered noise
var height = 0.0;
var freq = 2.0 * u.scale;
var amp = 0.5;
for (var i = 0; i < 5; i++) {
let noiseVal = fbm(vec2f(p.x * freq + animT * 0.1, f32(i) * 0.5), 3);
height += noiseVal * amp;
freq *= 2.0;
amp *= 0.5;
}
// Convert to terrain silhouette
let terrainLine = 0.3 + height * 0.4;
let inTerrain = step(p.y, terrainLine);
// Add glitch displacement
let glitchX = floor(p.x * 50.0) / 50.0;
let glitchOffset = hash21(vec2f(glitchX, floor(animT * 10.0))) * 0.1;
let glitchedY = p.y + glitchOffset * inTerrain;
// Layered mountains effect
var layers = 0.0;
for (var i = 0; i < 4; i++) {
let layerHeight = 0.2 + f32(i) * 0.15 + fbm(vec2f(p.x * (3.0 - f32(i) * 0.5) + animT * 0.05 * f32(i + 1), f32(i)), 3) * 0.3;
let layerMask = step(glitchedY, layerHeight);
layers = max(layers, layerMask * (0.3 + f32(i) * 0.2));
}
// Add scan lines for glitch effect
let scanline = sin(p.y * 200.0 + animT * 50.0) * 0.1;
// Color variation based on height
let heightGradient = (terrainLine - p.y) / terrainLine;
return layers + scanline * inTerrain + heightGradient * 0.3;
}
// 🌌 AURORA BOREALIS - Northern lights effect
fn auroraPattern(uv: vec2f, t: f32) -> f32 {
let animT = select(0.0, t, u.animate > 0.5);
var p = uv;
p.x *= u.aspect;
// Create flowing curtains
var aurora = 0.0;
for (var i = 0; i < 5; i++) {
let offset = f32(i) * 0.2;
let freq = 2.0 + f32(i) * 0.5;
let speed = 0.3 + f32(i) * 0.1;
// Wave pattern for curtain shape
let wave = sin(p.x * freq * u.scale + animT * speed + offset * 10.0);
let curtainY = 0.5 + wave * 0.15 + offset * 0.1;
// Vertical gradient (aurora rises from bottom)
let vertGrad = smoothstep(curtainY - 0.3, curtainY, p.y) *
smoothstep(curtainY + 0.2, curtainY, p.y);
// Add noise for organic feel
let noiseVal = fbm(vec2f(p.x * 3.0 + animT * 0.2, p.y * 2.0 + f32(i)), 3);
aurora += vertGrad * (0.3 + noiseVal * 0.4) * (1.0 - f32(i) * 0.15);
}
// Add shimmer
let shimmer = sin(p.x * 30.0 + animT * 5.0) * sin(p.y * 20.0 + animT * 3.0) * 0.1;
return aurora + shimmer * aurora;
}
@fragment
fn fragmentMain(input: VertexOutput) -> @location(0) vec4f {
let patternType = i32(u.patternType);
let paletteId = i32(u.palette);
var t = u.time;
var value: f32 = 0.0;
// Pattern order matches HTML select: ivy=0, noise=1, voronoi=2, waves=3, plasma=4, kaleidoscope=5, hexagons=6, spiral=7, reaction=8, circuits=9, glitch=10, aurora=11
if (patternType == 0) {
value = ivyPattern(input.uv, t);
} else if (patternType == 1) {
value = perlinPattern(input.uv, t);
} else if (patternType == 2) {
value = voronoiPattern(input.uv, t);
} else if (patternType == 3) {
value = wavesPattern(input.uv, t);
} else if (patternType == 4) {
value = plasmaPattern(input.uv, t);
} else if (patternType == 5) {
value = kaleidoscopePattern(input.uv, t);
} else if (patternType == 6) {
value = hexagonsPattern(input.uv, t);
} else if (patternType == 7) {
value = spiralPattern(input.uv, t);
} else if (patternType == 8) {
value = reactionPattern(input.uv, t);
} else if (patternType == 9) {
value = circuitsPattern(input.uv, t);
} else if (patternType == 10) {
value = glitchTerrainPattern(input.uv, t);
} else {
value = auroraPattern(input.uv, t);
}
// Apply intensity
value *= u.intensity;
// Get color from palette
var color = getPaletteColor(value, paletteId);
// Mouse interaction
if (u.mouseReact > 0.5 || u.mousePressed > 0.5) {
let mouse = vec2f(u.mouseX, u.mouseY);
let dist = distance(input.uv, mouse);
let glow = exp(-dist * 8.0) * 0.6;
color += vec3f(glow, glow * 0.7, glow * 0.9);
}
return vec4f(color, 1.0);
}
`;
}
}
// Export
window.PatternsRenderer = PatternsRenderer;
|