Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -49,24 +49,13 @@ except Exception as e:
|
|
| 49 |
print(f"⚠️ Error loading model: {e}")
|
| 50 |
raise e
|
| 51 |
|
| 52 |
-
# Optimized thresholds from training
|
| 53 |
-
BEST_THRESHOLDS = np.array([0.5, 0.5, 0.5, 0.5, 0.5])
|
| 54 |
|
| 55 |
def predict_emotions(text):
|
| 56 |
-
"""
|
| 57 |
-
Predict emotions from text
|
| 58 |
-
|
| 59 |
-
Args:
|
| 60 |
-
text: Input text string
|
| 61 |
-
|
| 62 |
-
Returns:
|
| 63 |
-
Dictionary with emotion predictions and probabilities
|
| 64 |
-
"""
|
| 65 |
if not text or not text.strip():
|
| 66 |
-
return
|
| 67 |
-
"⚠️ Error": "Please enter some text to analyze",
|
| 68 |
-
"Detected Emotions": "None"
|
| 69 |
-
}
|
| 70 |
|
| 71 |
try:
|
| 72 |
# Tokenize
|
|
@@ -91,32 +80,27 @@ def predict_emotions(text):
|
|
| 91 |
|
| 92 |
# Format results
|
| 93 |
detected = []
|
| 94 |
-
|
| 95 |
|
| 96 |
-
for
|
| 97 |
-
all_probs[f"{emoji} {emotion.capitalize()}"] = float(prob)
|
| 98 |
if pred == 1:
|
| 99 |
-
detected.append(f"{emoji} {emotion.capitalize()}
|
| 100 |
|
| 101 |
-
if
|
| 102 |
-
|
| 103 |
else:
|
| 104 |
-
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
"
|
| 110 |
-
|
| 111 |
-
}
|
| 112 |
|
| 113 |
-
return
|
| 114 |
|
| 115 |
except Exception as e:
|
| 116 |
-
return {
|
| 117 |
-
"⚠️ Error": f"Prediction failed: {str(e)}",
|
| 118 |
-
"Detected Emotions": "Error"
|
| 119 |
-
}
|
| 120 |
|
| 121 |
# Example texts
|
| 122 |
examples = [
|
|
@@ -129,17 +113,14 @@ examples = [
|
|
| 129 |
]
|
| 130 |
|
| 131 |
# Create Gradio Interface
|
| 132 |
-
with gr.Blocks(
|
| 133 |
gr.Markdown(
|
| 134 |
"""
|
| 135 |
# 😊 Multi-Label Emotion Classification
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
### Emotions Detected:
|
| 140 |
-
😠 Anger | 😨 Fear | 😊 Joy | 😢 Sadness | 😲 Surprise
|
| 141 |
|
| 142 |
-
|
| 143 |
"""
|
| 144 |
)
|
| 145 |
|
|
@@ -148,25 +129,18 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Multi-Label Emotion Detection") as
|
|
| 148 |
text_input = gr.Textbox(
|
| 149 |
label="Enter your text",
|
| 150 |
placeholder="Type or paste text here to analyze emotions...",
|
| 151 |
-
lines=5
|
| 152 |
-
max_lines=10
|
| 153 |
)
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
clear_btn = gr.Button("🗑️ Clear", variant="secondary")
|
| 157 |
-
analyze_btn = gr.Button("🔮 Analyze Emotions", variant="primary", scale=2)
|
| 158 |
|
| 159 |
with gr.Column():
|
| 160 |
-
|
| 161 |
-
label="📊 Analysis Results",
|
| 162 |
-
show_label=True
|
| 163 |
-
)
|
| 164 |
|
| 165 |
-
gr.Markdown("### 💡 Try these examples:")
|
| 166 |
gr.Examples(
|
| 167 |
examples=examples,
|
| 168 |
inputs=text_input,
|
| 169 |
-
outputs=
|
| 170 |
fn=predict_emotions,
|
| 171 |
cache_examples=False
|
| 172 |
)
|
|
@@ -174,86 +148,31 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Multi-Label Emotion Detection") as
|
|
| 174 |
gr.Markdown(
|
| 175 |
"""
|
| 176 |
---
|
| 177 |
-
|
| 178 |
|
| 179 |
-
This is a **multi-label classification** model
|
| 180 |
-
- Each text can have **multiple emotions** simultaneously
|
| 181 |
-
- For example, "I'm excited but nervous" → Both Joy ✅ and Fear ✅
|
| 182 |
-
- Each emotion is predicted independently with a probability score
|
| 183 |
-
- Emotions above the threshold are marked as "detected"
|
| 184 |
|
| 185 |
### 🎯 Model Details
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|-----------|---------|
|
| 189 |
-
| **Architecture** | RoBERTa-base (125M parameters) |
|
| 190 |
-
| **Training Data** | Multi-label emotion dataset |
|
| 191 |
-
| **Max Sequence Length** | 200 tokens |
|
| 192 |
-
| **Evaluation Metric** | Macro F1-Score |
|
| 193 |
-
| **Framework** | PyTorch + Transformers |
|
| 194 |
-
|
| 195 |
-
### 🏗️ Architecture
|
| 196 |
```
|
| 197 |
-
Input Text
|
| 198 |
-
|
| 199 |
-
RoBERTa Tokenizer (BPE)
|
| 200 |
-
↓
|
| 201 |
-
RoBERTa Encoder (12 layers)
|
| 202 |
-
↓
|
| 203 |
-
[CLS] Token Pooling
|
| 204 |
-
↓
|
| 205 |
-
Dropout (0.35)
|
| 206 |
-
↓
|
| 207 |
-
Linear Layer (768 → 5)
|
| 208 |
-
↓
|
| 209 |
-
Sigmoid Activation
|
| 210 |
-
↓
|
| 211 |
-
5 Emotion Probabilities
|
| 212 |
```
|
| 213 |
|
| 214 |
-
### ⚙️ Training Configuration
|
| 215 |
-
- **Optimizer**: AdamW (lr=2e-5, weight_decay=0.02)
|
| 216 |
-
- **Scheduler**: Linear warmup (10% of steps)
|
| 217 |
-
- **Loss Function**: BCE with Logits + Label Smoothing (0.05)
|
| 218 |
-
- **Batch Size**: 8 (with 4x gradient accumulation = effective 32)
|
| 219 |
-
- **Epochs**: 8 (with early stopping, patience=3)
|
| 220 |
-
- **Validation**: Threshold tuning per emotion class
|
| 221 |
-
|
| 222 |
-
### 📊 Performance Optimization
|
| 223 |
-
- **Stratified split** by label distribution
|
| 224 |
-
- **Per-class threshold tuning** for optimal F1-score
|
| 225 |
-
- **Label smoothing** to prevent overconfidence
|
| 226 |
-
- **Early stopping** to prevent overfitting
|
| 227 |
-
|
| 228 |
---
|
| 229 |
-
|
| 230 |
-
### 🔗 Resources
|
| 231 |
-
- **Model**: RoBERTa-base ([Hugging Face](https://huggingface.co/roberta-base))
|
| 232 |
-
- **Framework**: PyTorch + Transformers
|
| 233 |
-
- **Project**: 2025 Sep DLGenAI Course
|
| 234 |
-
|
| 235 |
-
---
|
| 236 |
-
|
| 237 |
-
*Built with ❤️ using PyTorch, Transformers, and Gradio*
|
| 238 |
"""
|
| 239 |
)
|
| 240 |
|
| 241 |
-
#
|
| 242 |
-
analyze_btn.click(
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
outputs=output_json
|
| 246 |
-
)
|
| 247 |
-
|
| 248 |
-
clear_btn.click(
|
| 249 |
-
fn=lambda: ("", None),
|
| 250 |
-
inputs=None,
|
| 251 |
-
outputs=[text_input, output_json]
|
| 252 |
-
)
|
| 253 |
|
| 254 |
-
# Launch the app
|
| 255 |
if __name__ == "__main__":
|
| 256 |
-
demo.launch(
|
| 257 |
-
share=False,
|
| 258 |
-
show_error=True
|
| 259 |
-
)
|
|
|
|
| 49 |
print(f"⚠️ Error loading model: {e}")
|
| 50 |
raise e
|
| 51 |
|
| 52 |
+
# Optimized thresholds from training
|
| 53 |
+
BEST_THRESHOLDS = np.array([0.5, 0.5, 0.5, 0.5, 0.5])
|
| 54 |
|
| 55 |
def predict_emotions(text):
|
| 56 |
+
"""Predict emotions from text"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
if not text or not text.strip():
|
| 58 |
+
return "⚠️ Please enter some text to analyze"
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
try:
|
| 61 |
# Tokenize
|
|
|
|
| 80 |
|
| 81 |
# Format results
|
| 82 |
detected = []
|
| 83 |
+
output = "## 🎯 Detected Emotions:\n\n"
|
| 84 |
|
| 85 |
+
for emotion, emoji, prob, pred in zip(EMOTIONS, EMOTION_EMOJIS, probs, predictions):
|
|
|
|
| 86 |
if pred == 1:
|
| 87 |
+
detected.append(f"{emoji} **{emotion.capitalize()}**")
|
| 88 |
|
| 89 |
+
if detected:
|
| 90 |
+
output += ", ".join(detected) + "\n\n"
|
| 91 |
else:
|
| 92 |
+
output += "*No strong emotions detected (all below threshold)*\n\n"
|
| 93 |
|
| 94 |
+
output += "## 📊 All Probabilities:\n\n"
|
| 95 |
+
for emotion, emoji, prob in zip(EMOTIONS, EMOTION_EMOJIS, probs):
|
| 96 |
+
bar_length = int(prob * 20)
|
| 97 |
+
bar = "█" * bar_length + "░" * (20 - bar_length)
|
| 98 |
+
output += f"{emoji} **{emotion.capitalize()}**: {bar} {prob:.1%}\n\n"
|
|
|
|
| 99 |
|
| 100 |
+
return output
|
| 101 |
|
| 102 |
except Exception as e:
|
| 103 |
+
return f"⚠️ Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
# Example texts
|
| 106 |
examples = [
|
|
|
|
| 113 |
]
|
| 114 |
|
| 115 |
# Create Gradio Interface
|
| 116 |
+
with gr.Blocks() as demo:
|
| 117 |
gr.Markdown(
|
| 118 |
"""
|
| 119 |
# 😊 Multi-Label Emotion Classification
|
| 120 |
|
| 121 |
+
Detect **multiple emotions** in text using a fine-tuned RoBERTa transformer.
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
**Emotions:** 😠 Anger | 😨 Fear | 😊 Joy | 😢 Sadness | 😲 Surprise
|
| 124 |
"""
|
| 125 |
)
|
| 126 |
|
|
|
|
| 129 |
text_input = gr.Textbox(
|
| 130 |
label="Enter your text",
|
| 131 |
placeholder="Type or paste text here to analyze emotions...",
|
| 132 |
+
lines=5
|
|
|
|
| 133 |
)
|
| 134 |
+
analyze_btn = gr.Button("🔮 Analyze Emotions", variant="primary")
|
| 135 |
+
clear_btn = gr.Button("🗑️ Clear")
|
|
|
|
|
|
|
| 136 |
|
| 137 |
with gr.Column():
|
| 138 |
+
output = gr.Markdown(label="Analysis Results")
|
|
|
|
|
|
|
|
|
|
| 139 |
|
|
|
|
| 140 |
gr.Examples(
|
| 141 |
examples=examples,
|
| 142 |
inputs=text_input,
|
| 143 |
+
outputs=output,
|
| 144 |
fn=predict_emotions,
|
| 145 |
cache_examples=False
|
| 146 |
)
|
|
|
|
| 148 |
gr.Markdown(
|
| 149 |
"""
|
| 150 |
---
|
| 151 |
+
## 📈 How It Works
|
| 152 |
|
| 153 |
+
This is a **multi-label classification** model - each text can have multiple emotions!
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
### 🎯 Model Details
|
| 156 |
+
- **Architecture**: RoBERTa-base (125M parameters)
|
| 157 |
+
- **Max Length**: 200 tokens
|
| 158 |
+
- **Training**: BCE Loss + Label Smoothing (0.05)
|
| 159 |
+
- **Evaluation**: Macro F1-Score with per-class threshold tuning
|
| 160 |
|
| 161 |
+
### 🏗️ Architecture Flow
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
```
|
| 163 |
+
Input Text → Tokenizer → RoBERTa Encoder → [CLS] Pooling →
|
| 164 |
+
Dropout (0.35) → Linear (768→5) → Sigmoid → 5 Emotion Probabilities
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
```
|
| 166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
---
|
| 168 |
+
**Project**: 2025 Sep DLGenAI Course | **Built with**: PyTorch + Transformers + Gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
"""
|
| 170 |
)
|
| 171 |
|
| 172 |
+
# Event handlers
|
| 173 |
+
analyze_btn.click(fn=predict_emotions, inputs=text_input, outputs=output)
|
| 174 |
+
clear_btn.click(fn=lambda: ("", ""), inputs=None, outputs=[text_input, output])
|
| 175 |
+
text_input.submit(fn=predict_emotions, inputs=text_input, outputs=output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
|
|
|
| 177 |
if __name__ == "__main__":
|
| 178 |
+
demo.launch()
|
|
|
|
|
|
|
|
|