Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,339 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
<span style='background: {"#10b98120" if detected else "#f3f4f6"}; color: {"#10b981" if detected else "#9ca3af"}; padding: 4px 10px; border-radius: 6px; font-size: 12px; font-weight: 600;'>
|
| 3 |
{("✓ DETECTED" if detected else "○ Not Detected")}
|
| 4 |
</span>
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from transformers import AutoTokenizer, AutoModel
|
| 5 |
+
import numpy as np
|
| 6 |
+
import os
|
| 7 |
+
from typing import Dict, List, Tuple, Optional
|
| 8 |
+
import json
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
from collections import defaultdict
|
| 11 |
+
|
| 12 |
+
print("🎭 Emotion Classifier Starting...")
|
| 13 |
+
|
| 14 |
+
# ========== CONFIG ==========
|
| 15 |
+
MODEL_NAME = "roberta-base"
|
| 16 |
+
EMOTIONS = ["anger", "fear", "joy", "sadness", "surprise"]
|
| 17 |
+
BEST_THRESHOLDS = [0.24722222, 0.61666667, 0.59722222, 0.44166667, 0.46111111]
|
| 18 |
+
MAX_LEN = 200
|
| 19 |
+
MODEL_PATH = "roberta.pth"
|
| 20 |
+
|
| 21 |
+
# Emotion metadata with richer information
|
| 22 |
+
EMOTION_META = {
|
| 23 |
+
"anger": {
|
| 24 |
+
"emoji": "😠", "color": "#ef4444", "light_color": "#fee2e2",
|
| 25 |
+
"gradient": "linear-gradient(135deg, #ef4444 0%, #dc2626 100%)",
|
| 26 |
+
"description": "Frustration, irritation, or rage",
|
| 27 |
+
"keywords": ["angry", "furious", "mad", "annoyed", "irritated"],
|
| 28 |
+
"intensity_labels": ["Mild irritation", "Moderate anger", "Strong anger", "Intense rage"]
|
| 29 |
+
},
|
| 30 |
+
"fear": {
|
| 31 |
+
"emoji": "😨", "color": "#8b5cf6", "light_color": "#ede9fe",
|
| 32 |
+
"gradient": "linear-gradient(135deg, #8b5cf6 0%, #7c3aed 100%)",
|
| 33 |
+
"description": "Anxiety, worry, or terror",
|
| 34 |
+
"keywords": ["scared", "afraid", "terrified", "anxious", "worried"],
|
| 35 |
+
"intensity_labels": ["Slight concern", "Moderate fear", "Strong fear", "Extreme terror"]
|
| 36 |
+
},
|
| 37 |
+
"joy": {
|
| 38 |
+
"emoji": "😊", "color": "#fbbf24", "light_color": "#fef3c7",
|
| 39 |
+
"gradient": "linear-gradient(135deg, #fbbf24 0%, #f59e0b 100%)",
|
| 40 |
+
"description": "Happiness, excitement, or delight",
|
| 41 |
+
"keywords": ["happy", "excited", "delighted", "joyful", "thrilled"],
|
| 42 |
+
"intensity_labels": ["Mild pleasure", "Moderate happiness", "Strong joy", "Intense euphoria"]
|
| 43 |
+
},
|
| 44 |
+
"sadness": {
|
| 45 |
+
"emoji": "😢", "color": "#3b82f6", "light_color": "#dbeafe",
|
| 46 |
+
"gradient": "linear-gradient(135deg, #3b82f6 0%, #2563eb 100%)",
|
| 47 |
+
"description": "Sorrow, grief, or disappointment",
|
| 48 |
+
"keywords": ["sad", "depressed", "unhappy", "miserable", "heartbroken"],
|
| 49 |
+
"intensity_labels": ["Mild sadness", "Moderate sorrow", "Strong grief", "Deep despair"]
|
| 50 |
+
},
|
| 51 |
+
"surprise": {
|
| 52 |
+
"emoji": "😲", "color": "#ec4899", "light_color": "#fce7f3",
|
| 53 |
+
"gradient": "linear-gradient(135deg, #ec4899 0%, #db2777 100%)",
|
| 54 |
+
"description": "Astonishment, shock, or amazement",
|
| 55 |
+
"keywords": ["surprised", "shocked", "amazed", "astonished", "startled"],
|
| 56 |
+
"intensity_labels": ["Mild surprise", "Moderate shock", "Strong astonishment", "Complete disbelief"]
|
| 57 |
+
}
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
# ========== MODEL CLASS ==========
|
| 61 |
+
class RobertaEmotion(nn.Module):
|
| 62 |
+
def __init__(self):
|
| 63 |
+
super().__init__()
|
| 64 |
+
self.backbone = AutoModel.from_pretrained(MODEL_NAME)
|
| 65 |
+
self.dropout = nn.Dropout(0.35)
|
| 66 |
+
self.head = nn.Linear(768, 5)
|
| 67 |
+
|
| 68 |
+
def forward(self, input_ids, attention_mask):
|
| 69 |
+
outputs = self.backbone(input_ids=input_ids, attention_mask=attention_mask)
|
| 70 |
+
pooled = outputs.pooler_output if hasattr(outputs, "pooler_output") else outputs.last_hidden_state[:, 0]
|
| 71 |
+
x = self.dropout(pooled)
|
| 72 |
+
return self.head(x)
|
| 73 |
+
|
| 74 |
+
# ========== GLOBAL STATE ==========
|
| 75 |
+
class ModelState:
|
| 76 |
+
def __init__(self):
|
| 77 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 78 |
+
self.model = None
|
| 79 |
+
self.tokenizer = None
|
| 80 |
+
self.ready = False
|
| 81 |
+
self.predictions_count = 0
|
| 82 |
+
self.history = []
|
| 83 |
+
self.emotion_stats = defaultdict(int)
|
| 84 |
+
|
| 85 |
+
state = ModelState()
|
| 86 |
+
|
| 87 |
+
# ========== UTILITY FUNCTIONS ==========
|
| 88 |
+
def sigmoid(x: np.ndarray) -> np.ndarray:
|
| 89 |
+
"""Apply sigmoid with numerical stability"""
|
| 90 |
+
return 1 / (1 + np.exp(-np.clip(x, -500, 500)))
|
| 91 |
+
|
| 92 |
+
def get_intensity_level(prob: float) -> Tuple[str, str]:
|
| 93 |
+
"""Get intensity level and color"""
|
| 94 |
+
if prob >= 0.85: return "Very High", "#10b981"
|
| 95 |
+
elif prob >= 0.70: return "High", "#3b82f6"
|
| 96 |
+
elif prob >= 0.50: return "Moderate", "#f59e0b"
|
| 97 |
+
elif prob >= 0.30: return "Low", "#9ca3af"
|
| 98 |
+
else: return "Very Low", "#d1d5db"
|
| 99 |
+
|
| 100 |
+
def get_emotion_intensity_label(emotion: str, prob: float) -> str:
|
| 101 |
+
"""Get human-readable intensity for emotion"""
|
| 102 |
+
labels = EMOTION_META[emotion]["intensity_labels"]
|
| 103 |
+
if prob >= 0.85: return labels[3]
|
| 104 |
+
elif prob >= 0.65: return labels[2]
|
| 105 |
+
elif prob >= 0.45: return labels[1]
|
| 106 |
+
else: return labels[0]
|
| 107 |
+
|
| 108 |
+
# ========== MODEL LOADING ==========
|
| 109 |
+
def load_model() -> Tuple[str, str]:
|
| 110 |
+
"""Load model and return status HTML"""
|
| 111 |
+
try:
|
| 112 |
+
print("📦 Loading model...")
|
| 113 |
+
state.model = RobertaEmotion()
|
| 114 |
+
|
| 115 |
+
if os.path.exists(MODEL_PATH):
|
| 116 |
+
state.model.load_state_dict(torch.load(MODEL_PATH, map_location=state.device))
|
| 117 |
+
print("✅ Trained model loaded")
|
| 118 |
+
status = "success"
|
| 119 |
+
status_text = "Trained Model Loaded"
|
| 120 |
+
else:
|
| 121 |
+
print("⚠️ No trained weights found")
|
| 122 |
+
status = "warning"
|
| 123 |
+
status_text = "Model Initialized (No Weights)"
|
| 124 |
+
|
| 125 |
+
state.model.to(state.device)
|
| 126 |
+
state.model.eval()
|
| 127 |
+
state.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 128 |
+
state.ready = True
|
| 129 |
+
|
| 130 |
+
device_emoji = "🚀" if state.device == "cuda" else "💻"
|
| 131 |
+
bg_color = "#d1fae5" if status == "success" else "#fef3c7"
|
| 132 |
+
border_color = "#10b981" if status == "success" else "#f59e0b"
|
| 133 |
+
icon = "✅" if status == "success" else "⚠️"
|
| 134 |
+
|
| 135 |
+
html = f"""
|
| 136 |
+
<div style='background: {bg_color}; padding: 20px; border-radius: 12px; border-left: 5px solid {border_color}; margin: 10px 0;'>
|
| 137 |
+
<div style='display: flex; align-items: center; gap: 15px;'>
|
| 138 |
+
<div style='font-size: 48px;'>{icon}</div>
|
| 139 |
+
<div style='flex: 1;'>
|
| 140 |
+
<h3 style='margin: 0 0 8px 0; color: #1f2937;'>{status_text}</h3>
|
| 141 |
+
<div style='color: #4b5563; font-size: 14px;'>
|
| 142 |
+
<strong>Device:</strong> {device_emoji} {state.device.upper()} |
|
| 143 |
+
<strong>Architecture:</strong> RoBERTa-base |
|
| 144 |
+
<strong>F1 Score:</strong> 0.872
|
| 145 |
+
</div>
|
| 146 |
+
<div style='margin-top: 8px; padding: 8px; background: rgba(255,255,255,0.5); border-radius: 6px; font-size: 13px; color: #374151;'>
|
| 147 |
+
🎯 Ready to analyze emotions! You can now enter text or try the examples below.
|
| 148 |
+
</div>
|
| 149 |
+
</div>
|
| 150 |
+
</div>
|
| 151 |
+
</div>
|
| 152 |
+
"""
|
| 153 |
+
|
| 154 |
+
controls_html = _create_controls_panel()
|
| 155 |
+
|
| 156 |
+
print(f"✅ Model ready on {state.device}")
|
| 157 |
+
return html, controls_html
|
| 158 |
+
|
| 159 |
+
except Exception as e:
|
| 160 |
+
state.ready = False
|
| 161 |
+
error_html = f"""
|
| 162 |
+
<div style='background: #fee2e2; padding: 20px; border-radius: 12px; border-left: 5px solid #ef4444;'>
|
| 163 |
+
<div style='display: flex; align-items: center; gap: 15px;'>
|
| 164 |
+
<div style='font-size: 48px;'>❌</div>
|
| 165 |
+
<div>
|
| 166 |
+
<h3 style='margin: 0 0 8px 0; color: #991b1b;'>Error Loading Model</h3>
|
| 167 |
+
<div style='color: #7f1d1d; font-size: 14px; font-family: monospace;'>{str(e)}</div>
|
| 168 |
+
</div>
|
| 169 |
+
</div>
|
| 170 |
+
</div>
|
| 171 |
+
"""
|
| 172 |
+
print(f"❌ Error: {e}")
|
| 173 |
+
return error_html, ""
|
| 174 |
+
|
| 175 |
+
# ========== VISUALIZATION FUNCTIONS ==========
|
| 176 |
+
def _create_controls_panel() -> str:
|
| 177 |
+
"""Create interactive controls panel"""
|
| 178 |
+
return f"""
|
| 179 |
+
<div style='background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 15px; border-radius: 10px; color: white; margin: 10px 0;'>
|
| 180 |
+
<div style='display: flex; justify-content: space-around; align-items: center; flex-wrap: wrap; gap: 15px;'>
|
| 181 |
+
<div style='text-align: center;'>
|
| 182 |
+
<div style='font-size: 28px; font-weight: bold;'>{state.predictions_count}</div>
|
| 183 |
+
<div style='font-size: 12px; opacity: 0.9;'>Total Predictions</div>
|
| 184 |
+
</div>
|
| 185 |
+
<div style='text-align: center;'>
|
| 186 |
+
<div style='font-size: 28px; font-weight: bold;'>5</div>
|
| 187 |
+
<div style='font-size: 12px; opacity: 0.9;'>Emotion Classes</div>
|
| 188 |
+
</div>
|
| 189 |
+
<div style='text-align: center;'>
|
| 190 |
+
<div style='font-size: 28px; font-weight: bold;'>0.872</div>
|
| 191 |
+
<div style='font-size: 12px; opacity: 0.9;'>F1 Score</div>
|
| 192 |
+
</div>
|
| 193 |
+
<div style='text-align: center;'>
|
| 194 |
+
<div style='font-size: 28px; font-weight: bold;'>{state.device.upper()}</div>
|
| 195 |
+
<div style='font-size: 12px; opacity: 0.9;'>Device</div>
|
| 196 |
+
</div>
|
| 197 |
+
</div>
|
| 198 |
+
</div>
|
| 199 |
+
"""
|
| 200 |
+
|
| 201 |
+
def _create_radar_chart_svg(probs: np.ndarray) -> str:
|
| 202 |
+
"""Create SVG radar chart for emotions"""
|
| 203 |
+
size = 400
|
| 204 |
+
padding = 80
|
| 205 |
+
center = size / 2
|
| 206 |
+
max_radius = (size / 2) - padding
|
| 207 |
+
|
| 208 |
+
# Calculate points
|
| 209 |
+
angles = [i * 2 * np.pi / 5 - np.pi/2 for i in range(5)]
|
| 210 |
+
points = []
|
| 211 |
+
for i, prob in enumerate(probs):
|
| 212 |
+
r = prob * max_radius
|
| 213 |
+
x = center + r * np.cos(angles[i])
|
| 214 |
+
y = center + r * np.sin(angles[i])
|
| 215 |
+
points.append(f"{x},{y}")
|
| 216 |
+
|
| 217 |
+
points_str = " ".join(points)
|
| 218 |
+
|
| 219 |
+
# Create axis lines
|
| 220 |
+
axis_lines = ""
|
| 221 |
+
for i in range(5):
|
| 222 |
+
x = center + max_radius * np.cos(angles[i])
|
| 223 |
+
y = center + max_radius * np.sin(angles[i])
|
| 224 |
+
axis_lines += f'<line x1="{center}" y1="{center}" x2="{x}" y2="{y}" stroke="#d1d5db" stroke-width="2"/>'
|
| 225 |
+
|
| 226 |
+
# Create circles (reference lines)
|
| 227 |
+
circles = ""
|
| 228 |
+
for level in [0.25, 0.5, 0.75, 1.0]:
|
| 229 |
+
r = level * max_radius
|
| 230 |
+
circles += f'<circle cx="{center}" cy="{center}" r="{r}" fill="none" stroke="#e5e7eb" stroke-width="1.5" stroke-dasharray="4,4"/>'
|
| 231 |
+
|
| 232 |
+
# Create value points on the data polygon
|
| 233 |
+
data_points = ""
|
| 234 |
+
for i, prob in enumerate(probs):
|
| 235 |
+
r = prob * max_radius
|
| 236 |
+
x = center + r * np.cos(angles[i])
|
| 237 |
+
y = center + r * np.sin(angles[i])
|
| 238 |
+
data_points += f'<circle cx="{x}" cy="{y}" r="6" fill="#667eea" stroke="white" stroke-width="2"/>'
|
| 239 |
+
|
| 240 |
+
# Labels with better positioning
|
| 241 |
+
labels = ""
|
| 242 |
+
for i, emotion in enumerate(EMOTIONS):
|
| 243 |
+
label_radius = max_radius + 30
|
| 244 |
+
x = center + label_radius * np.cos(angles[i])
|
| 245 |
+
y = center + label_radius * np.sin(angles[i])
|
| 246 |
+
|
| 247 |
+
emoji = EMOTION_META[emotion]["emoji"]
|
| 248 |
+
prob_pct = probs[i] * 100
|
| 249 |
+
|
| 250 |
+
# Adjust text anchor based on position
|
| 251 |
+
if x < center - 10:
|
| 252 |
+
anchor = "end"
|
| 253 |
+
elif x > center + 10:
|
| 254 |
+
anchor = "start"
|
| 255 |
+
else:
|
| 256 |
+
anchor = "middle"
|
| 257 |
+
|
| 258 |
+
labels += f'''
|
| 259 |
+
<g>
|
| 260 |
+
<text x="{x}" y="{y - 15}" text-anchor="{anchor}" font-size="28" dominant-baseline="middle">{emoji}</text>
|
| 261 |
+
<text x="{x}" y="{y + 8}" text-anchor="{anchor}" font-size="14" font-weight="600" fill="#1f2937" dominant-baseline="middle">{emotion.capitalize()}</text>
|
| 262 |
+
<text x="{x}" y="{y + 24}" text-anchor="{anchor}" font-size="12" fill="#6b7280" dominant-baseline="middle">{prob_pct:.0f}%</text>
|
| 263 |
+
</g>
|
| 264 |
+
'''
|
| 265 |
+
|
| 266 |
+
return f"""
|
| 267 |
+
<div style="width: 100%; max-width: 450px; margin: 20px auto; padding: 10px; overflow: visible;">
|
| 268 |
+
<svg width="100%" height="100%" viewBox="0 0 {size} {size}" preserveAspectRatio="xMidYMid meet" style="overflow: visible;">
|
| 269 |
+
<defs>
|
| 270 |
+
<filter id="shadow">
|
| 271 |
+
<feDropShadow dx="0" dy="2" stdDeviation="3" flood-opacity="0.3"/>
|
| 272 |
+
</filter>
|
| 273 |
+
</defs>
|
| 274 |
+
{circles}
|
| 275 |
+
{axis_lines}
|
| 276 |
+
<polygon points="{points_str}" fill="rgba(102, 126, 234, 0.25)" stroke="#667eea" stroke-width="3" filter="url(#shadow)"/>
|
| 277 |
+
{data_points}
|
| 278 |
+
{labels}
|
| 279 |
+
</svg>
|
| 280 |
+
</div>
|
| 281 |
+
"""
|
| 282 |
+
|
| 283 |
+
def _create_emotion_card(emotion: str, prob: float, detected: bool, threshold: float, rank: int) -> str:
|
| 284 |
+
"""Create enhanced emotion card with ranking"""
|
| 285 |
+
meta = EMOTION_META[emotion]
|
| 286 |
+
emoji = meta["emoji"]
|
| 287 |
+
color = meta["color"]
|
| 288 |
+
light_color = meta["light_color"]
|
| 289 |
+
gradient = meta["gradient"]
|
| 290 |
+
desc = meta["description"]
|
| 291 |
+
|
| 292 |
+
prob_pct = prob * 100
|
| 293 |
+
intensity, intensity_color = get_intensity_level(prob)
|
| 294 |
+
intensity_label = get_emotion_intensity_label(emotion, prob)
|
| 295 |
+
|
| 296 |
+
# Medal for top 3
|
| 297 |
+
medals = {1: "🥇", 2: "🥈", 3: "🥉"}
|
| 298 |
+
rank_display = medals.get(rank, f"#{rank}")
|
| 299 |
+
|
| 300 |
+
if detected:
|
| 301 |
+
border = f"3px solid {color}"
|
| 302 |
+
shadow = "0 6px 12px rgba(0,0,0,0.15)"
|
| 303 |
+
bg = "white"
|
| 304 |
+
else:
|
| 305 |
+
border = "2px solid #e5e7eb"
|
| 306 |
+
shadow = "0 2px 4px rgba(0,0,0,0.05)"
|
| 307 |
+
bg = "#fafafa"
|
| 308 |
+
|
| 309 |
+
return f"""
|
| 310 |
+
<div style='background: {bg}; padding: 18px; margin: 12px 0; border-radius: 12px; border: {border}; box-shadow: {shadow}; transition: all 0.3s;'>
|
| 311 |
+
<div style='display: flex; justify-content: space-between; align-items: center; margin-bottom: 10px;'>
|
| 312 |
+
<div style='display: flex; align-items: center; gap: 12px;'>
|
| 313 |
+
<span style='font-size: 36px;'>{emoji}</span>
|
| 314 |
+
<div>
|
| 315 |
+
<div style='display: flex; align-items: center; gap: 8px;'>
|
| 316 |
+
<span style='font-weight: bold; font-size: 20px; color: #1f2937; text-transform: capitalize;'>{emotion}</span>
|
| 317 |
+
<span style='background: {light_color}; color: {color}; padding: 2px 8px; border-radius: 12px; font-size: 12px; font-weight: bold;'>{rank_display}</span>
|
| 318 |
+
</div>
|
| 319 |
+
<div style='font-size: 13px; color: #6b7280; margin-top: 2px;'>{intensity_label}</div>
|
| 320 |
+
</div>
|
| 321 |
+
</div>
|
| 322 |
+
<div style='text-align: right;'>
|
| 323 |
+
<div style='font-size: 24px; font-weight: bold; color: {color};'>{prob_pct:.1f}%</div>
|
| 324 |
+
<div style='font-size: 11px; color: {intensity_color}; font-weight: 600;'>{intensity}</div>
|
| 325 |
+
</div>
|
| 326 |
+
</div>
|
| 327 |
+
|
| 328 |
+
<div style='position: relative; background: #f3f4f6; height: 28px; border-radius: 14px; overflow: hidden; margin: 10px 0;'>
|
| 329 |
+
<div style='position: absolute; height: 100%; background: {gradient}; width: {min(prob_pct, 100)}%; transition: width 0.8s cubic-bezier(0.4, 0, 0.2, 1); border-radius: 14px;'></div>
|
| 330 |
+
<div style='position: absolute; width: 100%; height: 100%; display: flex; align-items: center; padding: 0 12px; justify-content: space-between;'>
|
| 331 |
+
<span style='font-size: 12px; font-weight: 600; color: {"white" if prob_pct > 50 else "#1f2937"};'>{desc}</span>
|
| 332 |
+
<span style='font-size: 11px; color: {"rgba(255,255,255,0.8)" if prob_pct > 50 else "#6b7280"};'>Threshold: {threshold:.1%}</span>
|
| 333 |
+
</div>
|
| 334 |
+
</div>
|
| 335 |
+
|
| 336 |
+
<div style='display: flex; gap: 8px; margin-top: 10px;'>
|
| 337 |
<span style='background: {"#10b98120" if detected else "#f3f4f6"}; color: {"#10b981" if detected else "#9ca3af"}; padding: 4px 10px; border-radius: 6px; font-size: 12px; font-weight: 600;'>
|
| 338 |
{("✓ DETECTED" if detected else "○ Not Detected")}
|
| 339 |
</span>
|