Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
from bertopic import BERTopic
|
| 6 |
+
|
| 7 |
+
# Emotion classification pipeline (can use AraBERT or any emotion classifier)
|
| 8 |
+
emotion_classifier = pipeline("text-classification", model="arpanghoshal/bert-base-uncased-emotion")
|
| 9 |
+
|
| 10 |
+
# Function to process CSV file and return emotion and topic model
|
| 11 |
+
def process_file(uploaded_file):
|
| 12 |
+
# Load CSV
|
| 13 |
+
df = pd.read_csv(uploaded_file)
|
| 14 |
+
|
| 15 |
+
# Display basic info about the CSV
|
| 16 |
+
st.write("CSV Loaded Successfully!")
|
| 17 |
+
st.write(f"Data Preview: {df.head()}")
|
| 18 |
+
|
| 19 |
+
# Preprocess the text: assuming the CSV has a 'text' column
|
| 20 |
+
texts = df['text'].dropna().tolist() # Modify this according to your column name
|
| 21 |
+
|
| 22 |
+
# Emotion Classification: Classify emotions for each text
|
| 23 |
+
emotions = [emotion_classifier(text)[0]['label'] for text in texts]
|
| 24 |
+
df['emotion'] = emotions
|
| 25 |
+
|
| 26 |
+
# Topic Modeling using BERTopic (install bertopic first if not installed)
|
| 27 |
+
topic_model = BERTopic()
|
| 28 |
+
topics, _ = topic_model.fit_transform(texts)
|
| 29 |
+
df['topic'] = topics
|
| 30 |
+
|
| 31 |
+
# Display the results
|
| 32 |
+
st.write("Emotions classified for each entry:")
|
| 33 |
+
st.write(df[['text', 'emotion', 'topic']])
|
| 34 |
+
|
| 35 |
+
return df
|
| 36 |
+
|
| 37 |
+
# Streamlit App
|
| 38 |
+
st.title("Topic Modeling & Emotion Classification")
|
| 39 |
+
st.write("Upload a CSV file to perform topic modeling and emotion classification on the text.")
|
| 40 |
+
|
| 41 |
+
# File upload widget
|
| 42 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"])
|
| 43 |
+
|
| 44 |
+
if uploaded_file is not None:
|
| 45 |
+
# Process the file
|
| 46 |
+
result_df = process_file(uploaded_file)
|