File size: 11,770 Bytes
dba24db
 
 
23e091c
f3ebaf3
dba24db
 
 
 
 
6c9fd42
cd08186
6c9fd42
 
cd08186
6c9fd42
dba24db
 
f3ebaf3
dba24db
 
f3ebaf3
dba24db
 
f3ebaf3
dba24db
 
 
 
 
 
 
f3ebaf3
 
dba24db
f3ebaf3
 
 
99d9342
 
 
 
 
 
 
 
f3ebaf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99d9342
f3ebaf3
 
 
 
 
 
 
99d9342
f3ebaf3
 
 
99d9342
f3ebaf3
 
dba24db
 
f3ebaf3
 
 
 
 
 
 
 
 
 
 
dba24db
f3ebaf3
 
 
 
 
dba24db
f3ebaf3
 
dba24db
 
99d9342
 
 
 
 
 
 
 
 
cd08186
 
 
 
dba24db
 
 
 
 
 
 
 
 
 
f3ebaf3
dba24db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3ebaf3
dba24db
f3ebaf3
dba24db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd08186
dba24db
 
 
 
 
 
 
 
f3ebaf3
dba24db
 
 
cd08186
 
dba24db
 
 
 
 
 
 
f3ebaf3
dba24db
 
 
 
 
 
 
 
 
f3ebaf3
dba24db
 
 
 
f3ebaf3
dba24db
 
 
f3ebaf3
dba24db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3ebaf3
dba24db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9230ae1
cd08186
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import gradio as gr
import pandas as pd
import json
import os
import glob
from constants import BANNER, INTRODUCTION_TEXT, CITATION_TEXT, METRICS_TAB_TEXT, DIR_OUTPUT_REQUESTS, LEADERBOARD_CSS
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
from utils_display import PhonemeEvalColumn, fields, make_clickable_model, styled_error, styled_message
import numpy as np
from datetime import datetime, timezone
# from dotenv import load_dotenv

# # Load environment variables from .env file
# load_dotenv()

# HF_TOKEN = os.environ.get("HF_TOKEN", None)

LAST_UPDATED = "Oct 2nd 2025"

# Global variable to store detailed benchmark data
benchmark_details = {}

# Directory for evaluation results
EVAL_RESULTS_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "eval-results")

column_names = {
    "model": "Model",
    "avg_per": "Average PER ⬇️",    
    "avg_duration": "Avg Duration (s)",
    "per_phoneme_asr": "PER phoneme_asr",
    "per_kids_phoneme_md": "PER kids_phoneme_md",
}

def load_results(results_dir: str) -> pd.DataFrame:
    """Load results from JSON files in the results directory"""
    rows = []
    all_dataset_keys = set()
    
    def round_two_decimals(value):
        try:
            if value is None:
                return None
            return round(float(value), 2)
        except Exception:
            return value
    
    if not os.path.isdir(results_dir):
        return pd.DataFrame(columns=["Model", "Avg PER", "Avg Duration (s)"])

    # First pass: collect all dataset keys from all files
    for path in glob.glob(os.path.join(results_dir, "*.json")):
        try:
            with open(path, "r", encoding="utf-8") as f:
                data = json.load(f)
            res = data.get("results", {})
            all_dataset_keys.update(res.keys())
        except Exception:
            continue

    # Use dataset keys directly as display names
    dataset_display_names = {key: key for key in all_dataset_keys}

    # Second pass: extract data
    for path in glob.glob(os.path.join(results_dir, "*.json")):
        try:
            with open(path, "r", encoding="utf-8") as f:
                data = json.load(f)
            cfg = data.get("config", {})
            res = data.get("results", {})

            model_name = cfg.get("model_name", "unknown")
            
            # Extract PER for each dataset dynamically
            per_values = {}
            dur_values = []
            
            for dataset_key in all_dataset_keys:
                dataset_data = res.get(dataset_key, {})
                per_value = dataset_data.get("per") if dataset_data else None
                dur_value = dataset_data.get("avg_duration") if dataset_data else None
                
                display_name = dataset_display_names[dataset_key]
                per_values[f"{display_name}"] = round_two_decimals(per_value)
                
                if dur_value is not None:
                    dur_values.append(dur_value)
            
            # Calculate average PER across all datasets
            per_vals = [v for v in per_values.values() if v is not None]
            avg_per = sum(per_vals) / len(per_vals) if per_vals else None
            avg_per = round_two_decimals(avg_per)
            
            # Calculate average duration
            avg_dur = sum(dur_values) / len(dur_values) if dur_values else None
            avg_dur = round_two_decimals(avg_dur)

            row = {
                "Model": make_clickable_model(model_name),
                "Average PER ⬇️": avg_per,
                "Avg Duration (s)": avg_dur,
            }
            row.update(per_values)
            rows.append(row)
            
        except Exception:
            continue

    df = pd.DataFrame(rows)
    if df.empty:
        # Create default columns based on discovered datasets
        default_cols = ["Model", "Average PER ⬇️", "Avg Duration (s)"]
        for key in sorted(all_dataset_keys):
            display_name = dataset_display_names[key]
            default_cols.insert(-2, f"PER {display_name}")
        return pd.DataFrame(columns=default_cols)
    
    df = df.sort_values(by=["Average PER ⬇️"], ascending=True, na_position="last")
    return df.reset_index(drop=True)

# Load initial data
try:
    # Support both legacy (3-tuple) and new (4-tuple) returns
    hub_info = load_all_info_from_dataset_hub()
    if isinstance(hub_info, tuple) and len(hub_info) >= 3:
        eval_queue_repo = hub_info[0]
        requested_models = hub_info[1]
        csv_results = hub_info[2]
        # Fourth value (if present) is not used in this app
    else:
        eval_queue_repo, requested_models, csv_results = None, None, None
    if eval_queue_repo is None or requested_models is None or csv_results is None:
        # No token provided, fallback to local results
        original_df = load_results(EVAL_RESULTS_DIR)
    elif csv_results and csv_results.exists():
        original_df = pd.read_csv(csv_results)
        # Format the columns
        def formatter(x):
            if type(x) is str:
                x = x
            elif x == -1:
                x = "NA"
            else: 
                x = round(x, 2)
            return x

        for col in original_df.columns:
            if col == "model":
                original_df[col] = original_df[col].apply(lambda x: make_clickable_model(x))
            else:
                original_df[col] = original_df[col].apply(formatter)
        # Only rename columns that exist in the dataframe
        existing_columns = {k: v for k, v in column_names.items() if k in original_df.columns}
        original_df.rename(columns=existing_columns, inplace=True)
        if 'Average PER ⬇️' in original_df.columns:
            original_df.sort_values(by='Average PER ⬇️', inplace=True)
    else:
        # Fallback to local results
        original_df = load_results(EVAL_RESULTS_DIR)
except Exception as e:
    print(f"Error loading data: {e}")
    # Fallback to local results
    original_df = load_results(EVAL_RESULTS_DIR)

COLS = [c.name for c in fields(PhonemeEvalColumn)]
TYPES = [c.type for c in fields(PhonemeEvalColumn)]

def request_model(model_text, chb_phoneme_asr, chb_kids_phoneme_md):
    
    # Determine the selected checkboxes
    dataset_selection = []
    if chb_phoneme_asr:
        dataset_selection.append("phoneme_asr")
    if chb_kids_phoneme_md:
        dataset_selection.append("kids_phoneme_md")

    if len(dataset_selection) == 0:
        return styled_error("You need to select at least one dataset")
        
    base_model_on_hub, error_msg = is_model_on_hub(model_text)

    if not base_model_on_hub:
        return styled_error(f"Base model '{model_text}' {error_msg}")
    
    # Construct the output dictionary
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
    required_datasets = ', '.join(dataset_selection)
    eval_entry = {
        "date": current_time,
        "model": model_text,
        "datasets_selected": required_datasets
    }
    
    # Prepare file path 
    DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True)
    
    fn_datasets = '@ '.join(dataset_selection)
    filename = model_text.replace("/","@") + "@@" + fn_datasets 
    if requested_models and filename in requested_models:
        return styled_error(f"A request for this model '{model_text}' and dataset(s) was already made.")
    try:
        filename_ext = filename + ".txt"
        out_filepath = DIR_OUTPUT_REQUESTS / filename_ext

        # Write the results to a text file
        with open(out_filepath, "w") as f:
            f.write(json.dumps(eval_entry))
            
        upload_file(filename, out_filepath)
        
        # Include file in the list of uploaded files
        if requested_models is not None:
            requested_models.append(filename)
        
        # Remove the local file
        out_filepath.unlink()

        return styled_message("🤗 Your request has been submitted and will be evaluated soon!</p>")
    except Exception as e:
        return styled_error(f"Error submitting request!")

def filter_main_table(show_proprietary=True):
    filtered_df = original_df.copy()
    
    # Filter proprietary models if needed
    if not show_proprietary and "License" in filtered_df.columns:
        # Keep only models with "Open" license
        filtered_df = filtered_df[filtered_df["License"] == "Open"]
        
    return filtered_df

def refresh_results():
    """Refresh the results from the eval-results directory"""
    updated_df = load_results(EVAL_RESULTS_DIR)
    return updated_df

with gr.Blocks(css=LEADERBOARD_CSS) as demo:
    # gr.HTML(BANNER, elem_id="banner")
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 Leaderboard", elem_id="phoneme-benchmark-tab-table", id=0):
            leaderboard_table = gr.components.Dataframe(
                value=original_df,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )
            with gr.Row():
                show_proprietary_checkbox = gr.Checkbox(
                    label="Show proprietary models",
                    value=True,
                    elem_id="show-proprietary-checkbox"
                )
                refresh_button = gr.Button("🔄 Refresh Results", variant="secondary")
            
            # Connect checkbox to the filtering function
            show_proprietary_checkbox.change(
                filter_main_table,
                inputs=[show_proprietary_checkbox],
                outputs=leaderboard_table
            )
            
            # Connect refresh button
            refresh_button.click(
                refresh_results,
                outputs=leaderboard_table
            )

        with gr.TabItem("📈 Metrics", elem_id="phoneme-benchmark-tab-table", id=1):
            gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")

        with gr.TabItem("✉️✨ Request a model here!", elem_id="phoneme-benchmark-tab-table", id=2):
            with gr.Column():
                gr.Markdown("# ✉️✨ Request results for a new model here!", elem_classes="markdown-text")
            with gr.Column():
                gr.Markdown("Select datasets:", elem_classes="markdown-text")
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")
                    chb_phoneme_asr = gr.Checkbox(label="phoneme_asr dataset", value=True)
                    chb_kids_phoneme_md = gr.Checkbox(label="kids_phoneme_md dataset", value=True)
                with gr.Column():
                    mdw_submission_result = gr.Markdown()
                    btn_submitt = gr.Button(value="🚀 Request")
                    btn_submitt.click(request_model, 
                                      [model_name_textbox, chb_phoneme_asr, chb_kids_phoneme_md], 
                                      mdw_submission_result)
        # add an about section
        with gr.TabItem("🤗 About", elem_id="phoneme-benchmark-tab-table", id=3):
            gr.Markdown("## About", elem_classes="markdown-text")

    gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text")
    
    with gr.Row():
        with gr.Accordion("📙 Citation", open=False):
            gr.Textbox(
                value=CITATION_TEXT, lines=7,
                label="Copy the BibTeX snippet to cite this source",
                elem_id="citation-button",
                show_copy_button=True,
            )

demo.launch()