File size: 11,770 Bytes
dba24db 23e091c f3ebaf3 dba24db 6c9fd42 cd08186 6c9fd42 cd08186 6c9fd42 dba24db f3ebaf3 dba24db f3ebaf3 dba24db f3ebaf3 dba24db f3ebaf3 dba24db f3ebaf3 99d9342 f3ebaf3 99d9342 f3ebaf3 99d9342 f3ebaf3 99d9342 f3ebaf3 dba24db f3ebaf3 dba24db f3ebaf3 dba24db f3ebaf3 dba24db 99d9342 cd08186 dba24db f3ebaf3 dba24db f3ebaf3 dba24db f3ebaf3 dba24db cd08186 dba24db f3ebaf3 dba24db cd08186 dba24db f3ebaf3 dba24db f3ebaf3 dba24db f3ebaf3 dba24db f3ebaf3 dba24db f3ebaf3 dba24db 9230ae1 cd08186 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import gradio as gr
import pandas as pd
import json
import os
import glob
from constants import BANNER, INTRODUCTION_TEXT, CITATION_TEXT, METRICS_TAB_TEXT, DIR_OUTPUT_REQUESTS, LEADERBOARD_CSS
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
from utils_display import PhonemeEvalColumn, fields, make_clickable_model, styled_error, styled_message
import numpy as np
from datetime import datetime, timezone
# from dotenv import load_dotenv
# # Load environment variables from .env file
# load_dotenv()
# HF_TOKEN = os.environ.get("HF_TOKEN", None)
LAST_UPDATED = "Oct 2nd 2025"
# Global variable to store detailed benchmark data
benchmark_details = {}
# Directory for evaluation results
EVAL_RESULTS_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "eval-results")
column_names = {
"model": "Model",
"avg_per": "Average PER ⬇️",
"avg_duration": "Avg Duration (s)",
"per_phoneme_asr": "PER phoneme_asr",
"per_kids_phoneme_md": "PER kids_phoneme_md",
}
def load_results(results_dir: str) -> pd.DataFrame:
"""Load results from JSON files in the results directory"""
rows = []
all_dataset_keys = set()
def round_two_decimals(value):
try:
if value is None:
return None
return round(float(value), 2)
except Exception:
return value
if not os.path.isdir(results_dir):
return pd.DataFrame(columns=["Model", "Avg PER", "Avg Duration (s)"])
# First pass: collect all dataset keys from all files
for path in glob.glob(os.path.join(results_dir, "*.json")):
try:
with open(path, "r", encoding="utf-8") as f:
data = json.load(f)
res = data.get("results", {})
all_dataset_keys.update(res.keys())
except Exception:
continue
# Use dataset keys directly as display names
dataset_display_names = {key: key for key in all_dataset_keys}
# Second pass: extract data
for path in glob.glob(os.path.join(results_dir, "*.json")):
try:
with open(path, "r", encoding="utf-8") as f:
data = json.load(f)
cfg = data.get("config", {})
res = data.get("results", {})
model_name = cfg.get("model_name", "unknown")
# Extract PER for each dataset dynamically
per_values = {}
dur_values = []
for dataset_key in all_dataset_keys:
dataset_data = res.get(dataset_key, {})
per_value = dataset_data.get("per") if dataset_data else None
dur_value = dataset_data.get("avg_duration") if dataset_data else None
display_name = dataset_display_names[dataset_key]
per_values[f"{display_name}"] = round_two_decimals(per_value)
if dur_value is not None:
dur_values.append(dur_value)
# Calculate average PER across all datasets
per_vals = [v for v in per_values.values() if v is not None]
avg_per = sum(per_vals) / len(per_vals) if per_vals else None
avg_per = round_two_decimals(avg_per)
# Calculate average duration
avg_dur = sum(dur_values) / len(dur_values) if dur_values else None
avg_dur = round_two_decimals(avg_dur)
row = {
"Model": make_clickable_model(model_name),
"Average PER ⬇️": avg_per,
"Avg Duration (s)": avg_dur,
}
row.update(per_values)
rows.append(row)
except Exception:
continue
df = pd.DataFrame(rows)
if df.empty:
# Create default columns based on discovered datasets
default_cols = ["Model", "Average PER ⬇️", "Avg Duration (s)"]
for key in sorted(all_dataset_keys):
display_name = dataset_display_names[key]
default_cols.insert(-2, f"PER {display_name}")
return pd.DataFrame(columns=default_cols)
df = df.sort_values(by=["Average PER ⬇️"], ascending=True, na_position="last")
return df.reset_index(drop=True)
# Load initial data
try:
# Support both legacy (3-tuple) and new (4-tuple) returns
hub_info = load_all_info_from_dataset_hub()
if isinstance(hub_info, tuple) and len(hub_info) >= 3:
eval_queue_repo = hub_info[0]
requested_models = hub_info[1]
csv_results = hub_info[2]
# Fourth value (if present) is not used in this app
else:
eval_queue_repo, requested_models, csv_results = None, None, None
if eval_queue_repo is None or requested_models is None or csv_results is None:
# No token provided, fallback to local results
original_df = load_results(EVAL_RESULTS_DIR)
elif csv_results and csv_results.exists():
original_df = pd.read_csv(csv_results)
# Format the columns
def formatter(x):
if type(x) is str:
x = x
elif x == -1:
x = "NA"
else:
x = round(x, 2)
return x
for col in original_df.columns:
if col == "model":
original_df[col] = original_df[col].apply(lambda x: make_clickable_model(x))
else:
original_df[col] = original_df[col].apply(formatter)
# Only rename columns that exist in the dataframe
existing_columns = {k: v for k, v in column_names.items() if k in original_df.columns}
original_df.rename(columns=existing_columns, inplace=True)
if 'Average PER ⬇️' in original_df.columns:
original_df.sort_values(by='Average PER ⬇️', inplace=True)
else:
# Fallback to local results
original_df = load_results(EVAL_RESULTS_DIR)
except Exception as e:
print(f"Error loading data: {e}")
# Fallback to local results
original_df = load_results(EVAL_RESULTS_DIR)
COLS = [c.name for c in fields(PhonemeEvalColumn)]
TYPES = [c.type for c in fields(PhonemeEvalColumn)]
def request_model(model_text, chb_phoneme_asr, chb_kids_phoneme_md):
# Determine the selected checkboxes
dataset_selection = []
if chb_phoneme_asr:
dataset_selection.append("phoneme_asr")
if chb_kids_phoneme_md:
dataset_selection.append("kids_phoneme_md")
if len(dataset_selection) == 0:
return styled_error("You need to select at least one dataset")
base_model_on_hub, error_msg = is_model_on_hub(model_text)
if not base_model_on_hub:
return styled_error(f"Base model '{model_text}' {error_msg}")
# Construct the output dictionary
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
required_datasets = ', '.join(dataset_selection)
eval_entry = {
"date": current_time,
"model": model_text,
"datasets_selected": required_datasets
}
# Prepare file path
DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True)
fn_datasets = '@ '.join(dataset_selection)
filename = model_text.replace("/","@") + "@@" + fn_datasets
if requested_models and filename in requested_models:
return styled_error(f"A request for this model '{model_text}' and dataset(s) was already made.")
try:
filename_ext = filename + ".txt"
out_filepath = DIR_OUTPUT_REQUESTS / filename_ext
# Write the results to a text file
with open(out_filepath, "w") as f:
f.write(json.dumps(eval_entry))
upload_file(filename, out_filepath)
# Include file in the list of uploaded files
if requested_models is not None:
requested_models.append(filename)
# Remove the local file
out_filepath.unlink()
return styled_message("🤗 Your request has been submitted and will be evaluated soon!</p>")
except Exception as e:
return styled_error(f"Error submitting request!")
def filter_main_table(show_proprietary=True):
filtered_df = original_df.copy()
# Filter proprietary models if needed
if not show_proprietary and "License" in filtered_df.columns:
# Keep only models with "Open" license
filtered_df = filtered_df[filtered_df["License"] == "Open"]
return filtered_df
def refresh_results():
"""Refresh the results from the eval-results directory"""
updated_df = load_results(EVAL_RESULTS_DIR)
return updated_df
with gr.Blocks(css=LEADERBOARD_CSS) as demo:
# gr.HTML(BANNER, elem_id="banner")
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 Leaderboard", elem_id="phoneme-benchmark-tab-table", id=0):
leaderboard_table = gr.components.Dataframe(
value=original_df,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
with gr.Row():
show_proprietary_checkbox = gr.Checkbox(
label="Show proprietary models",
value=True,
elem_id="show-proprietary-checkbox"
)
refresh_button = gr.Button("🔄 Refresh Results", variant="secondary")
# Connect checkbox to the filtering function
show_proprietary_checkbox.change(
filter_main_table,
inputs=[show_proprietary_checkbox],
outputs=leaderboard_table
)
# Connect refresh button
refresh_button.click(
refresh_results,
outputs=leaderboard_table
)
with gr.TabItem("📈 Metrics", elem_id="phoneme-benchmark-tab-table", id=1):
gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")
with gr.TabItem("✉️✨ Request a model here!", elem_id="phoneme-benchmark-tab-table", id=2):
with gr.Column():
gr.Markdown("# ✉️✨ Request results for a new model here!", elem_classes="markdown-text")
with gr.Column():
gr.Markdown("Select datasets:", elem_classes="markdown-text")
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")
chb_phoneme_asr = gr.Checkbox(label="phoneme_asr dataset", value=True)
chb_kids_phoneme_md = gr.Checkbox(label="kids_phoneme_md dataset", value=True)
with gr.Column():
mdw_submission_result = gr.Markdown()
btn_submitt = gr.Button(value="🚀 Request")
btn_submitt.click(request_model,
[model_name_textbox, chb_phoneme_asr, chb_kids_phoneme_md],
mdw_submission_result)
# add an about section
with gr.TabItem("🤗 About", elem_id="phoneme-benchmark-tab-table", id=3):
gr.Markdown("## About", elem_classes="markdown-text")
gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
gr.Textbox(
value=CITATION_TEXT, lines=7,
label="Copy the BibTeX snippet to cite this source",
elem_id="citation-button",
show_copy_button=True,
)
demo.launch() |