Spaces:
Runtime error
Runtime error
Oleg Lavrovsky
commited on
OpenAI type completions
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
from contextlib import asynccontextmanager
|
| 2 |
from fastapi import FastAPI, HTTPException
|
| 3 |
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
-
from pydantic import BaseModel
|
| 5 |
|
| 6 |
from torch import cuda
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
@@ -40,6 +40,10 @@ class ModelResponse(BaseModel):
|
|
| 40 |
confidence: float
|
| 41 |
processing_time: float
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
@asynccontextmanager
|
| 45 |
async def lifespan(app: FastAPI):
|
|
@@ -88,6 +92,81 @@ app.add_middleware(
|
|
| 88 |
allow_headers=["*"],
|
| 89 |
)
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
@app.get("/predict", response_model=ModelResponse)
|
| 92 |
async def predict(q: str):
|
| 93 |
"""Generate a model response for input text"""
|
|
@@ -100,40 +179,9 @@ async def predict(q: str):
|
|
| 100 |
|
| 101 |
input_data = TextInput(text=q)
|
| 102 |
|
| 103 |
-
|
| 104 |
-
text = input_data.text[:input_data.max_length]
|
| 105 |
-
if len(text) == input_data.max_length:
|
| 106 |
-
logger.warning("Warning: text truncated")
|
| 107 |
-
if len(text) < input_data.min_length:
|
| 108 |
-
logger.warning("Warning: empty text, aborting")
|
| 109 |
-
return None
|
| 110 |
-
|
| 111 |
-
# Prepare the model input
|
| 112 |
-
messages_think = [
|
| 113 |
-
{"role": "user", "content": text}
|
| 114 |
-
]
|
| 115 |
-
text = tokenizer.apply_chat_template(
|
| 116 |
-
messages_think,
|
| 117 |
-
tokenize=False,
|
| 118 |
-
add_generation_prompt=True,
|
| 119 |
-
top_p=0.9,
|
| 120 |
-
temperature=0.8,
|
| 121 |
-
)
|
| 122 |
-
model_inputs = tokenizer(
|
| 123 |
-
[text],
|
| 124 |
-
return_tensors="pt",
|
| 125 |
-
add_special_tokens=False
|
| 126 |
-
).to(model.device)
|
| 127 |
-
|
| 128 |
-
# Generate the output
|
| 129 |
-
generated_ids = model.generate(
|
| 130 |
-
**model_inputs,
|
| 131 |
-
max_new_tokens=512
|
| 132 |
-
)
|
| 133 |
|
| 134 |
-
|
| 135 |
-
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
|
| 136 |
-
result = tokenizer.decode(output_ids, skip_special_tokens=True)
|
| 137 |
|
| 138 |
# Checkpoint
|
| 139 |
processing_time = time.time() - start_time
|
|
|
|
| 1 |
from contextlib import asynccontextmanager
|
| 2 |
from fastapi import FastAPI, HTTPException
|
| 3 |
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
+
from pydantic import BaseModel, ValidationError
|
| 5 |
|
| 6 |
from torch import cuda
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 40 |
confidence: float
|
| 41 |
processing_time: float
|
| 42 |
|
| 43 |
+
class Completion(BaseModel):
|
| 44 |
+
model: str
|
| 45 |
+
prompt: str
|
| 46 |
+
max_tokens: int = 65536
|
| 47 |
|
| 48 |
@asynccontextmanager
|
| 49 |
async def lifespan(app: FastAPI):
|
|
|
|
| 92 |
allow_headers=["*"],
|
| 93 |
)
|
| 94 |
|
| 95 |
+
|
| 96 |
+
def fit_to_length(text, min_length=3, max_length=100):
|
| 97 |
+
"""Truncate text if too long."""
|
| 98 |
+
text = text[:max_length]
|
| 99 |
+
if len(text) == max_length:
|
| 100 |
+
logger.warning("Warning: text truncated")
|
| 101 |
+
if len(text) < min_length:
|
| 102 |
+
logger.warning("Warning: empty text, aborting")
|
| 103 |
+
return None
|
| 104 |
+
return text
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def get_model_reponse(text: str):
|
| 108 |
+
"""Process the text content."""
|
| 109 |
+
|
| 110 |
+
# Prepare the model input
|
| 111 |
+
messages_think = [
|
| 112 |
+
{"role": "user", "content": text}
|
| 113 |
+
]
|
| 114 |
+
text = tokenizer.apply_chat_template(
|
| 115 |
+
messages_think,
|
| 116 |
+
tokenize=False,
|
| 117 |
+
add_generation_prompt=True,
|
| 118 |
+
top_p=0.9,
|
| 119 |
+
temperature=0.8,
|
| 120 |
+
)
|
| 121 |
+
model_inputs = tokenizer(
|
| 122 |
+
[text],
|
| 123 |
+
return_tensors="pt",
|
| 124 |
+
add_special_tokens=False
|
| 125 |
+
).to(model.device)
|
| 126 |
+
|
| 127 |
+
# Generate the output
|
| 128 |
+
generated_ids = model.generate(
|
| 129 |
+
**model_inputs,
|
| 130 |
+
max_new_tokens=512
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
# Get and decode the output
|
| 134 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
|
| 135 |
+
|
| 136 |
+
# Return just the text
|
| 137 |
+
return tokenizer.decode(output_ids, skip_special_tokens=True)
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
@app.post("/v1/models/apertus")
|
| 141 |
+
async def completion(data: Completion):
|
| 142 |
+
"""Generate an OpenAPI-style completion"""
|
| 143 |
+
if model is None or tokenizer is None:
|
| 144 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 145 |
+
|
| 146 |
+
try:
|
| 147 |
+
text = fit_to_length(input_data.text, input_data.max_length)
|
| 148 |
+
|
| 149 |
+
result = get_model_reponse(text, model)
|
| 150 |
+
|
| 151 |
+
return {
|
| 152 |
+
"choices": [
|
| 153 |
+
{
|
| 154 |
+
"text": result,
|
| 155 |
+
"_index": 0,
|
| 156 |
+
"logprobs": None,
|
| 157 |
+
"finish_reason": "length"
|
| 158 |
+
}
|
| 159 |
+
],
|
| 160 |
+
"usage": {
|
| 161 |
+
"prompt_tokens": len(text),
|
| 162 |
+
"completion_tokens": len(result),
|
| 163 |
+
"total_tokens": len(text) + len(result)
|
| 164 |
+
}
|
| 165 |
+
}
|
| 166 |
+
except ValidationError as e:
|
| 167 |
+
raise HTTPException(status_code=400, detail="Invalid input data") from e
|
| 168 |
+
|
| 169 |
+
|
| 170 |
@app.get("/predict", response_model=ModelResponse)
|
| 171 |
async def predict(q: str):
|
| 172 |
"""Generate a model response for input text"""
|
|
|
|
| 179 |
|
| 180 |
input_data = TextInput(text=q)
|
| 181 |
|
| 182 |
+
text = fit_to_length(input_data.text, input_data.max_length)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
+
result = get_model_reponse(text, model)
|
|
|
|
|
|
|
| 185 |
|
| 186 |
# Checkpoint
|
| 187 |
processing_time = time.time() - start_time
|