Spaces:
Sleeping
Sleeping
File size: 8,170 Bytes
ade9bc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
#include "llama-memory-hybrid.h"
#include "llama-impl.h"
#include "llama-model.h"
#include "llama-context.h"
//
// llama_memory_hybrid
//
llama_memory_hybrid::llama_memory_hybrid(
const llama_model & model,
/* attn */
ggml_type type_k,
ggml_type type_v,
bool v_trans,
uint32_t kv_size,
uint32_t n_pad,
uint32_t n_swa,
llama_swa_type swa_type,
/* recurrent */
ggml_type type_r,
ggml_type type_s,
uint32_t rs_size,
/* common */
uint32_t n_seq_max,
bool offload,
/* layer filters */
layer_filter_cb && filter_attn,
layer_filter_cb && filter_recr) :
hparams(model.hparams),
mem_attn(new llama_kv_cache_unified(
model,
filter_attn == nullptr ?
[&](int32_t il) { return !hparams.is_recurrent(il); }
: filter_attn,
type_k,
type_v,
v_trans,
offload,
kv_size,
n_seq_max,
n_pad,
n_swa,
swa_type
)),
mem_recr(new llama_memory_recurrent(
model,
filter_recr == nullptr ?
[&](int32_t il) { return hparams.is_recurrent(il); }
: filter_recr,
type_r,
type_s,
offload,
rs_size,
n_seq_max
)) {}
llama_memory_state_ptr llama_memory_hybrid::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
do {
balloc.split_reset();
// follow the recurrent pattern for creating the ubatch splits
std::vector<llama_ubatch> ubatches;
while (true) {
llama_ubatch ubatch;
if (embd_all) {
// if all tokens are output, split by sequence
ubatch = balloc.split_seq(n_ubatch);
} else {
ubatch = balloc.split_equal(n_ubatch);
}
if (ubatch.n_tokens == 0) {
break;
}
ubatches.push_back(std::move(ubatch)); // NOLINT
}
// prepare the recurrent batches first
if (!mem_recr->prepare(ubatches)) {
// TODO: will the recurrent cache be in an undefined state at this point?
LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
return std::make_unique<llama_memory_hybrid_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
// prepare the attention cache
auto heads_attn = mem_attn->prepare(ubatches);
if (heads_attn.empty()) {
LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
return std::make_unique<llama_memory_hybrid_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
return std::make_unique<llama_memory_hybrid_state>(
this, std::move(heads_attn), std::move(ubatches));
} while(false);
return std::make_unique<llama_memory_hybrid_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
llama_memory_state_ptr llama_memory_hybrid::init_full() {
return std::make_unique<llama_memory_hybrid_state>(this);
}
llama_memory_state_ptr llama_memory_hybrid::init_update(llama_context * lctx, bool optimize) {
return std::make_unique<llama_memory_hybrid_state>(this, lctx, optimize);
}
bool llama_memory_hybrid::get_can_shift() const {
// Shifting is trivially supported for recurrent
return mem_attn->get_can_shift();
}
void llama_memory_hybrid::clear(bool data) {
mem_attn->clear(data);
mem_recr->clear(data);
}
bool llama_memory_hybrid::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
// Try removing from the recurrent cache first since it may fail. If it does
// fail, the cache will not have been mutated.
if (!mem_recr->seq_rm(seq_id, p0, p1)) {
return false;
}
return mem_attn->seq_rm(seq_id, p0, p1);
}
void llama_memory_hybrid::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
mem_attn->seq_cp(seq_id_src, seq_id_dst, p0, p1);
mem_recr->seq_cp(seq_id_src, seq_id_dst, p0, p1);
}
void llama_memory_hybrid::seq_keep(llama_seq_id seq_id) {
mem_attn->seq_keep(seq_id);
mem_recr->seq_keep(seq_id);
}
void llama_memory_hybrid::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
mem_attn->seq_add(seq_id, p0, p1, shift);
mem_recr->seq_add(seq_id, p0, p1, shift);
}
void llama_memory_hybrid::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
mem_attn->seq_div(seq_id, p0, p1, d);
mem_recr->seq_div(seq_id, p0, p1, d);
}
llama_pos llama_memory_hybrid::seq_pos_min(llama_seq_id seq_id) const {
// the min of the total cache is the max of the two caches' min values
return std::max(mem_attn->seq_pos_min(seq_id), mem_recr->seq_pos_min(seq_id));
}
llama_pos llama_memory_hybrid::seq_pos_max(llama_seq_id seq_id) const {
// the max of the total cache is the min of the two caches' max values
return std::min(mem_attn->seq_pos_max(seq_id), mem_recr->seq_pos_max(seq_id));
}
void llama_memory_hybrid::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
mem_attn->state_write(io, seq_id);
mem_recr->state_write(io, seq_id);
}
void llama_memory_hybrid::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
mem_attn->state_read(io, seq_id);
mem_recr->state_read(io, seq_id);
}
llama_kv_cache_unified * llama_memory_hybrid::get_mem_attn() const {
return mem_attn.get();
}
llama_memory_recurrent * llama_memory_hybrid::get_mem_recr() const {
return mem_recr.get();
}
llama_memory_hybrid_state::llama_memory_hybrid_state(llama_memory_status status) : status(status) {}
llama_memory_hybrid_state::llama_memory_hybrid_state(llama_memory_hybrid * mem) :
state_attn(mem->get_mem_attn()->init_full()),
state_recr(mem->get_mem_recr()->init_full()),
status(llama_memory_status_combine(state_attn->get_status(), state_recr->get_status())) {
}
llama_memory_hybrid_state::llama_memory_hybrid_state(
llama_memory_hybrid * mem,
llama_context * lctx,
bool optimize) :
state_attn(mem->get_mem_attn()->init_update(lctx, optimize)),
state_recr(mem->get_mem_recr()->init_update(lctx, optimize)),
status(llama_memory_status_combine(state_attn->get_status(), state_recr->get_status())) {
}
llama_memory_hybrid_state::llama_memory_hybrid_state(
llama_memory_hybrid * mem,
std::vector<uint32_t> heads_attn,
std::vector<llama_ubatch> ubatches) :
ubatches(std::move(ubatches)),
// note: here we copy the ubatches. not sure if this is ideal
state_attn(new llama_kv_cache_unified_state(mem->get_mem_attn(), std::move(heads_attn), this->ubatches)),
state_recr(new llama_memory_recurrent_state(mem->get_mem_recr(), this->ubatches)),
status(llama_memory_status_combine(state_attn->get_status(), state_recr->get_status())) {
}
bool llama_memory_hybrid_state::next() {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
state_attn->next();
state_recr->next();
if (++i_next >= ubatches.size()) {
return false;
}
return true;
}
bool llama_memory_hybrid_state::apply() {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
bool res = true;
res = res & state_attn->apply();
res = res & state_recr->apply();
return res;
}
llama_memory_status llama_memory_hybrid_state::get_status() const {
return status;
}
const llama_ubatch & llama_memory_hybrid_state::get_ubatch() const {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
return ubatches[i_next];
}
const llama_kv_cache_unified_state * llama_memory_hybrid_state::get_state_attn() const {
return static_cast<const llama_kv_cache_unified_state *>(state_attn.get());
}
const llama_memory_recurrent_state * llama_memory_hybrid_state::get_state_recr() const {
return static_cast<const llama_memory_recurrent_state *>(state_recr.get());
}
|