File size: 18,347 Bytes
f580c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de15cd
f580c99
 
4da3fb6
f580c99
 
bf6ccee
f580c99
14fd317
 
 
b4d8c3e
 
 
 
f580c99
 
 
a67a8ec
 
 
f580c99
a67a8ec
1d6d451
f580c99
 
 
 
14fd317
310a36c
14fd317
4576ce0
14fd317
4da3fb6
 
 
 
 
 
 
 
 
 
 
 
 
 
f580c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9808fbf
f580c99
 
918eff5
 
 
 
 
 
f580c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14fd317
 
 
 
 
 
 
 
 
 
b25d3bf
14fd317
 
 
f580c99
 
 
 
 
 
 
bf6ccee
 
f580c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
959346b
 
 
 
 
 
 
 
f580c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14fd317
f580c99
 
14fd317
 
c18969f
f580c99
 
 
14fd317
f580c99
 
 
 
 
 
14fd317
f580c99
 
 
 
94a6436
f580c99
 
 
 
 
 
 
 
b4d8c3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
959346b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d8c3e
 
f580c99
 
959346b
f580c99
aedb0b3
 
f580c99
 
aedb0b3
 
f580c99
 
 
 
 
 
 
 
 
 
aedb0b3
c18969f
 
 
 
aedb0b3
 
 
 
 
 
 
 
f580c99
 
bf6ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de15cd
 
 
 
 
 
 
 
 
 
 
 
 
bf6ccee
 
 
 
 
f580c99
6dbe297
 
 
 
 
 
5f43886
 
d2ce872
 
 
 
fa23a38
4da3fb6
6799437
4da3fb6
6799437
4da3fb6
 
 
 
 
 
 
 
 
 
6799437
4da3fb6
 
6799437
 
 
 
 
4da3fb6
6799437
 
 
 
 
 
4da3fb6
6799437
4da3fb6
6799437
 
4da3fb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6799437
4da3fb6
 
6799437
4da3fb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f580c99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//

//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//

#ifndef GGML_SYCL_COMMON_HPP
#define GGML_SYCL_COMMON_HPP

#include <cstddef>
#include <fstream>
#include <iostream>
#include <string>

#include "dpct/helper.hpp"
#include "ggml-sycl.h"
#include "presets.hpp"
#include "sycl_hw.hpp"


#if GGML_SYCL_DNNL
#include "dnnl.hpp"
#include "dnnl_sycl.hpp"
#endif

#define GGML_COMMON_DECL_SYCL
#define GGML_COMMON_IMPL_SYCL
/* suppress warning spam */
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wnested-anon-types"
#include "ggml-common.h"
#pragma clang diagnostic pop
#include "ggml-impl.h"

void* ggml_sycl_host_malloc(size_t size);
void ggml_sycl_host_free(void* ptr);


extern int g_ggml_sycl_debug;
extern int g_ggml_sycl_disable_optimize;
extern int g_ggml_sycl_prioritize_dmmv;

#if defined(__clang__) && __has_builtin(__builtin_expect)
// Hint the optimizer to pipeline the more likely following instruction in branches
#    define LIKELY(expr)   __builtin_expect(expr, true)
#    define UNLIKELY(expr) __builtin_expect(expr, false)
#else
#    define LIKELY(expr)   (expr)
#    define UNLIKELY(expr) (expr)
#endif

#define GGML_SYCL_DEBUG(...)              \
    do {                                  \
        if (UNLIKELY(g_ggml_sycl_debug))  \
            fprintf(stderr, __VA_ARGS__); \
    } while (0)

#define CHECK_TRY_ERROR(expr)                                            \
  [&]() {                                                                \
    try {                                                                \
      expr;                                                              \
      return dpct::success;                                              \
    } catch (std::exception const& e) {                                  \
      std::cerr << e.what() << "\nException caught at file:" << __FILE__ \
                << ", line:" << __LINE__ << ", func:" << __func__        \
                << std::endl;                                            \
      return dpct::default_error;                                        \
    }                                                                    \
  }()


#define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP
#define VER_4VEC 610 // todo for hardward optimize.
#define VER_GEN9 700 // todo for hardward optimize.
#define VER_GEN12 1000000 // todo for hardward optimize.
#define VER_GEN13 (VER_GEN12 + 1030) // todo for hardward optimize.

#define GGML_SYCL_MAX_NODES 8192 // TODO: adapt to hardwares

// define for XMX in Intel GPU
// TODO: currently, it's not used for XMX really.
#if !defined(GGML_SYCL_FORCE_MMQ)
    #define SYCL_USE_XMX
#endif

// max batch size to use MMQ kernels when tensor cores are available
#define MMQ_MAX_BATCH_SIZE 32

// dmmv = dequantize_mul_mat_vec
#ifndef GGML_SYCL_DMMV_X
#define GGML_SYCL_DMMV_X 32
#endif
#ifndef GGML_SYCL_MMV_Y
#define GGML_SYCL_MMV_Y 1
#endif

typedef sycl::queue *queue_ptr;

enum ggml_sycl_backend_gpu_mode {
  SYCL_UNSET_GPU_MODE = -1,
  SYCL_SINGLE_GPU_MODE = 0,
  SYCL_MUL_GPU_MODE
};

static_assert(sizeof(sycl::half) == sizeof(ggml_fp16_t), "wrong fp16 size");

static void crash() {
  int* ptr = NULL;
  *ptr = 0;
}

[[noreturn]] static void ggml_sycl_error(
    const char* stmt,
    const char* func,
    const char* file,
    const int line,
    const char* msg) {
  fprintf(stderr, "SYCL error: %s: %s\n", stmt, msg);
  fprintf(stderr, "  in function %s at %s:%d\n", func, file, line);
  GGML_ABORT("SYCL error");
}

#define SYCL_CHECK(err)                                                                                    \
    do {                                                                                                   \
        auto err_ = (err);                                                                                 \
        if (err_ != 0)                                                                                     \
            ggml_sycl_error(#err, __func__, __FILE__, __LINE__, "Exception caught in this line of code."); \
    } while (0)

#if DPCT_COMPAT_RT_VERSION >= 11100
#define GGML_SYCL_ASSUME(x) __builtin_assume(x)
#else
#define GGML_SYCL_ASSUME(x)
#endif // DPCT_COMPAT_RT_VERSION >= 11100

#ifdef GGML_SYCL_F16
typedef sycl::half dfloat; // dequantize float
typedef sycl::half2 dfloat2;
#else
typedef float dfloat; // dequantize float
typedef sycl::float2 dfloat2;
#endif // GGML_SYCL_F16

#define MMVQ_MAX_BATCH_SIZE  8

static int g_all_sycl_device_count = -1;
static bool g_ggml_backend_sycl_buffer_type_initialized = false;

static ggml_sycl_backend_gpu_mode g_ggml_sycl_backend_gpu_mode =
    SYCL_UNSET_GPU_MODE;

static void* g_scratch_buffer = nullptr;
static size_t g_scratch_size = 0; // disabled by default
static size_t g_scratch_offset = 0;

[[noreturn]] static inline void bad_arch(const sycl::stream& stream_ct1) {
  stream_ct1 << "ERROR: ggml-sycl was compiled without support for the "
                "current GPU architecture.\n";
  // __trap();
  std::exit(1);

  (void)bad_arch; // suppress unused function warning
}

int get_current_device_id();

inline dpct::err0 ggml_sycl_set_device(const int device) try {
  int current_device_id;
  SYCL_CHECK(CHECK_TRY_ERROR(current_device_id = get_current_device_id()));

  // GGML_SYCL_DEBUG("ggml_sycl_set_device device_id=%d,
  // current_device_id=%d\n", device, current_device);
  if (device == current_device_id) {
    return 0;
  }

  return CHECK_TRY_ERROR(dpct::select_device(device));
} catch (sycl::exception const& exc) {
  std::cerr << exc.what() << "Exception caught at file:" << __FILE__
            << ", line:" << __LINE__ << std::endl;
  crash();
  std::exit(1);
}

//////////////////////
struct optimize_feature {
    bool reorder=false;
};

struct sycl_device_info {
    int     cc;                 // compute capability
    // int     nsm;                // number of streaming multiprocessors
    // size_t  smpb;               // max. shared memory per block
    bool    vmm;                // virtual memory support
    size_t  total_vram;
    //sycl_hw_info hw_info;     \\ device id and aarch, currently not used
    optimize_feature opt_feature;
};


struct ggml_sycl_device_info {
    int device_count;

    sycl_device_info devices[GGML_SYCL_MAX_DEVICES] = {};

    std::array<float, GGML_SYCL_MAX_DEVICES> default_tensor_split = {};

    int max_work_group_sizes[GGML_SYCL_MAX_DEVICES] = {0};
};

const ggml_sycl_device_info & ggml_sycl_info();

struct ggml_sycl_pool {
    virtual ~ggml_sycl_pool() = default;

    virtual void * alloc(size_t size, size_t * actual_size) = 0;
    virtual void free(void * ptr, size_t size) = 0;
};

template<typename T>
struct ggml_sycl_pool_alloc {
    ggml_sycl_pool * pool = nullptr;
    T * ptr = nullptr;
    size_t actual_size = 0;

    explicit ggml_sycl_pool_alloc(ggml_sycl_pool & pool) : pool(&pool) {
    }

    ggml_sycl_pool_alloc(ggml_sycl_pool & pool, size_t size) : pool(&pool) {
        alloc(size);
    }

    ~ggml_sycl_pool_alloc() {
        if (ptr != nullptr) {
            pool->free(ptr, actual_size);
        }
    }

    T * realloc(size_t size) {
        GGML_ASSERT(pool != nullptr);
        if (ptr)
            pool->free(ptr, actual_size);
        ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
        return ptr;
    }

    // size is in number of elements
    T * alloc(size_t size) {
        GGML_ASSERT(pool != nullptr);
        GGML_ASSERT(ptr == nullptr);
        ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
        return ptr;
    }

    T * alloc(ggml_sycl_pool & pool, size_t size) {
        this->pool = &pool;
        return alloc(size);
    }

    T * get() {
        return ptr;
    }

    ggml_sycl_pool_alloc() = default;
    ggml_sycl_pool_alloc(const ggml_sycl_pool_alloc &) = delete;
    ggml_sycl_pool_alloc(ggml_sycl_pool_alloc &&) = delete;
    ggml_sycl_pool_alloc& operator=(const ggml_sycl_pool_alloc &) = delete;
    ggml_sycl_pool_alloc& operator=(ggml_sycl_pool_alloc &&) = delete;
};

// backend interface

struct ggml_tensor_extra_gpu {
  void* data_device[GGML_SYCL_MAX_DEVICES]; // 1 pointer for each device for split
                                       // tensors
  dpct::event_ptr events[GGML_SYCL_MAX_DEVICES]
                        [GGML_SYCL_MAX_STREAMS]; // events for synchronizing multiple GPUs
  optimize_feature optimized_feature;
};

void release_extra_gpu(ggml_tensor_extra_gpu * extra, std::vector<queue_ptr> streams={});

namespace sycl_ex = sycl::ext::oneapi::experimental;
struct ggml_backend_sycl_context {
    int device;
    std::string name;
    optimize_feature opt_feature;

    queue_ptr qptrs[GGML_SYCL_MAX_DEVICES][GGML_SYCL_MAX_STREAMS] = { { nullptr } };

    explicit ggml_backend_sycl_context(int device) :
        device(device),
        name(GGML_SYCL_NAME + std::to_string(device)) {
        opt_feature = ggml_sycl_info().devices[device].opt_feature;
    }

    queue_ptr stream(int device, int stream) {
        if (qptrs[device][stream] == nullptr) {
            qptrs[device][stream] = &(dpct::get_device(device).default_queue());
        }
        return qptrs[device][stream];
    }

    queue_ptr stream() {
        return stream(device, 0);
    }

#if GGML_SYCL_DNNL
    dnnl::engine make_engine(sycl::queue* q) {
        // Get the device associated with the queue
        sycl::device dev = q->get_device();
        // Get the context associated with the queue
        sycl::context ctx = q->get_context();
        const dnnl::engine eng = dnnl::sycl_interop::make_engine(dev, ctx);
        return eng;
    }

    std::unordered_map<sycl::queue*, dnnl::stream> stream_map;
    std::unordered_map<sycl::queue*, dnnl::engine> engine_map;
    dnnl::stream stream_dnnl(int device, int _stream) {
        auto q = stream(device, _stream);
        return stream_dnnl(q);
    }
    dnnl::engine engine_dnnl(sycl::queue* qptr) {
        auto it = engine_map.find(qptr);
        if (it == engine_map.end()) {
            auto eng = make_engine(qptr);
            engine_map[qptr] = eng;
            return eng;
        }
        else
        {
            return it->second;
        }
    }
    dnnl::stream stream_dnnl(sycl::queue* qptr) {
        auto it = stream_map.find(qptr);
        if (it == stream_map.end()) {
            auto eng = engine_dnnl(qptr);
            auto stream = dnnl::sycl_interop::make_stream(eng, *qptr);
            stream_map[qptr] = stream;
            return stream;
        }
        else
        {
            return it->second;
        }
    }
    dnnl::stream stream_dnnl() {
        return stream_dnnl(device, 0);
    }
    dnnl::memory get_scratchpad_mem(const dnnl::memory::desc & scratchpad_md,
                                    const dnnl::engine & eng, const queue_ptr q) {
        ggml_sycl_pool_alloc<uint8_t> * pool;
        auto it = scratchpad_map.find(q);
        if (it == scratchpad_map.end()) {
            scratchpad_map[q] = std::make_unique<ggml_sycl_pool_alloc<uint8_t>>(this->pool());
            pool = scratchpad_map[q].get();
        } else {
            pool = it->second.get();
        }

        size_t scratchpad_size = scratchpad_md.get_size();
        if (scratchpad_size > pool->actual_size) {
            pool->realloc(scratchpad_size);
        }
        void * mem_ptr = pool->get();
        return dnnl::memory(scratchpad_md, eng, mem_ptr);
    }
#endif

    // pool
    std::unique_ptr<ggml_sycl_pool> pools[GGML_SYCL_MAX_DEVICES];
    std::unordered_map<sycl::queue *, std::unique_ptr<ggml_sycl_pool_alloc<uint8_t>>> scratchpad_map;

    std::unique_ptr<ggml_sycl_pool> host_pools[GGML_SYCL_MAX_DEVICES];

    static std::unique_ptr<ggml_sycl_pool> new_pool_for_device(queue_ptr qptr, int device);

    static std::unique_ptr<ggml_sycl_pool> new_pool_for_host(queue_ptr qptr, int device);

    ggml_sycl_pool & pool(int device) {
        if (pools[device] == nullptr) {
            pools[device] = new_pool_for_device(stream(device,0), device);
        }
        return *pools[device];
    }

    ggml_sycl_pool & pool() {
        return pool(device);
    }

#ifdef GGML_SYCL_GRAPH
    std::unique_ptr<sycl_ex::command_graph<sycl_ex::graph_state::executable>> exec_graph = nullptr;
#endif

    ggml_sycl_pool & host_pool(int device) {
        if (host_pools[device] == nullptr) {
            host_pools[device] = new_pool_for_host(stream(device, 0), device);
        }
        return *host_pools[device];
    }

    ggml_sycl_pool & host_pool() { return host_pool(device); }
};

// common device functions

static __dpct_inline__ float warp_reduce_sum(float x,
    const sycl::nd_item<3>& item_ct1) {
#pragma unroll
    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
        /*
        DPCT1096:98: The right-most dimension of the work-group used in the SYCL
        kernel that calls this function may be less than "32". The function
        "dpct::permute_sub_group_by_xor" may return an unexpected result on the
        CPU device. Modify the size of the work-group to ensure that the value
        of the right-most dimension is a multiple of "32".
        */
        x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask);
    }
    return x;
}

static __dpct_inline__ sycl::float2
warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3>& item_ct1) {
#pragma unroll
    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
        a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(),
            mask);
        a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(),
            mask);
    }
    return a;
}

static __dpct_inline__ float warp_reduce_max(float x,
    const sycl::nd_item<3>& item_ct1) {
#pragma unroll
    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
        /*
        DPCT1096:97: The right-most dimension of the work-group used in the SYCL
        kernel that calls this function may be less than "32". The function
        "dpct::permute_sub_group_by_xor" may return an unexpected result on the
        CPU device. Modify the size of the work-group to ensure that the value
        of the right-most dimension is a multiple of "32".
        */
        x = sycl::fmax(x, dpct::permute_sub_group_by_xor(
            item_ct1.get_sub_group(), x, mask));
    }
    return x;
}

/* Helper for Computing the linear offset of a ggml_tensor given
per-dimension sizes, strides, and indices */
template<int N>
__dpct_inline__ size_t calculate_offset(const std::array<int, N> & strides, const std::array<int, N> & indices) {
    size_t offset = 0;
#pragma unroll
    for (int i = 0; i < N; i++) {
        auto index_i = indices[i];
        offset += strides[i] * index_i;
    }
    return offset;
}

// Helper for vec loading aligned data
template <typename Tp, int n>
inline sycl::vec<Tp, n> vec_aligned_load(const Tp* aligned_ptr) {
    return *reinterpret_cast<const sycl::vec<Tp, n>*>(aligned_ptr);
}

// Helper for accessing pointers with no warnings
template <typename Tp, int dim>
static __dpct_inline__ Tp* get_pointer(sycl::local_accessor<Tp, dim> acc) {
    return acc.template get_multi_ptr<sycl::access::decorated::no>().get();
}

int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size);

constexpr size_t ceil_div(const size_t m, const size_t n) {
    return (m + n - 1) / n;
}

bool gpu_has_xmx(sycl::device &dev);

template <int N, class T> std::string debug_get_array_str(const std::string & prefix, const T array[N]) {
    if (LIKELY(!g_ggml_sycl_debug)) {
        return "";
    }
    std::stringstream ss;
    ss << prefix << "=[";
    for (std::size_t i = 0; i < N - 1; ++i) {
        ss << array[i] << ", ";
    }
    if constexpr (N > 0) {
        ss << array[N - 1];
    }
    ss << "]";
    return ss.str();
}

inline std::string debug_get_tensor_str(const std::string &prefix,
        const ggml_tensor *tensor, const std::string &suffix = "") {
    std::stringstream ss;
    if (LIKELY(!g_ggml_sycl_debug)) { return ss.str(); }
    ss << prefix.c_str() << "=";
    if (tensor) {
        ss << "'" << tensor->name << "':type=" << ggml_type_name(tensor->type);
        ss << debug_get_array_str<GGML_MAX_DIMS>(";ne", tensor->ne);
        ss << debug_get_array_str<GGML_MAX_DIMS>(";nb", tensor->nb);

        if (!ggml_is_contiguous(tensor)) { ss << ";strided"; }
        if (ggml_is_permuted(tensor)) { ss << ";permuted"; }
    } else {
        ss << "nullptr";
    }
    ss << suffix;
    return ss.str();
}

// Use scope_op_debug_print to log operations coming from running a model
struct scope_op_debug_print {
    // Use string_views to avoid the cost of creating a string and concatenating them
    // string_views must be alive for as long as the object is alive
    // scope_op_debug_print are used with string literals in practice which are stored in constant space so always accessible
    scope_op_debug_print(const std::string_view & func, const std::string_view & func_suffix, const ggml_tensor * dst,
                         std::size_t num_src, const std::string_view & suffix = "") :
        func(func),
        func_suffix(func_suffix) {
        if (LIKELY(!g_ggml_sycl_debug)) {
            return;
        }
        GGML_SYCL_DEBUG("[SYCL][OP] call %s%s:", func.data(), func_suffix.data());
        GGML_SYCL_DEBUG("%s", debug_get_tensor_str(" dst", dst).c_str());
        if (dst) {
            for (std::size_t i = 0; i < num_src; ++i) {
                GGML_SYCL_DEBUG("%s", debug_get_tensor_str("\tsrc" + std::to_string(i), dst->src[i]).c_str());
            }
        }
        GGML_SYCL_DEBUG("%s\n", suffix.data());
    }

    scope_op_debug_print(const std::string_view & func, const ggml_tensor * dst, std::size_t num_src,
                         const std::string_view & suffix = "") :
        scope_op_debug_print(func, "", dst, num_src, suffix) {}

    ~scope_op_debug_print() { GGML_SYCL_DEBUG("[SYCL][OP] call %s%s done\n", func.data(), func_suffix.data()); }

  private:
    std::string_view func;
    std::string_view func_suffix;
};

#endif // GGML_SYCL_COMMON_HPP