Spaces:
Running
Running
| typedef volatile LONG atomic_int; | |
| typedef atomic_int atomic_bool; | |
| static void atomic_store(atomic_int* ptr, LONG val) { | |
| InterlockedExchange(ptr, val); | |
| } | |
| static LONG atomic_load(atomic_int* ptr) { | |
| return InterlockedCompareExchange(ptr, 0, 0); | |
| } | |
| static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) { | |
| return InterlockedExchangeAdd(ptr, inc); | |
| } | |
| static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) { | |
| return atomic_fetch_add(ptr, -(dec)); | |
| } | |
| typedef HANDLE pthread_t; | |
| typedef DWORD thread_ret_t; | |
| static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) { | |
| HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL); | |
| if (handle == NULL) | |
| { | |
| return EAGAIN; | |
| } | |
| *out = handle; | |
| return 0; | |
| } | |
| static int pthread_join(pthread_t thread, void* unused) { | |
| return (int) WaitForSingleObject(thread, INFINITE); | |
| } | |
| static int sched_yield (void) { | |
| Sleep (0); | |
| return 0; | |
| } | |
| typedef void* thread_ret_t; | |
| // floating point type used to accumulate sums | |
| typedef double ggml_float; | |
| // 16-bit float | |
| // on Arm, we use __fp16 | |
| // on x86, we use uint16_t | |
| // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example: | |
| // | |
| // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/ | |
| // | |
| float ggml_fp16_to_fp32(ggml_fp16_t x) { | |
| return x; | |
| } | |
| ggml_fp16_t ggml_fp32_to_fp16(float x) { | |
| return x; | |
| } | |
| // FP16 <-> FP32 | |
| // ref: https://github.com/Maratyszcza/FP16 | |
| static inline float fp32_from_bits(uint32_t w) { | |
| union { | |
| uint32_t as_bits; | |
| float as_value; | |
| } fp32 = { w }; | |
| return fp32.as_value; | |
| } | |
| static inline uint32_t fp32_to_bits(float f) { | |
| union { | |
| float as_value; | |
| uint32_t as_bits; | |
| } fp32 = { f }; | |
| return fp32.as_bits; | |
| } | |
| float ggml_fp16_to_fp32(ggml_fp16_t h) { | |
| const uint32_t w = (uint32_t) h << 16; | |
| const uint32_t sign = w & UINT32_C(0x80000000); | |
| const uint32_t two_w = w + w; | |
| const uint32_t exp_offset = UINT32_C(0xE0) << 23; | |
| const float exp_scale = 0x1.0p-112f; | |
| const float exp_scale = fp32_from_bits(UINT32_C(0x7800000)); | |
| const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale; | |
| const uint32_t magic_mask = UINT32_C(126) << 23; | |
| const float magic_bias = 0.5f; | |
| const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias; | |
| const uint32_t denormalized_cutoff = UINT32_C(1) << 27; | |
| const uint32_t result = sign | | |
| (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value)); | |
| return fp32_from_bits(result); | |
| } | |
| ggml_fp16_t ggml_fp32_to_fp16(float f) { | |
| const float scale_to_inf = 0x1.0p+112f; | |
| const float scale_to_zero = 0x1.0p-110f; | |
| const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000)); | |
| const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000)); | |
| float base = (fabsf(f) * scale_to_inf) * scale_to_zero; | |
| const uint32_t w = fp32_to_bits(f); | |
| const uint32_t shl1_w = w + w; | |
| const uint32_t sign = w & UINT32_C(0x80000000); | |
| uint32_t bias = shl1_w & UINT32_C(0xFF000000); | |
| if (bias < UINT32_C(0x71000000)) { | |
| bias = UINT32_C(0x71000000); | |
| } | |
| base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base; | |
| const uint32_t bits = fp32_to_bits(base); | |
| const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00); | |
| const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF); | |
| const uint32_t nonsign = exp_bits + mantissa_bits; | |
| return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign); | |
| } | |
| // | |
| // global data | |
| // | |
| // precomputed gelu table for f16 (128 KB) | |
| static ggml_fp16_t table_gelu_f16[1 << 16]; | |
| // precomputed exp table for f16 (128 KB) | |
| static ggml_fp16_t table_exp_f16[1 << 16]; | |
| // | |
| // timing | |
| // | |
| static int64_t timer_freq; | |
| void ggml_time_init(void) { | |
| LARGE_INTEGER frequency; | |
| QueryPerformanceFrequency(&frequency); | |
| timer_freq = frequency.QuadPart; | |
| } | |
| int64_t ggml_time_ms(void) { | |
| LARGE_INTEGER t; | |
| QueryPerformanceCounter(&t); | |
| return (t.QuadPart * 1000) / timer_freq; | |
| } | |
| int64_t ggml_time_us(void) { | |
| LARGE_INTEGER t; | |
| QueryPerformanceCounter(&t); | |
| return (t.QuadPart * 1000000) / timer_freq; | |
| } | |
| void ggml_time_init(void) {} | |
| int64_t ggml_time_ms(void) { | |
| struct timespec ts; | |
| clock_gettime(CLOCK_MONOTONIC, &ts); | |
| return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000; | |
| } | |
| int64_t ggml_time_us(void) { | |
| struct timespec ts; | |
| clock_gettime(CLOCK_MONOTONIC, &ts); | |
| return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000; | |
| } | |
| int64_t ggml_cycles(void) { | |
| return clock(); | |
| } | |
| int64_t ggml_cycles_per_ms(void) { | |
| return CLOCKS_PER_SEC/1000; | |
| } | |
| // | |
| // cache line | |
| // | |
| const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float); | |
| // | |
| // fundamental operations | |
| // | |
| inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; } | |
| inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; } | |
| inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; } | |
| inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; } | |
| inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; } | |
| inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; } | |
| inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; } | |
| inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; } | |
| inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; } | |
| inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; } | |
| inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; } | |
| inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; } | |
| inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; } | |
| inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) { | |
| ggml_float sumf = 0.0; | |
| // NEON 128-bit | |
| const int n16 = (n & ~15); | |
| float32x4_t sum0 = vdupq_n_f32(0); | |
| float32x4_t sum1 = vdupq_n_f32(0); | |
| float32x4_t sum2 = vdupq_n_f32(0); | |
| float32x4_t sum3 = vdupq_n_f32(0); | |
| float32x4_t x0, x1, x2, x3; | |
| float32x4_t y0, y1, y2, y3; | |
| for (int i = 0; i < n16; i += 16) { | |
| x0 = vld1q_f32(x + i + 0); | |
| x1 = vld1q_f32(x + i + 4); | |
| x2 = vld1q_f32(x + i + 8); | |
| x3 = vld1q_f32(x + i + 12); | |
| y0 = vld1q_f32(y + i + 0); | |
| y1 = vld1q_f32(y + i + 4); | |
| y2 = vld1q_f32(y + i + 8); | |
| y3 = vld1q_f32(y + i + 12); | |
| sum0 = vfmaq_f32(sum0, x0, y0); | |
| sum1 = vfmaq_f32(sum1, x1, y1); | |
| sum2 = vfmaq_f32(sum2, x2, y2); | |
| sum3 = vfmaq_f32(sum3, x3, y3); | |
| } | |
| // reduce sum0..sum3 to sum0 | |
| sum0 = vaddq_f32(sum0, sum1); | |
| sum2 = vaddq_f32(sum2, sum3); | |
| sum0 = vaddq_f32(sum0, sum2); | |
| float32x2_t sumf32 = vadd_f32(vget_low_f32(sum0), vget_high_f32(sum0)); | |
| sumf = vget_lane_f32(sumf32, 0) + vget_lane_f32(sumf32, 1); | |
| // leftovers | |
| for (int i = n16; i < n; ++i) { | |
| sumf += x[i]*y[i]; | |
| } | |
| // AVX 256-bit | |
| const int n32 = (n & ~31); | |
| __m256 sum0 = _mm256_setzero_ps(); | |
| __m256 sum1 = _mm256_setzero_ps(); | |
| __m256 sum2 = _mm256_setzero_ps(); | |
| __m256 sum3 = _mm256_setzero_ps(); | |
| __m256 x0, x1, x2, x3; | |
| __m256 y0, y1, y2, y3; | |
| for (int i = 0; i < n32; i += 32) { | |
| x0 = _mm256_loadu_ps(x + i + 0); | |
| x1 = _mm256_loadu_ps(x + i + 8); | |
| x2 = _mm256_loadu_ps(x + i + 16); | |
| x3 = _mm256_loadu_ps(x + i + 24); | |
| y0 = _mm256_loadu_ps(y + i + 0); | |
| y1 = _mm256_loadu_ps(y + i + 8); | |
| y2 = _mm256_loadu_ps(y + i + 16); | |
| y3 = _mm256_loadu_ps(y + i + 24); | |
| sum0 = _mm256_fmadd_ps(x0, y0, sum0); | |
| sum1 = _mm256_fmadd_ps(x1, y1, sum1); | |
| sum2 = _mm256_fmadd_ps(x2, y2, sum2); | |
| sum3 = _mm256_fmadd_ps(x3, y3, sum3); | |
| } | |
| sum0 = _mm256_add_ps(sum0, sum1); | |
| sum2 = _mm256_add_ps(sum2, sum3); | |
| sum0 = _mm256_add_ps(sum0, sum2); | |
| const __m128 r4 = _mm_add_ps(_mm256_castps256_ps128(sum0), _mm256_extractf128_ps(sum0, 1)); | |
| const __m128 r2 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); | |
| const __m128 r1 = _mm_add_ss(r2, _mm_movehdup_ps(r2)); | |
| sumf = _mm_cvtss_f32(r1); | |
| // leftovers | |
| for (int i = n32; i < n; ++i) { | |
| sumf += x[i]*y[i]; | |
| } | |
| // AVX 256-bit | |
| const int n32 = (n & ~31); | |
| __m256 sum0 = _mm256_setzero_ps(); | |
| __m256 sum1 = _mm256_setzero_ps(); | |
| __m256 sum2 = _mm256_setzero_ps(); | |
| __m256 sum3 = _mm256_setzero_ps(); | |
| __m256 x0, x1, x2, x3; | |
| __m256 y0, y1, y2, y3; | |
| for (int i = 0; i < n32; i += 32) { | |
| x0 = _mm256_loadu_ps(x + i + 0); | |
| x1 = _mm256_loadu_ps(x + i + 8); | |
| x2 = _mm256_loadu_ps(x + i + 16); | |
| x3 = _mm256_loadu_ps(x + i + 24); | |
| y0 = _mm256_loadu_ps(y + i + 0); | |
| y1 = _mm256_loadu_ps(y + i + 8); | |
| y2 = _mm256_loadu_ps(y + i + 16); | |
| y3 = _mm256_loadu_ps(y + i + 24); | |
| sum0 = _mm256_add_ps(_mm256_mul_ps(x0, y0), sum0); | |
| sum1 = _mm256_add_ps(_mm256_mul_ps(x1, y1), sum1); | |
| sum2 = _mm256_add_ps(_mm256_mul_ps(x2, y2), sum2); | |
| sum3 = _mm256_add_ps(_mm256_mul_ps(x3, y3), sum3); | |
| } | |
| sum0 = _mm256_add_ps(sum0, sum1); | |
| sum2 = _mm256_add_ps(sum2, sum3); | |
| sum0 = _mm256_add_ps(sum0, sum2); | |
| const __m128 r4 = _mm_add_ps(_mm256_castps256_ps128(sum0), _mm256_extractf128_ps(sum0, 1)); | |
| const __m128 r2 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); | |
| const __m128 r1 = _mm_add_ss(r2, _mm_movehdup_ps(r2)); | |
| sumf = _mm_cvtss_f32(r1); | |
| // leftovers | |
| for (int i = n32; i < n; ++i) { | |
| sumf += x[i]*y[i]; | |
| } | |
| // WASM 128-bit | |
| const int n16 = (n & ~15); | |
| v128_t sum0 = wasm_f32x4_splat(0); | |
| v128_t sum1 = wasm_f32x4_splat(0); | |
| v128_t sum2 = wasm_f32x4_splat(0); | |
| v128_t sum3 = wasm_f32x4_splat(0); | |
| v128_t x0, x1, x2, x3; | |
| v128_t y0, y1, y2, y3; | |
| for (int i = 0; i < n16; i += 16) { | |
| x0 = wasm_v128_load(x + i + 0); | |
| x1 = wasm_v128_load(x + i + 4); | |
| x2 = wasm_v128_load(x + i + 8); | |
| x3 = wasm_v128_load(x + i + 12); | |
| y0 = wasm_v128_load(y + i + 0); | |
| y1 = wasm_v128_load(y + i + 4); | |
| y2 = wasm_v128_load(y + i + 8); | |
| y3 = wasm_v128_load(y + i + 12); | |
| sum0 = wasm_f32x4_add(sum0, wasm_f32x4_mul(x0, y0)); | |
| sum1 = wasm_f32x4_add(sum1, wasm_f32x4_mul(x1, y1)); | |
| sum2 = wasm_f32x4_add(sum2, wasm_f32x4_mul(x2, y2)); | |
| sum3 = wasm_f32x4_add(sum3, wasm_f32x4_mul(x3, y3)); | |
| } | |
| sum0 = wasm_f32x4_add(sum0, sum1); | |
| sum2 = wasm_f32x4_add(sum2, sum3); | |
| sum0 = wasm_f32x4_add(sum0, sum2); | |
| sumf = wasm_f32x4_extract_lane(sum0, 0) + wasm_f32x4_extract_lane(sum0, 1) + wasm_f32x4_extract_lane(sum0, 2) + wasm_f32x4_extract_lane(sum0, 3); | |
| // leftovers | |
| for (int i = n16; i < n; ++i) { | |
| sumf += x[i]*y[i]; | |
| } | |
| // scalar | |
| for (int i = 0; i < n; ++i) { | |
| sumf += x[i]*y[i]; | |
| } | |
| *s = sumf; | |
| } | |
| inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) { | |
| ggml_float sumf = 0.0; | |
| const int n32 = (n & ~31); | |
| float16x8_t sum0 = vdupq_n_f16(0); | |
| float16x8_t sum1 = vdupq_n_f16(0); | |
| float16x8_t sum2 = vdupq_n_f16(0); | |
| float16x8_t sum3 = vdupq_n_f16(0); | |
| float16x8_t x0, x1, x2, x3; | |
| float16x8_t y0, y1, y2, y3; | |
| for (int i = 0; i < n32; i += 32) { | |
| x0 = vld1q_f16(x + i + 0 ); | |
| x1 = vld1q_f16(x + i + 8 ); | |
| x2 = vld1q_f16(x + i + 16); | |
| x3 = vld1q_f16(x + i + 24); | |
| y0 = vld1q_f16(y + i + 0 ); | |
| y1 = vld1q_f16(y + i + 8 ); | |
| y2 = vld1q_f16(y + i + 16); | |
| y3 = vld1q_f16(y + i + 24); | |
| sum0 = vfmaq_f16(sum0, x0, y0); | |
| sum1 = vfmaq_f16(sum1, x1, y1); | |
| sum2 = vfmaq_f16(sum2, x2, y2); | |
| sum3 = vfmaq_f16(sum3, x3, y3); | |
| } | |
| // reduce sum0..sum3 to sum0 | |
| sum0 = vaddq_f16(sum0, sum1); | |
| sum2 = vaddq_f16(sum2, sum3); | |
| sum0 = vaddq_f16(sum0, sum2); | |
| // load sum0 into 2 float32x4_t | |
| float32x4_t sum0f32 = vcvt_f32_f16(vget_low_f16(sum0)); | |
| float32x4_t sum1f32 = vcvt_f32_f16(vget_high_f16(sum0)); | |
| // reduce sum0f32 and sum1f32 to sumf | |
| sum0f32 = vaddq_f32(sum0f32, sum1f32); | |
| float32x2_t sumf32 = vadd_f32(vget_low_f32(sum0f32), vget_high_f32(sum0f32)); | |
| sumf = vget_lane_f32(sumf32, 0) + vget_lane_f32(sumf32, 1); | |
| float32x4_t sum0 = vdupq_n_f32(0); | |
| float32x4_t sum1 = vdupq_n_f32(0); | |
| float32x4_t sum2 = vdupq_n_f32(0); | |
| float32x4_t sum3 = vdupq_n_f32(0); | |
| float32x4_t sum4 = vdupq_n_f32(0); | |
| float32x4_t sum5 = vdupq_n_f32(0); | |
| float32x4_t sum6 = vdupq_n_f32(0); | |
| float32x4_t sum7 = vdupq_n_f32(0); | |
| float32x4_t x0, x1, x2, x3, x4, x5, x6, x7; | |
| float32x4_t y0, y1, y2, y3, y4, y5, y6, y7; | |
| for (int i = 0; i < n32; i += 32) { | |
| x0 = vcvt_f32_f16(vld1_f16(x + i + 0 )); | |
| x1 = vcvt_f32_f16(vld1_f16(x + i + 4 )); | |
| x2 = vcvt_f32_f16(vld1_f16(x + i + 8 )); | |
| x3 = vcvt_f32_f16(vld1_f16(x + i + 12)); | |
| x4 = vcvt_f32_f16(vld1_f16(x + i + 16)); | |
| x5 = vcvt_f32_f16(vld1_f16(x + i + 20)); | |
| x6 = vcvt_f32_f16(vld1_f16(x + i + 24)); | |
| x7 = vcvt_f32_f16(vld1_f16(x + i + 28)); | |
| y0 = vcvt_f32_f16(vld1_f16(y + i + 0 )); | |
| y1 = vcvt_f32_f16(vld1_f16(y + i + 4 )); | |
| y2 = vcvt_f32_f16(vld1_f16(y + i + 8 )); | |
| y3 = vcvt_f32_f16(vld1_f16(y + i + 12)); | |
| y4 = vcvt_f32_f16(vld1_f16(y + i + 16)); | |
| y5 = vcvt_f32_f16(vld1_f16(y + i + 20)); | |
| y6 = vcvt_f32_f16(vld1_f16(y + i + 24)); | |
| y7 = vcvt_f32_f16(vld1_f16(y + i + 28)); | |
| sum0 = vfmaq_f32(sum0, x0, y0); | |
| sum1 = vfmaq_f32(sum1, x1, y1); | |
| sum2 = vfmaq_f32(sum2, x2, y2); | |
| sum3 = vfmaq_f32(sum3, x3, y3); | |
| sum4 = vfmaq_f32(sum4, x4, y4); | |
| sum5 = vfmaq_f32(sum5, x5, y5); | |
| sum6 = vfmaq_f32(sum6, x6, y6); | |
| sum7 = vfmaq_f32(sum7, x7, y7); | |
| } | |
| // reduce sum0..sum7 to sum0 | |
| sum0 = vaddq_f32(sum0, sum1); | |
| sum2 = vaddq_f32(sum2, sum3); | |
| sum4 = vaddq_f32(sum4, sum5); | |
| sum6 = vaddq_f32(sum6, sum7); | |
| sum0 = vaddq_f32(sum0, sum2); | |
| sum4 = vaddq_f32(sum4, sum6); | |
| sum0 = vaddq_f32(sum0, sum4); | |
| // reduce sum0 to sumf | |
| float32x2_t sumf32 = vadd_f32(vget_low_f32(sum0), vget_high_f32(sum0)); | |
| sumf = vget_lane_f32(sumf32, 0) + vget_lane_f32(sumf32, 1); | |
| // leftovers | |
| for (int i = n32; i < n; ++i) { | |
| sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]); | |
| } | |
| // AVX 256-bit | |
| const int n32 = (n & ~31); | |
| __m256 sum0 = _mm256_setzero_ps(); | |
| __m256 sum1 = _mm256_setzero_ps(); | |
| __m256 sum2 = _mm256_setzero_ps(); | |
| __m256 sum3 = _mm256_setzero_ps(); | |
| __m256 x0, x1, x2, x3; | |
| __m256 y0, y1, y2, y3; | |
| for (int i = 0; i < n32; i += 32) { | |
| x0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 0 ))); | |
| x1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 8 ))); | |
| x2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 16))); | |
| x3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 24))); | |
| y0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 0 ))); | |
| y1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 8 ))); | |
| y2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 16))); | |
| y3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 24))); | |
| sum0 = _mm256_fmadd_ps(x0, y0, sum0); | |
| sum1 = _mm256_fmadd_ps(x1, y1, sum1); | |
| sum2 = _mm256_fmadd_ps(x2, y2, sum2); | |
| sum3 = _mm256_fmadd_ps(x3, y3, sum3); | |
| } | |
| const __m256 sum01 = _mm256_add_ps(sum0, sum1); | |
| const __m256 sum23 = _mm256_add_ps(sum2, sum3); | |
| const __m256 sum0123 = _mm256_add_ps(sum01, sum23); | |
| const __m128 r4 = _mm_add_ps(_mm256_castps256_ps128(sum0123), _mm256_extractf128_ps(sum0123, 1)); | |
| const __m128 r2 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); | |
| const __m128 r1 = _mm_add_ss(r2, _mm_movehdup_ps(r2)); | |
| sumf = _mm_cvtss_f32(r1); | |
| // leftovers | |
| for (int i = n32; i < n; ++i) { | |
| //GGML_ASSERT(false); | |
| sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]); | |
| } | |
| // AVX 256-bit | |
| const int n32 = (n & ~31); | |
| __m256 sum0 = _mm256_setzero_ps(); | |
| __m256 sum1 = _mm256_setzero_ps(); | |
| __m256 sum2 = _mm256_setzero_ps(); | |
| __m256 sum3 = _mm256_setzero_ps(); | |
| __m256 x0, x1, x2, x3; | |
| __m256 y0, y1, y2, y3; | |
| for (int i = 0; i < n32; i += 32) { | |
| x0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 0 ))); | |
| x1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 8 ))); | |
| x2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 16))); | |
| x3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 24))); | |
| y0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 0 ))); | |
| y1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 8 ))); | |
| y2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 16))); | |
| y3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 24))); | |
| sum0 = _mm256_add_ps(_mm256_mul_ps(x0, y0), sum0); | |
| sum1 = _mm256_add_ps(_mm256_mul_ps(x1, y1), sum1); | |
| sum2 = _mm256_add_ps(_mm256_mul_ps(x2, y2), sum2); | |
| sum3 = _mm256_add_ps(_mm256_mul_ps(x3, y3), sum3); | |
| } | |
| const __m256 sum01 = _mm256_add_ps(sum0, sum1); | |
| const __m256 sum23 = _mm256_add_ps(sum2, sum3); | |
| const __m256 sum0123 = _mm256_add_ps(sum01, sum23); | |
| const __m128 r4 = _mm_add_ps(_mm256_castps256_ps128(sum0123), _mm256_extractf128_ps(sum0123, 1)); | |
| const __m128 r2 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4)); | |
| const __m128 r1 = _mm_add_ss(r2, _mm_movehdup_ps(r2)); | |
| sumf = _mm_cvtss_f32(r1); | |
| // leftovers | |
| for (int i = n32; i < n; ++i) { | |
| //GGML_ASSERT(false); | |
| sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]); | |
| } | |
| // WASM 128-bit | |
| const int n16 = (n & ~15); | |
| v128_t sum0 = wasm_f32x4_splat(0.0f); | |
| v128_t sum1 = wasm_f32x4_splat(0.0f); | |
| v128_t sum2 = wasm_f32x4_splat(0.0f); | |
| v128_t sum3 = wasm_f32x4_splat(0.0f); | |
| v128_t x0, x1, x2, x3; | |
| v128_t y0, y1, y2, y3; | |
| float tx[16]; | |
| float ty[16]; | |
| for (int i = 0; i < n16; i += 16) { | |
| for (int k = 0; k < 16; ++k) { | |
| tx[k] = ggml_fp16_to_fp32(x[i + k]); | |
| ty[k] = ggml_fp16_to_fp32(y[i + k]); | |
| } | |
| x0 = wasm_v128_load(tx + 0); | |
| x1 = wasm_v128_load(tx + 4); | |
| x2 = wasm_v128_load(tx + 8); | |
| x3 = wasm_v128_load(tx + 12); | |
| y0 = wasm_v128_load(ty + 0); | |
| y1 = wasm_v128_load(ty + 4); | |
| y2 = wasm_v128_load(ty + 8); | |
| y3 = wasm_v128_load(ty + 12); | |
| sum0 = wasm_f32x4_add(sum0, wasm_f32x4_mul(x0, y0)); | |
| sum1 = wasm_f32x4_add(sum1, wasm_f32x4_mul(x1, y1)); | |
| sum2 = wasm_f32x4_add(sum2, wasm_f32x4_mul(x2, y2)); | |
| sum3 = wasm_f32x4_add(sum3, wasm_f32x4_mul(x3, y3)); | |
| } | |
| sum0 = wasm_f32x4_add(sum0, sum1); | |
| sum2 = wasm_f32x4_add(sum2, sum3); | |
| sum0 = wasm_f32x4_add(sum0, sum2); | |
| sumf = wasm_f32x4_extract_lane(sum0, 0) + wasm_f32x4_extract_lane(sum0, 1) + wasm_f32x4_extract_lane(sum0, 2) + wasm_f32x4_extract_lane(sum0, 3); | |
| // leftovers | |
| for (int i = n16; i < n; ++i) { | |
| //GGML_ASSERT(false); | |
| sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]); | |
| } | |
| for (int i = 0; i < n; ++i) { | |
| sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]); | |
| } | |
| *s = sumf; | |
| } | |
| inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) { | |
| // NEON 128-bit | |
| const int n16 = (n & ~15); | |
| const float32x4_t v4 = vdupq_n_f32(v); | |
| float32x4_t x0, x1, x2, x3; | |
| float32x4_t y0, y1, y2, y3; | |
| for (int i = 0; i < n16; i += 16) { | |
| x0 = vld1q_f32(x + i + 0); | |
| x1 = vld1q_f32(x + i + 4); | |
| x2 = vld1q_f32(x + i + 8); | |
| x3 = vld1q_f32(x + i + 12); | |
| y0 = vld1q_f32(y + i + 0); | |
| y1 = vld1q_f32(y + i + 4); | |
| y2 = vld1q_f32(y + i + 8); | |
| y3 = vld1q_f32(y + i + 12); | |
| y0 = vfmaq_f32(y0, x0, v4); | |
| y1 = vfmaq_f32(y1, x1, v4); | |
| y2 = vfmaq_f32(y2, x2, v4); | |
| y3 = vfmaq_f32(y3, x3, v4); | |
| vst1q_f32(y + i + 0, y0); | |
| vst1q_f32(y + i + 4, y1); | |
| vst1q_f32(y + i + 8, y2); | |
| vst1q_f32(y + i + 12, y3); | |
| } | |
| // leftovers | |
| for (int i = n16; i < n; ++i) { | |
| y[i] += x[i]*v; | |
| } | |
| // AVX 256-bit | |
| const int n32 = (n & ~31); | |
| const __m256 v4 = _mm256_set1_ps(v); | |
| __m256 x0, x1, x2, x3; | |
| __m256 y0, y1, y2, y3; | |
| for (int i = 0; i < n32; i += 32) { | |
| x0 = _mm256_loadu_ps(x + i + 0); | |
| x1 = _mm256_loadu_ps(x + i + 8); | |
| x2 = _mm256_loadu_ps(x + i + 16); | |
| x3 = _mm256_loadu_ps(x + i + 24); | |
| y0 = _mm256_loadu_ps(y + i + 0); | |
| y1 = _mm256_loadu_ps(y + i + 8); | |
| y2 = _mm256_loadu_ps(y + i + 16); | |
| y3 = _mm256_loadu_ps(y + i + 24); | |
| y0 = _mm256_fmadd_ps(x0, v4, y0); | |
| y1 = _mm256_fmadd_ps(x1, v4, y1); | |
| y2 = _mm256_fmadd_ps(x2, v4, y2); | |
| y3 = _mm256_fmadd_ps(x3, v4, y3); | |
| _mm256_storeu_ps(y + i + 0, y0); | |
| _mm256_storeu_ps(y + i + 8, y1); | |
| _mm256_storeu_ps(y + i + 16, y2); | |
| _mm256_storeu_ps(y + i + 24, y3); | |
| } | |
| // leftovers | |
| for (int i = n32; i < n; ++i) { | |
| y[i] += x[i]*v; | |
| } | |
| // AVX 256-bit | |
| const int n32 = (n & ~31); | |
| const __m256 v4 = _mm256_set1_ps(v); | |
| __m256 x0, x1, x2, x3; | |
| __m256 y0, y1, y2, y3; | |
| for (int i = 0; i < n32; i += 32) { | |
| x0 = _mm256_loadu_ps(x + i + 0); | |
| x1 = _mm256_loadu_ps(x + i + 8); | |
| x2 = _mm256_loadu_ps(x + i + 16); | |
| x3 = _mm256_loadu_ps(x + i + 24); | |
| y0 = _mm256_loadu_ps(y + i + 0); | |
| y1 = _mm256_loadu_ps(y + i + 8); | |
| y2 = _mm256_loadu_ps(y + i + 16); | |
| y3 = _mm256_loadu_ps(y + i + 24); | |
| y0 = _mm256_add_ps(_mm256_mul_ps(x0, v4), y0); | |
| y1 = _mm256_add_ps(_mm256_mul_ps(x1, v4), y1); | |
| y2 = _mm256_add_ps(_mm256_mul_ps(x2, v4), y2); | |
| y3 = _mm256_add_ps(_mm256_mul_ps(x3, v4), y3); | |
| _mm256_storeu_ps(y + i + 0, y0); | |
| _mm256_storeu_ps(y + i + 8, y1); | |
| _mm256_storeu_ps(y + i + 16, y2); | |
| _mm256_storeu_ps(y + i + 24, y3); | |
| } | |
| // leftovers | |
| for (int i = n32; i < n; ++i) { | |
| y[i] += x[i]*v; | |
| } | |
| // WASM SIMD 128-bit | |
| const int n16 = (n & ~15); | |
| const v128_t v4 = wasm_f32x4_splat(v); | |
| v128_t x0, x1, x2, x3; | |
| v128_t y0, y1, y2, y3; | |
| for (int i = 0; i < n16; i += 16) { | |
| x0 = wasm_v128_load(x + i + 0); | |
| x1 = wasm_v128_load(x + i + 4); | |
| x2 = wasm_v128_load(x + i + 8); | |
| x3 = wasm_v128_load(x + i + 12); | |
| y0 = wasm_v128_load(y + i + 0); | |
| y1 = wasm_v128_load(y + i + 4); | |
| y2 = wasm_v128_load(y + i + 8); | |
| y3 = wasm_v128_load(y + i + 12); | |
| y0 = wasm_f32x4_add(y0, wasm_f32x4_mul(x0, v4)); | |
| y1 = wasm_f32x4_add(y1, wasm_f32x4_mul(x1, v4)); | |
| y2 = wasm_f32x4_add(y2, wasm_f32x4_mul(x2, v4)); | |
| y3 = wasm_f32x4_add(y3, wasm_f32x4_mul(x3, v4)); | |
| wasm_v128_store(y + i + 0, y0); | |
| wasm_v128_store(y + i + 4, y1); | |
| wasm_v128_store(y + i + 8, y2); | |
| wasm_v128_store(y + i + 12, y3); | |
| } | |
| // leftovers | |
| for (int i = n16; i < n; ++i) { | |
| y[i] += x[i]*v; | |
| } | |
| // scalar | |
| for (int i = 0; i < n; ++i) { | |
| y[i] += x[i]*v; | |
| } | |
| } | |
| inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, ggml_fp16_t * restrict x, const float v) { | |
| // NEON 128-bit | |
| const int n32 = (n & ~31); | |
| const float16x8_t v8 = vdupq_n_f16(v); | |
| float16x8_t x0, x1, x2, x3; | |
| float16x8_t y0, y1, y2, y3; | |
| for (int i = 0; i < n32; i += 32) { | |
| y0 = vld1q_f16(y + i + 0 ); | |
| y1 = vld1q_f16(y + i + 8 ); | |
| y2 = vld1q_f16(y + i + 16); | |
| y3 = vld1q_f16(y + i + 24); | |
| x0 = vld1q_f16(x + i + 0 ); | |
| x1 = vld1q_f16(x + i + 8 ); | |
| x2 = vld1q_f16(x + i + 16); | |
| x3 = vld1q_f16(x + i + 24); | |
| y0 = vfmaq_f16(y0, x0, v8); | |
| y1 = vfmaq_f16(y1, x1, v8); | |
| y2 = vfmaq_f16(y2, x2, v8); | |
| y3 = vfmaq_f16(y3, x3, v8); | |
| vst1q_f16(y + i + 0 , y0); | |
| vst1q_f16(y + i + 8 , y1); | |
| vst1q_f16(y + i + 16, y2); | |
| vst1q_f16(y + i + 24, y3); | |
| } | |
| const float32x4_t v40 = vdupq_n_f32(v); | |
| const float32x4_t v41 = vdupq_n_f32(v); | |
| float32x4_t x0, x1, x2, x3, x4, x5, x6, x7; | |
| float32x4_t y0, y1, y2, y3, y4, y5, y6, y7; | |
| for (int i = 0; i < n32; i += 32) { | |
| y0 = vcvt_f32_f16(vld1_f16(y + i + 0 )); | |
| y1 = vcvt_f32_f16(vld1_f16(y + i + 4 )); | |
| y2 = vcvt_f32_f16(vld1_f16(y + i + 8 )); | |
| y3 = vcvt_f32_f16(vld1_f16(y + i + 12)); | |
| y4 = vcvt_f32_f16(vld1_f16(y + i + 16)); | |
| y5 = vcvt_f32_f16(vld1_f16(y + i + 20)); | |
| y6 = vcvt_f32_f16(vld1_f16(y + i + 24)); | |
| y7 = vcvt_f32_f16(vld1_f16(y + i + 28)); | |
| x0 = vcvt_f32_f16(vld1_f16(x + i + 0 )); | |
| x1 = vcvt_f32_f16(vld1_f16(x + i + 4 )); | |
| x2 = vcvt_f32_f16(vld1_f16(x + i + 8 )); | |
| x3 = vcvt_f32_f16(vld1_f16(x + i + 12)); | |
| x4 = vcvt_f32_f16(vld1_f16(x + i + 16)); | |
| x5 = vcvt_f32_f16(vld1_f16(x + i + 20)); | |
| x6 = vcvt_f32_f16(vld1_f16(x + i + 24)); | |
| x7 = vcvt_f32_f16(vld1_f16(x + i + 28)); | |
| y0 = vfmaq_f32(y0, x0, v40); | |
| y1 = vfmaq_f32(y1, x1, v40); | |
| y2 = vfmaq_f32(y2, x2, v40); | |
| y3 = vfmaq_f32(y3, x3, v40); | |
| y4 = vfmaq_f32(y4, x4, v41); | |
| y5 = vfmaq_f32(y5, x5, v41); | |
| y6 = vfmaq_f32(y6, x6, v41); | |
| y7 = vfmaq_f32(y7, x7, v41); | |
| vst1_f16(y + i + 0 , vcvt_f16_f32(y0)); | |
| vst1_f16(y + i + 4 , vcvt_f16_f32(y1)); | |
| vst1_f16(y + i + 8 , vcvt_f16_f32(y2)); | |
| vst1_f16(y + i + 12, vcvt_f16_f32(y3)); | |
| vst1_f16(y + i + 16, vcvt_f16_f32(y4)); | |
| vst1_f16(y + i + 20, vcvt_f16_f32(y5)); | |
| vst1_f16(y + i + 24, vcvt_f16_f32(y6)); | |
| vst1_f16(y + i + 28, vcvt_f16_f32(y7)); | |
| } | |
| // leftovers | |
| for (int i = n32; i < n; ++i) { | |
| GGML_ASSERT(false); | |
| y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v); | |
| } | |
| // AVX 256-bit | |
| const int n32 = (n & ~31); | |
| const __m256 v8 = _mm256_set1_ps(v); | |
| __m256 x0, x1, x2, x3; | |
| __m256 y0, y1, y2, y3; | |
| for (int i = 0; i < n32; i += 32) { | |
| y0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 0 ))); | |
| y1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 8 ))); | |
| y2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 16))); | |
| y3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 24))); | |
| x0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 0 ))); | |
| x1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 8 ))); | |
| x2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 16))); | |
| x3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 24))); | |
| y0 = _mm256_fmadd_ps(x0, v8, y0); | |
| y1 = _mm256_fmadd_ps(x1, v8, y1); | |
| y2 = _mm256_fmadd_ps(x2, v8, y2); | |
| y3 = _mm256_fmadd_ps(x3, v8, y3); | |
| _mm_storeu_si128((__m128i*)(y + i + 0 ), _mm256_cvtps_ph(y0, 0)); | |
| _mm_storeu_si128((__m128i*)(y + i + 8 ), _mm256_cvtps_ph(y1, 0)); | |
| _mm_storeu_si128((__m128i*)(y + i + 16), _mm256_cvtps_ph(y2, 0)); | |
| _mm_storeu_si128((__m128i*)(y + i + 24), _mm256_cvtps_ph(y3, 0)); | |
| } | |
| // leftovers | |
| for (int i = n32; i < n; ++i) { | |
| GGML_ASSERT(false); | |
| y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v); | |
| } | |
| // AVX 256-bit | |
| const int n32 = (n & ~31); | |
| const __m256 v8 = _mm256_set1_ps(v); | |
| __m256 x0, x1, x2, x3; | |
| __m256 y0, y1, y2, y3; | |
| for (int i = 0; i < n32; i += 32) { | |
| y0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 0 ))); | |
| y1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 8 ))); | |
| y2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 16))); | |
| y3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(y + i + 24))); | |
| x0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 0 ))); | |
| x1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 8 ))); | |
| x2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 16))); | |
| x3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(x + i + 24))); | |
| y0 = _mm256_add_ps(_mm256_mul_ps(x0, v8), y0); | |
| y1 = _mm256_add_ps(_mm256_mul_ps(x1, v8), y1); | |
| y2 = _mm256_add_ps(_mm256_mul_ps(x2, v8), y2); | |
| y3 = _mm256_add_ps(_mm256_mul_ps(x3, v8), y3); | |
| _mm_storeu_si128((__m128i*)(y + i + 0 ), _mm256_cvtps_ph(y0, 0)); | |
| _mm_storeu_si128((__m128i*)(y + i + 8 ), _mm256_cvtps_ph(y1, 0)); | |
| _mm_storeu_si128((__m128i*)(y + i + 16), _mm256_cvtps_ph(y2, 0)); | |
| _mm_storeu_si128((__m128i*)(y + i + 24), _mm256_cvtps_ph(y3, 0)); | |
| } | |
| // leftovers | |
| for (int i = n32; i < n; ++i) { | |
| GGML_ASSERT(false); | |
| y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v); | |
| } | |
| // WASM SIMD 128-bit | |
| const int n16 = (n & ~15); | |
| const v128_t v4 = wasm_f32x4_splat(v); | |
| v128_t x0, x1, x2, x3; | |
| v128_t y0, y1, y2, y3; | |
| float tx[16]; | |
| float ty[16]; | |
| for (int i = 0; i < n16; i += 16) { | |
| for (int k = 0; k < 16; ++k) { | |
| tx[k] = ggml_fp16_to_fp32(x[i + k]); | |
| ty[k] = ggml_fp16_to_fp32(y[i + k]); | |
| } | |
| x0 = wasm_v128_load(tx + 0); | |
| x1 = wasm_v128_load(tx + 4); | |
| x2 = wasm_v128_load(tx + 8); | |
| x3 = wasm_v128_load(tx + 12); | |
| y0 = wasm_v128_load(ty + 0); | |
| y1 = wasm_v128_load(ty + 4); | |
| y2 = wasm_v128_load(ty + 8); | |
| y3 = wasm_v128_load(ty + 12); | |
| y0 = wasm_f32x4_add(y0, wasm_f32x4_mul(x0, v4)); | |
| y1 = wasm_f32x4_add(y1, wasm_f32x4_mul(x1, v4)); | |
| y2 = wasm_f32x4_add(y2, wasm_f32x4_mul(x2, v4)); | |
| y3 = wasm_f32x4_add(y3, wasm_f32x4_mul(x3, v4)); | |
| wasm_v128_store(ty + 0, y0); | |
| wasm_v128_store(ty + 4, y1); | |
| wasm_v128_store(ty + 8, y2); | |
| wasm_v128_store(ty + 12, y3); | |
| for (int k = 0; k < 16; ++k) { | |
| y[i + k] = ggml_fp32_to_fp16(ty[k]); | |
| } | |
| } | |
| // leftovers | |
| for (int i = n16; i < n; ++i) { | |
| GGML_ASSERT(false); | |
| y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v); | |
| } | |
| for (int i = 0; i < n; ++i) { | |
| y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v); | |
| } | |
| } | |
| inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; } | |
| inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); } | |
| inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; } | |
| inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); } | |
| inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); } | |
| inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); } | |
| inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; } | |
| inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; } | |
| const ggml_float GELU_COEF_A = 0.044715; | |
| const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876; | |
| inline static float ggml_gelu_f32(float x) { | |
| return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x))); | |
| } | |
| inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { | |
| const uint16_t * i16 = (const uint16_t *) x; | |
| for (int i = 0; i < n; ++i) { | |
| y[i] = table_gelu_f16[i16[i]]; | |
| } | |
| } | |
| inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) { | |
| uint16_t t; | |
| for (int i = 0; i < n; ++i) { | |
| ggml_fp16_t fp16 = ggml_fp32_to_fp16(x[i]); | |
| memcpy(&t, &fp16, sizeof(uint16_t)); | |
| y[i] = ggml_fp16_to_fp32(table_gelu_f16[t]); | |
| } | |
| } | |
| inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) { | |
| for (int i = 0; i < n; ++i) { | |
| y[i] = ggml_gelu_f32(x[i]); | |
| } | |
| } | |
| inline static void ggml_vec_sum_f32 (const int n, float * s, const float * x) { ggml_float sum = 0.0; for (int i = 0; i < n; ++i) sum += x[i]; *s += sum; } | |
| inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); } | |
| // | |
| // logging | |
| // | |
| // | |
| // data types | |
| // | |
| const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = { | |
| sizeof(int8_t ), | |
| sizeof(int16_t), | |
| sizeof(int32_t), | |
| sizeof(ggml_fp16_t), | |
| sizeof(float ), | |
| }; | |
| const char * GGML_OP_LABEL[GGML_OP_COUNT] = { | |
| "NONE", | |
| "DUP", | |
| "ADD", | |
| "SUB", | |
| "MUL", | |
| "DIV", | |
| "SQR", | |
| "SQRT", | |
| "SUM", | |
| "MEAN", | |
| "REPEAT", | |
| "ABS", | |
| "SGN", | |
| "NEG", | |
| "STEP", | |
| "RELU", | |
| "GELU", | |
| "NORM", | |
| "MUL_MAT", | |
| "SCALE", | |
| "CPY", | |
| "RESHAPE", | |
| "VIEW", | |
| "PERMUTE", | |
| "TRANSPOSE", | |
| "GET_ROWS", | |
| "DIAG_MASK_INF", | |
| "SOFT_MAX", | |
| "ROPE", | |
| "CONV_1D_1S", | |
| "CONV_1D_2S", | |
| "FLASH_ATTN", | |
| "FLASH_FF", | |
| }; | |
| const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { | |
| "none", | |
| "x", | |
| "x+y", | |
| "x-y", | |
| "x*y", | |
| "x/y", | |
| "x^2", | |
| "√x", | |
| "Σx", | |
| "Σx/n", | |
| "repeat(x)", | |
| "abs(x)", | |
| "sgn(x)", | |
| "-x", | |
| "step(x)", | |
| "relu(x)", | |
| "gelu(x)", | |
| "norm(x)", | |
| "X*Y", | |
| "x*v", | |
| "x-\\>y", | |
| "reshape(x)", | |
| "view(x)", | |
| "permute(x)", | |
| "transpose(x)", | |
| "get_rows(x)", | |
| "diag_mask_inf(x)", | |
| "soft_max(x)", | |
| "rope(x)", | |
| "conv_1d_1s(x)", | |
| "conv_1d_2s(x)", | |
| "flash_attn(x)", | |
| "flash_ff(x)", | |
| }; | |
| // | |
| // ggml object | |
| // | |
| struct ggml_object { | |
| size_t offset; | |
| size_t size; | |
| struct ggml_object * next; | |
| char padding[8]; | |
| }; | |
| const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object); | |
| static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); | |
| static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); | |
| // | |
| // ggml context | |
| // | |
| struct ggml_context { | |
| size_t mem_size; | |
| void * mem_buffer; | |
| bool mem_buffer_owned; | |
| int n_objects; | |
| struct ggml_object * objects_begin; | |
| struct ggml_object * objects_end; | |
| }; | |
| struct ggml_context_container { | |
| bool used; | |
| struct ggml_context context; | |
| }; | |
| // | |
| // compute types | |
| // | |
| enum ggml_task_type { | |
| GGML_TASK_INIT = 0, | |
| GGML_TASK_COMPUTE, | |
| GGML_TASK_FINALIZE, | |
| }; | |
| struct ggml_compute_params { | |
| enum ggml_task_type type; | |
| int ith, nth; | |
| // work buffer for all threads | |
| size_t wsize; | |
| void * wdata; | |
| }; | |
| // | |
| // ggml state | |
| // | |
| struct ggml_state { | |
| struct ggml_context_container contexts[GGML_MAX_CONTEXTS]; | |
| }; | |
| // global state | |
| struct ggml_state g_state; | |
| atomic_int g_state_barrier = 0; | |
| //////////////////////////////////////////////////////////////////////////////// | |
| void ggml_print_object(const struct ggml_object * obj) { | |
| GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n", | |
| obj->offset, obj->size, (const void *) obj->next); | |
| } | |
| void ggml_print_objects(const struct ggml_context * ctx) { | |
| struct ggml_object * obj = ctx->objects_begin; | |
| GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx); | |
| while (obj != NULL) { | |
| ggml_print_object(obj); | |
| obj = obj->next; | |
| } | |
| GGML_PRINT("%s: --- end ---\n", __func__); | |
| } | |
| int ggml_nelements(const struct ggml_tensor * tensor) { | |
| static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
| return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; | |
| } | |
| int ggml_nrows(const struct ggml_tensor * tensor) { | |
| static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
| return tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; | |
| } | |
| size_t ggml_nbytes(const struct ggml_tensor * tensor) { | |
| static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
| return ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type]; | |
| } | |
| size_t ggml_type_size(enum ggml_type type) { | |
| return GGML_TYPE_SIZE[type]; | |
| } | |
| size_t ggml_element_size(const struct ggml_tensor * tensor) { | |
| return GGML_TYPE_SIZE[tensor->type]; | |
| } | |
| bool ggml_is_scalar(const struct ggml_tensor * tensor) { | |
| static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
| return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1; | |
| } | |
| bool ggml_is_vector(const struct ggml_tensor * tensor) { | |
| static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
| return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1; | |
| } | |
| bool ggml_is_matrix(const struct ggml_tensor * tensor) { | |
| static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
| return tensor->ne[2] == 1 && tensor->ne[3] == 1; | |
| } | |
| bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { | |
| static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
| return | |
| (t0->ne[0] == t1->ne[0]) && | |
| (t0->ne[2] == t1->ne[2]) && | |
| (t0->ne[3] == t1->ne[3]); | |
| } | |
| bool ggml_is_contiguous(const struct ggml_tensor * tensor) { | |
| static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
| return | |
| tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] && | |
| tensor->nb[1] == tensor->nb[0]*tensor->ne[0] && | |
| tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && | |
| tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; | |
| } | |
| bool ggml_is_padded_1d(const struct ggml_tensor * tensor) { | |
| static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
| return | |
| tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] && | |
| tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && | |
| tensor->nb[3] == tensor->nb[2]*tensor->ne[2];; | |
| } | |
| bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { | |
| static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
| return | |
| (t0->ne[0] == t1->ne[0] ) && | |
| (t0->ne[1] == t1->ne[1] ) && | |
| (t0->ne[2] == t1->ne[2] ) && | |
| (t0->ne[3] == t1->ne[3] ); | |
| } | |
| // check if t1 can be represented as a repeatition of t0 | |
| bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { | |
| static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
| return | |
| (t1->ne[0]%t0->ne[0] == 0) && | |
| (t1->ne[1]%t0->ne[1] == 0) && | |
| (t1->ne[2]%t0->ne[2] == 0) && | |
| (t1->ne[3]%t0->ne[3] == 0); | |
| } | |
| int ggml_up32(int n) { | |
| return (n + 31) & ~31; | |
| } | |
| int ggml_up64(int n) { | |
| return (n + 63) & ~63; | |
| } | |
| // assert that pointer is aligned to GGML_MEM_ALIGN | |
| //////////////////////////////////////////////////////////////////////////////// | |
| struct ggml_context * ggml_init(struct ggml_init_params params) { | |
| // make this function thread safe | |
| { | |
| int processing = atomic_fetch_add(&g_state_barrier, 1); | |
| while (processing > 0) { | |
| // wait for other threads to finish | |
| atomic_fetch_sub(&g_state_barrier, 1); | |
| sched_yield(); | |
| processing = atomic_fetch_add(&g_state_barrier, 1); | |
| } | |
| } | |
| static bool is_first_call = true; | |
| if (is_first_call) { | |
| const uint64_t t_start = ggml_time_us(); UNUSED(t_start); | |
| ggml_fp16_t ii; | |
| for (int i = 0; i < (1 << 16); ++i) { | |
| uint16_t ui = i; | |
| memcpy(&ii, &ui, sizeof(ii)); | |
| const float f = ggml_fp16_to_fp32(ii); | |
| table_gelu_f16[i] = ggml_fp32_to_fp16(ggml_gelu_f32(f)); | |
| table_exp_f16[i] = ggml_fp32_to_fp16(exp(f)); | |
| } | |
| const uint64_t t_end = ggml_time_us(); UNUSED(t_end); | |
| GGML_PRINT_DEBUG("%s: GELU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f); | |
| is_first_call = false; | |
| } | |
| // find non-used context in g_state | |
| struct ggml_context * ctx = NULL; | |
| static bool first_time = true; | |
| if (first_time) { | |
| for (int i = 0; i < GGML_MAX_CONTEXTS; i++) { | |
| g_state.contexts[i].used = false; | |
| } | |
| first_time = false; | |
| } | |
| for (int i = 0; i < GGML_MAX_CONTEXTS; i++) { | |
| if (!g_state.contexts[i].used) { | |
| g_state.contexts[i].used = true; | |
| ctx = &g_state.contexts[i].context; | |
| GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i); | |
| break; | |
| } | |
| } | |
| if (ctx == NULL) { | |
| GGML_PRINT_DEBUG("%s: no unused context found\n", __func__); | |
| atomic_fetch_sub(&g_state_barrier, 1); | |
| return NULL; | |
| } | |
| *ctx = (struct ggml_context) { | |
| .mem_size = params.mem_size, | |
| .mem_buffer = params.mem_buffer ? params.mem_buffer : malloc(params.mem_size), | |
| .mem_buffer_owned = params.mem_buffer ? false : true, | |
| .n_objects = 0, | |
| .objects_begin = NULL, | |
| .objects_end = NULL, | |
| }; | |
| ggml_assert_aligned(ctx->mem_buffer); | |
| GGML_PRINT_DEBUG("%s: context initialized\n", __func__); | |
| atomic_fetch_sub(&g_state_barrier, 1); | |
| return ctx; | |
| } | |
| void ggml_free(struct ggml_context * ctx) { | |
| // make this function thread safe | |
| { | |
| int processing = atomic_fetch_add(&g_state_barrier, 1); | |
| while (processing > 0) { | |
| // wait for other threads to finish | |
| atomic_fetch_sub(&g_state_barrier, 1); | |
| sched_yield(); | |
| processing = atomic_fetch_add(&g_state_barrier, 1); | |
| } | |
| } | |
| for (int i = 0; i < GGML_MAX_CONTEXTS; i++) { | |
| if (&g_state.contexts[i].context == ctx) { | |
| g_state.contexts[i].used = false; | |
| GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n", | |
| __func__, i, ctx->n_objects, ctx->objects_end->offset + ctx->objects_end->size); | |
| if (ctx->mem_buffer_owned) { | |
| free(ctx->mem_buffer); | |
| } | |
| atomic_fetch_sub(&g_state_barrier, 1); | |
| return; | |
| } | |
| } | |
| GGML_PRINT_DEBUG("%s: context not found\n", __func__); | |
| atomic_fetch_sub(&g_state_barrier, 1); | |
| } | |
| size_t ggml_used_mem(const struct ggml_context * ctx) { | |
| return ctx->objects_end->offset + ctx->objects_end->size; | |
| } | |
| //////////////////////////////////////////////////////////////////////////////// | |
| struct ggml_tensor * ggml_new_tensor_impl( | |
| struct ggml_context * ctx, | |
| enum ggml_type type, | |
| int n_dims, | |
| const int* ne, | |
| void* data) { | |
| // always insert objects at the end of the context's memory pool | |
| struct ggml_object * obj_cur = ctx->objects_end; | |
| const size_t cur_offset = obj_cur == NULL ? 0 : obj_cur->offset; | |
| const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size; | |
| const size_t cur_end = cur_offset + cur_size; | |
| size_t size_needed = 0; | |
| if (data == NULL) { | |
| size_needed += GGML_TYPE_SIZE[type]; | |
| for (int i = 0; i < n_dims; i++) { | |
| size_needed *= ne[i]; | |
| } | |
| // align to GGML_MEM_ALIGN | |
| size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN; | |
| } | |
| size_needed += sizeof(struct ggml_tensor); | |
| if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) { | |
| GGML_PRINT("%s: not enough space in the context's memory pool\n", __func__); | |
| assert(false); | |
| return NULL; | |
| } | |
| char * const mem_buffer = ctx->mem_buffer; | |
| struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end); | |
| *obj_new = (struct ggml_object) { | |
| .offset = cur_end + GGML_OBJECT_SIZE, | |
| .size = size_needed, | |
| .next = NULL, | |
| }; | |
| if (obj_cur != NULL) { | |
| obj_cur->next = obj_new; | |
| } else { | |
| // this is the first object in this context | |
| ctx->objects_begin = obj_new; | |
| } | |
| ctx->objects_end = obj_new; | |
| //GGML_PRINT_DEBUG("%s: inserted new object at %zu\n", __func__, cur_end); | |
| struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offset); | |
| ggml_assert_aligned(result); | |
| *result = (struct ggml_tensor) { | |
| /*.type =*/ type, | |
| /*.n_dims =*/ n_dims, | |
| /*.ne =*/ { 1, 1, 1, 1 }, | |
| /*.nb =*/ { 0, 0, 0, 0 }, | |
| /*.op =*/ GGML_OP_NONE, | |
| /*.is_param =*/ false, | |
| /*.grad =*/ NULL, | |
| /*.src0 =*/ NULL, | |
| /*.src1 =*/ NULL, | |
| /*.opt =*/ { NULL }, | |
| /*.n_tasks =*/ 0, | |
| /*.perf_runs =*/ 0, | |
| /*.perf_cycles =*/ 0, | |
| /*.perf_time_us =*/ 0, | |
| /*.data =*/ data == NULL ? (void *)(result + 1) : data, | |
| /*.pad =*/ { 0 }, | |
| }; | |
| ggml_assert_aligned(result->data); | |
| for (int i = 0; i < n_dims; i++) { | |
| result->ne[i] = ne[i]; | |
| } | |
| result->nb[0] = GGML_TYPE_SIZE[type]; | |
| for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
| result->nb[i] = result->nb[i - 1]*result->ne[i - 1]; | |
| } | |
| ctx->n_objects++; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_new_tensor( | |
| struct ggml_context * ctx, | |
| enum ggml_type type, | |
| int n_dims, | |
| const int* ne) { | |
| return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL); | |
| } | |
| struct ggml_tensor * ggml_new_tensor_1d( | |
| struct ggml_context * ctx, | |
| enum ggml_type type, | |
| int ne0) { | |
| return ggml_new_tensor(ctx, type, 1, &ne0); | |
| } | |
| struct ggml_tensor * ggml_new_tensor_2d( | |
| struct ggml_context * ctx, | |
| enum ggml_type type, | |
| int ne0, | |
| int ne1) { | |
| const int ne[2] = { ne0, ne1 }; | |
| return ggml_new_tensor(ctx, type, 2, ne); | |
| } | |
| struct ggml_tensor * ggml_new_tensor_3d( | |
| struct ggml_context * ctx, | |
| enum ggml_type type, | |
| int ne0, | |
| int ne1, | |
| int ne2) { | |
| const int ne[3] = { ne0, ne1, ne2 }; | |
| return ggml_new_tensor(ctx, type, 3, ne); | |
| } | |
| struct ggml_tensor * ggml_new_tensor_4d( | |
| struct ggml_context * ctx, | |
| enum ggml_type type, | |
| int ne0, | |
| int ne1, | |
| int ne2, | |
| int ne3) { | |
| const int ne[4] = { ne0, ne1, ne2, ne3 }; | |
| return ggml_new_tensor(ctx, type, 4, ne); | |
| } | |
| struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) { | |
| struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1); | |
| ggml_set_i32(result, value); | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) { | |
| struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); | |
| ggml_set_f32(result, value); | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) { | |
| return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL); | |
| } | |
| struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) { | |
| memset(tensor->data, 0, ggml_nbytes(tensor)); | |
| return tensor; | |
| } | |
| struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) { | |
| const int n = ggml_nrows(tensor); | |
| const int nc = tensor->ne[0]; | |
| const size_t n1 = tensor->nb[1]; | |
| char * const data = tensor->data; | |
| switch (tensor->type) { | |
| case GGML_TYPE_I8: | |
| { | |
| assert(tensor->nb[0] == sizeof(int8_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value); | |
| } | |
| } break; | |
| case GGML_TYPE_I16: | |
| { | |
| assert(tensor->nb[0] == sizeof(int16_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value); | |
| } | |
| } break; | |
| case GGML_TYPE_I32: | |
| { | |
| assert(tensor->nb[0] == sizeof(int32_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value); | |
| } | |
| } break; | |
| case GGML_TYPE_F16: | |
| { | |
| assert(tensor->nb[0] == sizeof(ggml_fp16_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value); | |
| } | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| assert(tensor->nb[0] == sizeof(float)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_f32(nc, (float *)(data + i*n1), value); | |
| } | |
| } break; | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| return tensor; | |
| } | |
| struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { | |
| const int n = ggml_nrows(tensor); | |
| const int nc = tensor->ne[0]; | |
| const size_t n1 = tensor->nb[1]; | |
| char * const data = tensor->data; | |
| switch (tensor->type) { | |
| case GGML_TYPE_I8: | |
| { | |
| assert(tensor->nb[0] == sizeof(int8_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value); | |
| } | |
| } break; | |
| case GGML_TYPE_I16: | |
| { | |
| assert(tensor->nb[0] == sizeof(int16_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value); | |
| } | |
| } break; | |
| case GGML_TYPE_I32: | |
| { | |
| assert(tensor->nb[0] == sizeof(int32_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value); | |
| } | |
| } break; | |
| case GGML_TYPE_F16: | |
| { | |
| assert(tensor->nb[0] == sizeof(ggml_fp16_t)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value); | |
| } | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| assert(tensor->nb[0] == sizeof(float)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_set_f32(nc, (float *)(data + i*n1), value); | |
| } | |
| } break; | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| return tensor; | |
| } | |
| int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { | |
| switch (tensor->type) { | |
| case GGML_TYPE_I8: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); | |
| return ((int8_t *)(tensor->data))[i]; | |
| } break; | |
| case GGML_TYPE_I16: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); | |
| return ((int16_t *)(tensor->data))[i]; | |
| } break; | |
| case GGML_TYPE_I32: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); | |
| return ((int32_t *)(tensor->data))[i]; | |
| } break; | |
| case GGML_TYPE_F16: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); | |
| return ggml_fp16_to_fp32(((ggml_fp16_t *)(tensor->data))[i]); | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(float)); | |
| return ((float *)(tensor->data))[i]; | |
| } break; | |
| case GGML_TYPE_COUNT: | |
| { | |
| GGML_ASSERT(false); | |
| } break; | |
| } | |
| return 0.0f; | |
| } | |
| void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { | |
| switch (tensor->type) { | |
| case GGML_TYPE_I8: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); | |
| ((int8_t *)(tensor->data))[i] = value; | |
| } break; | |
| case GGML_TYPE_I16: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); | |
| ((int16_t *)(tensor->data))[i] = value; | |
| } break; | |
| case GGML_TYPE_I32: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); | |
| ((int32_t *)(tensor->data))[i] = value; | |
| } break; | |
| case GGML_TYPE_F16: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); | |
| ((ggml_fp16_t *)(tensor->data))[i] = ggml_fp32_to_fp16(value); | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(float)); | |
| ((float *)(tensor->data))[i] = value; | |
| } break; | |
| case GGML_TYPE_COUNT: | |
| { | |
| GGML_ASSERT(false); | |
| } break; | |
| } | |
| } | |
| float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { | |
| switch (tensor->type) { | |
| case GGML_TYPE_I8: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); | |
| return ((int8_t *)(tensor->data))[i]; | |
| } break; | |
| case GGML_TYPE_I16: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); | |
| return ((int16_t *)(tensor->data))[i]; | |
| } break; | |
| case GGML_TYPE_I32: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); | |
| return ((int32_t *)(tensor->data))[i]; | |
| } break; | |
| case GGML_TYPE_F16: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); | |
| return ggml_fp16_to_fp32(((ggml_fp16_t *)(tensor->data))[i]); | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(float)); | |
| return ((float *)(tensor->data))[i]; | |
| } break; | |
| case GGML_TYPE_COUNT: | |
| { | |
| GGML_ASSERT(false); | |
| } break; | |
| } | |
| return 0.0f; | |
| } | |
| void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { | |
| switch (tensor->type) { | |
| case GGML_TYPE_I8: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); | |
| ((int8_t *)(tensor->data))[i] = value; | |
| } break; | |
| case GGML_TYPE_I16: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); | |
| ((int16_t *)(tensor->data))[i] = value; | |
| } break; | |
| case GGML_TYPE_I32: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); | |
| ((int32_t *)(tensor->data))[i] = value; | |
| } break; | |
| case GGML_TYPE_F16: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); | |
| ((ggml_fp16_t *)(tensor->data))[i] = ggml_fp32_to_fp16(value); | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| GGML_ASSERT(tensor->nb[0] == sizeof(float)); | |
| ((float *)(tensor->data))[i] = value; | |
| } break; | |
| case GGML_TYPE_COUNT: | |
| { | |
| GGML_ASSERT(false); | |
| } break; | |
| } | |
| } | |
| void * ggml_get_data(const struct ggml_tensor * tensor) { | |
| return tensor->data; | |
| } | |
| float * ggml_get_data_f32(const struct ggml_tensor * tensor) { | |
| assert(tensor->type == GGML_TYPE_F32); | |
| return (float *)(tensor->data); | |
| } | |
| struct ggml_tensor * ggml_view_tensor( | |
| struct ggml_context * ctx, | |
| const struct ggml_tensor * src) { | |
| return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data); | |
| } | |
| //////////////////////////////////////////////////////////////////////////////// | |
| // ggml_dup | |
| struct ggml_tensor * ggml_dup_impl( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| bool inplace) { | |
| bool is_node = false; | |
| if (!inplace && (a->grad)) { | |
| is_node = true; | |
| } | |
| struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| result->op = GGML_OP_DUP; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_dup( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_dup_impl(ctx, a, false); | |
| } | |
| struct ggml_tensor * ggml_dup_inplace( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_dup_impl(ctx, a, true); | |
| } | |
| // ggml_add | |
| struct ggml_tensor * ggml_add_impl( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b, | |
| bool inplace) { | |
| assert(ggml_are_same_shape(a, b)); | |
| bool is_node = false; | |
| if (!inplace && (a->grad || b->grad)) { | |
| is_node = true; | |
| } | |
| struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| result->op = GGML_OP_ADD; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = b; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_add( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| return ggml_add_impl(ctx, a, b, false); | |
| } | |
| struct ggml_tensor * ggml_add_inplace( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| return ggml_add_impl(ctx, a, b, true); | |
| } | |
| // ggml_sub | |
| struct ggml_tensor * ggml_sub_impl( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b, | |
| bool inplace) { | |
| assert(ggml_are_same_shape(a, b)); | |
| bool is_node = false; | |
| if (!inplace && (a->grad || b->grad)) { | |
| is_node = true; | |
| } | |
| struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| result->op = GGML_OP_SUB; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = b; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_sub( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| return ggml_sub_impl(ctx, a, b, false); | |
| } | |
| struct ggml_tensor * ggml_sub_inplace( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| return ggml_sub_impl(ctx, a, b, true); | |
| } | |
| // ggml_mul | |
| struct ggml_tensor * ggml_mul_impl( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b, | |
| bool inplace) { | |
| assert(ggml_are_same_shape(a, b)); | |
| bool is_node = false; | |
| if (!inplace && (a->grad || b->grad)) { | |
| is_node = true; | |
| } | |
| if (inplace) { | |
| assert(is_node == false); | |
| } | |
| struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| result->op = GGML_OP_MUL; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = b; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_mul( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| return ggml_mul_impl(ctx, a, b, false); | |
| } | |
| struct ggml_tensor * ggml_mul_inplace( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| return ggml_mul_impl(ctx, a, b, true); | |
| } | |
| // ggml_div | |
| struct ggml_tensor * ggml_div_impl( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b, | |
| bool inplace) { | |
| assert(ggml_are_same_shape(a, b)); | |
| bool is_node = false; | |
| if (!inplace && (a->grad || b->grad)) { | |
| is_node = true; | |
| } | |
| if (inplace) { | |
| assert(is_node == false); | |
| } | |
| struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| result->op = GGML_OP_DIV; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = b; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_div( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| return ggml_div_impl(ctx, a, b, false); | |
| } | |
| struct ggml_tensor * ggml_div_inplace( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| return ggml_div_impl(ctx, a, b, true); | |
| } | |
| // ggml_sqr | |
| struct ggml_tensor * ggml_sqr_impl( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| bool inplace) { | |
| bool is_node = false; | |
| if (!inplace && (a->grad)) { | |
| is_node = true; | |
| } | |
| struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| result->op = GGML_OP_SQR; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_sqr( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_sqr_impl(ctx, a, false); | |
| } | |
| struct ggml_tensor * ggml_sqr_inplace( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_sqr_impl(ctx, a, true); | |
| } | |
| // ggml_sqrt | |
| struct ggml_tensor * ggml_sqrt_impl( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| bool inplace) { | |
| bool is_node = false; | |
| if (!inplace && (a->grad)) { | |
| is_node = true; | |
| } | |
| struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| result->op = GGML_OP_SQRT; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_sqrt( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_sqrt_impl(ctx, a, false); | |
| } | |
| struct ggml_tensor * ggml_sqrt_inplace( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_sqrt_impl(ctx, a, true); | |
| } | |
| // ggml_sum | |
| struct ggml_tensor * ggml_sum( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| bool is_node = false; | |
| if (a->grad) { | |
| is_node = true; | |
| } | |
| struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1); | |
| result->op = GGML_OP_SUM; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| // ggml_mean | |
| struct ggml_tensor * ggml_mean( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| bool is_node = false; | |
| if (a->grad) { | |
| assert(false); // TODO: implement | |
| is_node = true; | |
| } | |
| int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] }; | |
| struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne); | |
| result->op = GGML_OP_MEAN; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| // ggml_repeat | |
| struct ggml_tensor * ggml_repeat( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| assert(ggml_can_repeat(a, b)); | |
| bool is_node = false; | |
| if (a->grad) { | |
| is_node = true; | |
| } | |
| if (ggml_are_same_shape(a, b) && !is_node) { | |
| return a; | |
| } | |
| struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne); | |
| result->op = GGML_OP_REPEAT; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| // ggml_abs | |
| struct ggml_tensor * ggml_abs_impl( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| bool inplace) { | |
| bool is_node = false; | |
| if (!inplace && (a->grad)) { | |
| is_node = true; | |
| } | |
| struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| result->op = GGML_OP_ABS; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_abs( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_abs_impl(ctx, a, false); | |
| } | |
| struct ggml_tensor * ggml_abs_inplace( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_abs_impl(ctx, a, true); | |
| } | |
| // ggml_sgn | |
| struct ggml_tensor * ggml_sgn_impl( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| bool inplace) { | |
| bool is_node = false; | |
| if (!inplace && (a->grad)) { | |
| is_node = true; | |
| } | |
| struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| result->op = GGML_OP_SGN; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_sgn( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_sgn_impl(ctx, a, false); | |
| } | |
| struct ggml_tensor * ggml_sgn_inplace( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_sgn_impl(ctx, a, true); | |
| } | |
| // ggml_neg | |
| struct ggml_tensor * ggml_neg_impl( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| bool inplace) { | |
| bool is_node = false; | |
| if (!inplace && (a->grad)) { | |
| is_node = true; | |
| } | |
| struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| result->op = GGML_OP_NEG; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_neg( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_neg_impl(ctx, a, false); | |
| } | |
| struct ggml_tensor * ggml_neg_inplace( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_neg_impl(ctx, a, true); | |
| } | |
| // ggml_step | |
| struct ggml_tensor * ggml_step_impl( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| bool inplace) { | |
| bool is_node = false; | |
| if (!inplace && (a->grad)) { | |
| is_node = true; | |
| } | |
| struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| result->op = GGML_OP_STEP; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_step( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_step_impl(ctx, a, false); | |
| } | |
| struct ggml_tensor * ggml_step_inplace( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_step_impl(ctx, a, true); | |
| } | |
| // ggml_relu | |
| struct ggml_tensor * ggml_relu_impl( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| bool inplace) { | |
| bool is_node = false; | |
| if (!inplace && (a->grad)) { | |
| is_node = true; | |
| } | |
| struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| result->op = GGML_OP_RELU; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_relu( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_relu_impl(ctx, a, false); | |
| } | |
| struct ggml_tensor * ggml_relu_inplace( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_relu_impl(ctx, a, true); | |
| } | |
| // ggml_gelu | |
| struct ggml_tensor * ggml_gelu_impl( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| bool inplace) { | |
| bool is_node = false; | |
| if (!inplace && (a->grad)) { | |
| is_node = true; | |
| } | |
| struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| result->op = GGML_OP_GELU; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_gelu( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_gelu_impl(ctx, a, false); | |
| } | |
| struct ggml_tensor * ggml_gelu_inplace( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_gelu_impl(ctx, a, true); | |
| } | |
| // ggml_norm | |
| struct ggml_tensor * ggml_norm_impl( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| bool inplace) { | |
| bool is_node = false; | |
| if (!inplace && (a->grad)) { | |
| assert(false); // TODO: implement backward | |
| is_node = true; | |
| } | |
| struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| result->op = GGML_OP_NORM; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; // TODO: maybe store epsilon here? | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_norm( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_norm_impl(ctx, a, false); | |
| } | |
| struct ggml_tensor * ggml_norm_inplace( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| return ggml_norm_impl(ctx, a, true); | |
| } | |
| // ggml_mul_mat | |
| struct ggml_tensor * ggml_mul_mat( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| assert(ggml_can_mul_mat(a, b)); | |
| bool is_node = false; | |
| if (a->grad || b->grad) { | |
| is_node = true; | |
| } | |
| const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] }; | |
| struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne); | |
| result->op = GGML_OP_MUL_MAT; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = b; | |
| return result; | |
| } | |
| // ggml_scale | |
| struct ggml_tensor * ggml_scale_impl( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b, | |
| bool inplace) { | |
| assert(ggml_is_scalar(b)); | |
| assert(ggml_is_padded_1d(a)); | |
| bool is_node = false; | |
| if (!inplace && (a->grad || b->grad)) { | |
| assert(false); // TODO: implement backward | |
| is_node = true; | |
| } | |
| // TODO: when implement backward, fix this: | |
| //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| struct ggml_tensor * result = ggml_view_tensor(ctx, a); | |
| result->op = GGML_OP_SCALE; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = b; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_scale( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| return ggml_scale_impl(ctx, a, b, false); | |
| } | |
| struct ggml_tensor * ggml_scale_inplace( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| return ggml_scale_impl(ctx, a, b, true); | |
| } | |
| // ggml_cpy | |
| struct ggml_tensor * ggml_cpy_impl( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b, | |
| bool inplace) { | |
| assert(ggml_nelements(a) == ggml_nelements(b)); | |
| bool is_node = false; | |
| if (!inplace && (a->grad || b->grad)) { | |
| assert(false); // TODO: implement backward | |
| is_node = true; | |
| } | |
| // make a view of the destination | |
| struct ggml_tensor * result = ggml_view_tensor(ctx, b); | |
| result->op = GGML_OP_CPY; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = b; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_cpy( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| return ggml_cpy_impl(ctx, a, b, false); | |
| } | |
| struct ggml_tensor * ggml_cpy_inplace( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| return ggml_cpy_impl(ctx, a, b, true); | |
| } | |
| // ggml_reshape | |
| struct ggml_tensor * ggml_reshape( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| assert(ggml_is_contiguous(a)); | |
| assert(ggml_is_contiguous(b)); | |
| assert(ggml_nelements(a) == ggml_nelements(b)); | |
| bool is_node = false; | |
| if (a->grad || b->grad) { | |
| assert(false); // TODO: implement backward | |
| is_node = true; | |
| } | |
| struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data); | |
| result->op = GGML_OP_RESHAPE; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_reshape_2d( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| int ne0, | |
| int ne1) { | |
| assert(ggml_is_contiguous(a)); | |
| assert(ggml_nelements(a) == ne0*ne1); | |
| bool is_node = false; | |
| if (a->grad) { | |
| assert(false); // TODO: implement backward | |
| is_node = true; | |
| } | |
| const int ne[2] = { ne0, ne1 }; | |
| struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data); | |
| result->op = GGML_OP_RESHAPE; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| struct ggml_tensor * ggml_reshape_3d( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| int ne0, | |
| int ne1, | |
| int ne2) { | |
| assert(ggml_is_contiguous(a)); | |
| assert(ggml_nelements(a) == ne0*ne1*ne2); | |
| bool is_node = false; | |
| if (a->grad) { | |
| assert(false); // TODO: implement backward | |
| is_node = true; | |
| } | |
| const int ne[3] = { ne0, ne1, ne2 }; | |
| struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data); | |
| result->op = GGML_OP_RESHAPE; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| // ggml_view_1d | |
| struct ggml_tensor * ggml_view_1d( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| int ne0, | |
| size_t offset) { | |
| if (a->grad) { | |
| assert(false); // gradient propagation is not supported | |
| } | |
| struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset); | |
| result->op = GGML_OP_VIEW; | |
| result->grad = NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; // TODO: maybe store the offset here? | |
| return result; | |
| } | |
| // ggml_view_2d | |
| struct ggml_tensor * ggml_view_2d( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| int ne0, | |
| int ne1, | |
| size_t nb1, | |
| size_t offset) { | |
| if (a->grad) { | |
| assert(false); // gradient propagation is not supported | |
| } | |
| const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 }; | |
| struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset); | |
| result->nb[1] = nb1; | |
| result->nb[2] = result->nb[1]*ne1; | |
| result->nb[3] = result->nb[2]; | |
| result->op = GGML_OP_VIEW; | |
| result->grad = NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; // TODO: maybe store the offset here? | |
| return result; | |
| } | |
| // ggml_permute | |
| struct ggml_tensor * ggml_permute( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| int axis0, | |
| int axis1, | |
| int axis2, | |
| int axis3) { | |
| assert(axis0 >= 0 && axis0 < GGML_MAX_DIMS); | |
| assert(axis1 >= 0 && axis1 < GGML_MAX_DIMS); | |
| assert(axis2 >= 0 && axis2 < GGML_MAX_DIMS); | |
| assert(axis3 >= 0 && axis3 < GGML_MAX_DIMS); | |
| assert(axis0 != axis1); | |
| assert(axis0 != axis2); | |
| assert(axis0 != axis3); | |
| assert(axis1 != axis2); | |
| assert(axis1 != axis3); | |
| assert(axis2 != axis3); | |
| bool is_node = false; | |
| if (a->grad) { | |
| assert(false); // TODO: implement backward | |
| is_node = true; | |
| } | |
| struct ggml_tensor * result = ggml_view_tensor(ctx, a); | |
| int ne[GGML_MAX_DIMS]; | |
| int nb[GGML_MAX_DIMS]; | |
| ne[axis0] = a->ne[0]; | |
| ne[axis1] = a->ne[1]; | |
| ne[axis2] = a->ne[2]; | |
| ne[axis3] = a->ne[3]; | |
| nb[axis0] = a->nb[0]; | |
| nb[axis1] = a->nb[1]; | |
| nb[axis2] = a->nb[2]; | |
| nb[axis3] = a->nb[3]; | |
| result->ne[0] = ne[0]; | |
| result->ne[1] = ne[1]; | |
| result->ne[2] = ne[2]; | |
| result->ne[3] = ne[3]; | |
| result->nb[0] = nb[0]; | |
| result->nb[1] = nb[1]; | |
| result->nb[2] = nb[2]; | |
| result->nb[3] = nb[3]; | |
| result->op = GGML_OP_PERMUTE; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; // TODO: maybe store the permutation here? | |
| return result; | |
| } | |
| // ggml_transpose | |
| struct ggml_tensor * ggml_transpose( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| bool is_node = false; | |
| if (a->grad) { | |
| assert(false); // TODO: implement backward | |
| is_node = true; | |
| } | |
| struct ggml_tensor * result = ggml_view_tensor(ctx, a); | |
| result->ne[0] = a->ne[1]; | |
| result->ne[1] = a->ne[0]; | |
| result->nb[0] = a->nb[1]; | |
| result->nb[1] = a->nb[0]; | |
| result->op = GGML_OP_TRANSPOSE; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| // ggml_get_rows | |
| struct ggml_tensor * ggml_get_rows( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| assert(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32); | |
| bool is_node = false; | |
| if (a->grad || b->grad) { | |
| assert(false); // TODO: implement backward | |
| is_node = true; | |
| } | |
| // TODO: implement non F32 return | |
| //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]); | |
| struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]); | |
| result->op = GGML_OP_GET_ROWS; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = b; | |
| return result; | |
| } | |
| // ggml_diag_mask_inf | |
| struct ggml_tensor * ggml_diag_mask_inf( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| int n_past) { | |
| bool is_node = false; | |
| if (a->grad) { | |
| assert(false); // TODO: implement backward | |
| is_node = true; | |
| } | |
| // TODO: when implement backward, fix this: | |
| //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| struct ggml_tensor * result = ggml_view_tensor(ctx, a); | |
| struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1); | |
| ((int32_t *) b->data)[0] = n_past; | |
| result->op = GGML_OP_DIAG_MASK_INF; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = b; | |
| return result; | |
| } | |
| // ggml_soft_max | |
| struct ggml_tensor * ggml_soft_max( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a) { | |
| bool is_node = false; | |
| if (a->grad) { | |
| assert(false); // TODO: implement backward | |
| is_node = true; | |
| } | |
| // TODO: when implement backward, fix this: | |
| //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| struct ggml_tensor * result = ggml_view_tensor(ctx, a); | |
| result->op = GGML_OP_SOFT_MAX; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = NULL; | |
| return result; | |
| } | |
| // ggml_rope | |
| struct ggml_tensor * ggml_rope( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| int n_past, | |
| int n_dims, | |
| int mode) { | |
| assert(n_past >= 0); | |
| bool is_node = false; | |
| if (a->grad) { | |
| assert(false); // TODO: implement backward | |
| is_node = true; | |
| } | |
| // TODO: when implement backward, fix this: | |
| //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
| struct ggml_tensor * result = ggml_view_tensor(ctx, a); | |
| struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3); | |
| ((int32_t *) b->data)[0] = n_past; | |
| ((int32_t *) b->data)[1] = n_dims; | |
| ((int32_t *) b->data)[2] = mode; | |
| result->op = GGML_OP_ROPE; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = b; | |
| return result; | |
| } | |
| // ggml_conv_1d_1s | |
| struct ggml_tensor * ggml_conv_1d_1s( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| assert(ggml_is_matrix(b)); | |
| assert(a->ne[1] == b->ne[1]); | |
| assert(a->ne[3] == 1); | |
| bool is_node = false; | |
| if (a->grad || b->grad) { | |
| assert(false); // TODO: implement backward | |
| is_node = true; | |
| } | |
| const int ne[4] = { b->ne[0], a->ne[2], 1, 1, }; | |
| struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); | |
| result->op = GGML_OP_CONV_1D_1S; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = b; | |
| return result; | |
| } | |
| // ggml_conv_1d_2s | |
| struct ggml_tensor * ggml_conv_1d_2s( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b) { | |
| assert(ggml_is_matrix(b)); | |
| assert(a->ne[1] == b->ne[1]); | |
| assert(a->ne[3] == 1); | |
| bool is_node = false; | |
| if (a->grad || b->grad) { | |
| assert(false); // TODO: implement backward | |
| is_node = true; | |
| } | |
| const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, }; | |
| struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); | |
| result->op = GGML_OP_CONV_1D_2S; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = b; | |
| return result; | |
| } | |
| // ggml_flash_attn | |
| struct ggml_tensor * ggml_flash_attn( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * q, | |
| struct ggml_tensor * k, | |
| struct ggml_tensor * v, | |
| bool masked) { | |
| assert(ggml_can_mul_mat(k, q)); | |
| // TODO: check if vT can be multiplied by (k*qT) | |
| bool is_node = false; | |
| if (q->grad || k->grad || v->grad) { | |
| GGML_ASSERT(false); // TODO: implement backward | |
| is_node = true; | |
| } | |
| //struct ggml_tensor * result = ggml_dup_tensor(ctx, q); | |
| struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne); | |
| result->op = GGML_OP_FLASH_ATTN; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = q; | |
| result->src1 = k; | |
| result->opt[0] = v; | |
| result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0); | |
| return result; | |
| } | |
| // ggml_flash_ff | |
| struct ggml_tensor * ggml_flash_ff( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * a, | |
| struct ggml_tensor * b0, | |
| struct ggml_tensor * b1, | |
| struct ggml_tensor * c0, | |
| struct ggml_tensor * c1) { | |
| assert(ggml_can_mul_mat(b0, a)); | |
| // TODO: more checks | |
| bool is_node = false; | |
| if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) { | |
| GGML_ASSERT(false); // TODO: implement backward | |
| is_node = true; | |
| } | |
| //struct ggml_tensor * result = ggml_dup_tensor(ctx, a); | |
| struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne); | |
| result->op = GGML_OP_FLASH_FF; | |
| result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; | |
| result->src0 = a; | |
| result->src1 = b0; | |
| result->opt[0] = b1; | |
| result->opt[1] = c0; | |
| result->opt[2] = c1; | |
| return result; | |
| } | |
| //////////////////////////////////////////////////////////////////////////////// | |
| void ggml_set_param( | |
| struct ggml_context * ctx, | |
| struct ggml_tensor * tensor) { | |
| tensor->is_param = true; | |
| assert(tensor->grad == NULL); | |
| tensor->grad = ggml_dup_tensor(ctx, tensor); | |
| } | |
| // ggml_compute_forward_dup | |
| void ggml_compute_forward_dup_f16( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| assert(ggml_is_contiguous(dst)); | |
| assert(ggml_nelements(dst) == ggml_nelements(src0)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| //const int ne00 = src0->ne[0]; | |
| //const int ne01 = src0->ne[1]; | |
| //const int ne02 = src0->ne[2]; | |
| //const int ne03 = src0->ne[3]; | |
| //const size_t nb00 = src0->nb[0]; | |
| //const size_t nb01 = src0->nb[1]; | |
| //const size_t nb02 = src0->nb[2]; | |
| //const size_t nb03 = src0->nb[3]; | |
| if (ggml_is_contiguous(src0) && src0->type == dst->type) { | |
| memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]); | |
| return; | |
| } | |
| GGML_ASSERT(false); // TODO: implement | |
| } | |
| void ggml_compute_forward_dup_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| GGML_ASSERT(params->ith == 0); | |
| GGML_ASSERT(ggml_is_contiguous(dst)); | |
| GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int ne00 = src0->ne[0]; | |
| const int ne01 = src0->ne[1]; | |
| const int ne02 = src0->ne[2]; | |
| const int ne03 = src0->ne[3]; | |
| const size_t nb00 = src0->nb[0]; | |
| const size_t nb01 = src0->nb[1]; | |
| const size_t nb02 = src0->nb[2]; | |
| const size_t nb03 = src0->nb[3]; | |
| if (ggml_is_contiguous(src0) && src0->type == dst->type) { | |
| memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]); | |
| return; | |
| } | |
| if (src0->nb[0] == sizeof(float)) { | |
| if (dst->type == GGML_TYPE_F32) { | |
| int id = 0; | |
| const size_t rs = ne00*nb00; | |
| for (int i03 = 0; i03 < ne03; i03++) { | |
| for (int i02 = 0; i02 < ne02; i02++) { | |
| for (int i01 = 0; i01 < ne01; i01++) { | |
| const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; | |
| char * dst_ptr = (char *) dst->data + id*rs; | |
| memcpy(dst_ptr, src0_ptr, rs); | |
| id++; | |
| } | |
| } | |
| } | |
| } else if (dst->type == GGML_TYPE_F16) { | |
| int id = 0; | |
| ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; | |
| for (int i03 = 0; i03 < ne03; i03++) { | |
| for (int i02 = 0; i02 < ne02; i02++) { | |
| for (int i01 = 0; i01 < ne01; i01++) { | |
| for (int i00 = 0; i00 < ne00; i00++) { | |
| const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); | |
| dst_ptr[id] = ggml_fp32_to_fp16(*src0_ptr); | |
| id++; | |
| } | |
| } | |
| } | |
| } | |
| } else { | |
| GGML_ASSERT(false); // TODO: implement | |
| } | |
| } else { | |
| //printf("%s: this is not optimal - fix me\n", __func__); | |
| if (dst->type == GGML_TYPE_F32) { | |
| int id = 0; | |
| float * dst_ptr = (float *) dst->data; | |
| for (int i03 = 0; i03 < ne03; i03++) { | |
| for (int i02 = 0; i02 < ne02; i02++) { | |
| for (int i01 = 0; i01 < ne01; i01++) { | |
| for (int i00 = 0; i00 < ne00; i00++) { | |
| const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); | |
| dst_ptr[id] = *src0_ptr; | |
| id++; | |
| } | |
| } | |
| } | |
| } | |
| } else if (dst->type == GGML_TYPE_F16) { | |
| int id = 0; | |
| ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; | |
| for (int i03 = 0; i03 < ne03; i03++) { | |
| for (int i02 = 0; i02 < ne02; i02++) { | |
| for (int i01 = 0; i01 < ne01; i01++) { | |
| for (int i00 = 0; i00 < ne00; i00++) { | |
| const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); | |
| dst_ptr[id] = ggml_fp32_to_fp16(*src0_ptr); | |
| id++; | |
| } | |
| } | |
| } | |
| } | |
| } else { | |
| GGML_ASSERT(false); // TODO: implement | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_dup( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F16: | |
| { | |
| ggml_compute_forward_dup_f16(params, src0, dst); | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_dup_f32(params, src0, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_COUNT: | |
| { | |
| GGML_ASSERT(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_add | |
| void ggml_compute_forward_add_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| const int n = ggml_nrows(src0); | |
| const int nc = src0->ne[0]; | |
| const size_t nb00 = src0->nb[0]; | |
| const size_t nb01 = src0->nb[1]; | |
| const size_t nb10 = src1->nb[0]; | |
| const size_t nb11 = src1->nb[1]; | |
| const size_t nb0 = dst->nb[0]; | |
| const size_t nb1 = dst->nb[1]; | |
| GGML_ASSERT( nb0 == sizeof(float)); | |
| GGML_ASSERT(nb00 == sizeof(float)); | |
| if (nb10 == sizeof(float)) { | |
| const int j0 = (n/nth)*ith; | |
| const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1); | |
| for (int j = j0; j < j1; j++) { | |
| ggml_vec_add_f32(nc, | |
| (float *) ((char *) dst->data + j*nb1), | |
| (float *) ((char *) src0->data + j*nb01), | |
| (float *) ((char *) src1->data + j*nb11)); | |
| } | |
| } else { | |
| // src1 is not contiguous | |
| for (int j = ith; j < n; j += nth) { | |
| float * dst_ptr = (float *) ((char *) dst->data + j*nb1); | |
| float * src0_ptr = (float *) ((char *) src0->data + j*nb01); | |
| for (int i = 0; i < nc; i++) { | |
| float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10); | |
| dst_ptr[i] = src0_ptr[i] + *src1_ptr; | |
| } | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_add( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_add_f32(params, src0, src1, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_sub | |
| void ggml_compute_forward_sub_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int n = ggml_nrows(src0); | |
| const int nc = src0->ne[0]; | |
| assert( dst->nb[0] == sizeof(float)); | |
| assert(src0->nb[0] == sizeof(float)); | |
| assert(src1->nb[0] == sizeof(float)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_sub_f32(nc, | |
| (float *) ((char *) dst->data + i*( dst->nb[1])), | |
| (float *) ((char *) src0->data + i*(src0->nb[1])), | |
| (float *) ((char *) src1->data + i*(src1->nb[1]))); | |
| } | |
| } | |
| void ggml_compute_forward_sub( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_sub_f32(params, src0, src1, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_mul | |
| void ggml_compute_forward_mul_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int n = ggml_nrows(src0); | |
| const int nc = src0->ne[0]; | |
| assert( dst->nb[0] == sizeof(float)); | |
| assert(src0->nb[0] == sizeof(float)); | |
| assert(src1->nb[0] == sizeof(float)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_mul_f32(nc, | |
| (float *) ((char *) dst->data + i*( dst->nb[1])), | |
| (float *) ((char *) src0->data + i*(src0->nb[1])), | |
| (float *) ((char *) src1->data + i*(src1->nb[1]))); | |
| } | |
| } | |
| void ggml_compute_forward_mul( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_mul_f32(params, src0, src1, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_div | |
| void ggml_compute_forward_div_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int n = ggml_nrows(src0); | |
| const int nc = src0->ne[0]; | |
| assert( dst->nb[0] == sizeof(float)); | |
| assert(src0->nb[0] == sizeof(float)); | |
| assert(src1->nb[0] == sizeof(float)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_div_f32(nc, | |
| (float *) ((char *) dst->data + i*( dst->nb[1])), | |
| (float *) ((char *) src0->data + i*(src0->nb[1])), | |
| (float *) ((char *) src1->data + i*(src1->nb[1]))); | |
| } | |
| } | |
| void ggml_compute_forward_div( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_div_f32(params, src0, src1, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_sqr | |
| void ggml_compute_forward_sqr_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| assert(ggml_are_same_shape(src0, dst)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int n = ggml_nrows(src0); | |
| const int nc = src0->ne[0]; | |
| assert( dst->nb[0] == sizeof(float)); | |
| assert(src0->nb[0] == sizeof(float)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_sqr_f32(nc, | |
| (float *) ((char *) dst->data + i*( dst->nb[1])), | |
| (float *) ((char *) src0->data + i*(src0->nb[1]))); | |
| } | |
| } | |
| void ggml_compute_forward_sqr( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_sqr_f32(params, src0, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_sqrt | |
| void ggml_compute_forward_sqrt_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| assert(ggml_are_same_shape(src0, dst)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int n = ggml_nrows(src0); | |
| const int nc = src0->ne[0]; | |
| assert( dst->nb[0] == sizeof(float)); | |
| assert(src0->nb[0] == sizeof(float)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_sqrt_f32(nc, | |
| (float *) ((char *) dst->data + i*( dst->nb[1])), | |
| (float *) ((char *) src0->data + i*(src0->nb[1]))); | |
| } | |
| } | |
| void ggml_compute_forward_sqrt( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_sqrt_f32(params, src0, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_sum | |
| void ggml_compute_forward_sum_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| assert(ggml_is_scalar(dst)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| assert(ggml_is_scalar(dst)); | |
| assert(src0->nb[0] == sizeof(float)); | |
| *(float *) (dst->data) = 0.0f; | |
| const int ne00 = src0->ne[0]; | |
| const int ne01 = src0->ne[1]; | |
| const int ne02 = src0->ne[2]; | |
| const int ne03 = src0->ne[3]; | |
| const size_t nb01 = src0->nb[1]; | |
| const size_t nb02 = src0->nb[2]; | |
| const size_t nb03 = src0->nb[3]; | |
| for (int i03 = 0; i03 < ne03; i03++) { | |
| for (int i02 = 0; i02 < ne02; i02++) { | |
| for (int i01 = 0; i01 < ne01; i01++) { | |
| ggml_vec_sum_f32(ne00, | |
| (float *) (dst->data), | |
| (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03)); | |
| } | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_sum( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_sum_f32(params, src0, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_mean | |
| void ggml_compute_forward_mean_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| assert(src0->nb[0] == sizeof(float)); | |
| const int ne00 = src0->ne[0]; | |
| const int ne01 = src0->ne[1]; | |
| const int ne02 = src0->ne[2]; | |
| const int ne03 = src0->ne[3]; | |
| const size_t nb01 = src0->nb[1]; | |
| const size_t nb02 = src0->nb[2]; | |
| const size_t nb03 = src0->nb[3]; | |
| const int ne0 = dst->ne[0]; | |
| const int ne1 = dst->ne[1]; | |
| const int ne2 = dst->ne[2]; | |
| const int ne3 = dst->ne[3]; | |
| assert(ne0 == 1); | |
| assert(ne1 == ne01); | |
| assert(ne2 == ne02); | |
| assert(ne3 == ne03); | |
| UNUSED(ne0); | |
| UNUSED(ne1); | |
| UNUSED(ne2); | |
| UNUSED(ne3); | |
| const size_t nb1 = dst->nb[1]; | |
| const size_t nb2 = dst->nb[2]; | |
| const size_t nb3 = dst->nb[3]; | |
| for (int i03 = 0; i03 < ne03; i03++) { | |
| for (int i02 = 0; i02 < ne02; i02++) { | |
| for (int i01 = 0; i01 < ne01; i01++) { | |
| *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) = 0.0f; | |
| ggml_vec_sum_f32(ne00, | |
| (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), | |
| (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03)); | |
| *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00; | |
| } | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_mean( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_mean_f32(params, src0, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_repeat | |
| void ggml_compute_forward_repeat_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| assert(ggml_can_repeat(src0, dst)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| // TODO: implement support for rank > 2 tensors | |
| assert(src0->ne[2] == 1); | |
| assert(src0->ne[3] == 1); | |
| assert( dst->ne[2] == 1); | |
| assert( dst->ne[3] == 1); | |
| const int nc = dst->ne[0]; | |
| const int nr = dst->ne[1]; | |
| const int nc0 = src0->ne[0]; | |
| const int nr0 = src0->ne[1]; | |
| const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat | |
| const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat | |
| // TODO: support for transposed / permuted tensors | |
| assert( dst->nb[0] == sizeof(float)); | |
| assert(src0->nb[0] == sizeof(float)); | |
| // TODO: maybe this is not optimal? | |
| for (int i = 0; i < nrr; i++) { | |
| for (int j = 0; j < ncr; j++) { | |
| for (int k = 0; k < nr0; k++) { | |
| ggml_vec_cpy_f32(nc0, | |
| (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])), | |
| (float *) ((char *) src0->data + ( k)*(src0->nb[1]))); | |
| } | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_repeat( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_repeat_f32(params, src0, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_abs | |
| void ggml_compute_forward_abs_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| assert(ggml_are_same_shape(src0, dst)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int n = ggml_nrows(src0); | |
| const int nc = src0->ne[0]; | |
| assert(dst->nb[0] == sizeof(float)); | |
| assert(src0->nb[0] == sizeof(float)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_abs_f32(nc, | |
| (float *) ((char *) dst->data + i*( dst->nb[1])), | |
| (float *) ((char *) src0->data + i*(src0->nb[1]))); | |
| } | |
| } | |
| void ggml_compute_forward_abs( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_abs_f32(params, src0, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_sgn | |
| void ggml_compute_forward_sgn_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| assert(ggml_are_same_shape(src0, dst)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int n = ggml_nrows(src0); | |
| const int nc = src0->ne[0]; | |
| assert(dst->nb[0] == sizeof(float)); | |
| assert(src0->nb[0] == sizeof(float)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_sgn_f32(nc, | |
| (float *) ((char *) dst->data + i*( dst->nb[1])), | |
| (float *) ((char *) src0->data + i*(src0->nb[1]))); | |
| } | |
| } | |
| void ggml_compute_forward_sgn( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_sgn_f32(params, src0, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_neg | |
| void ggml_compute_forward_neg_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| assert(ggml_are_same_shape(src0, dst)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int n = ggml_nrows(src0); | |
| const int nc = src0->ne[0]; | |
| assert(dst->nb[0] == sizeof(float)); | |
| assert(src0->nb[0] == sizeof(float)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_neg_f32(nc, | |
| (float *) ((char *) dst->data + i*( dst->nb[1])), | |
| (float *) ((char *) src0->data + i*(src0->nb[1]))); | |
| } | |
| } | |
| void ggml_compute_forward_neg( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_neg_f32(params, src0, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_step | |
| void ggml_compute_forward_step_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| assert(ggml_are_same_shape(src0, dst)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int n = ggml_nrows(src0); | |
| const int nc = src0->ne[0]; | |
| assert(dst->nb[0] == sizeof(float)); | |
| assert(src0->nb[0] == sizeof(float)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_step_f32(nc, | |
| (float *) ((char *) dst->data + i*( dst->nb[1])), | |
| (float *) ((char *) src0->data + i*(src0->nb[1]))); | |
| } | |
| } | |
| void ggml_compute_forward_step( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_step_f32(params, src0, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_relu | |
| void ggml_compute_forward_relu_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| assert(ggml_are_same_shape(src0, dst)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int n = ggml_nrows(src0); | |
| const int nc = src0->ne[0]; | |
| assert(dst->nb[0] == sizeof(float)); | |
| assert(src0->nb[0] == sizeof(float)); | |
| for (int i = 0; i < n; i++) { | |
| ggml_vec_relu_f32(nc, | |
| (float *) ((char *) dst->data + i*( dst->nb[1])), | |
| (float *) ((char *) src0->data + i*(src0->nb[1]))); | |
| } | |
| } | |
| void ggml_compute_forward_relu( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_relu_f32(params, src0, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_gelu | |
| void ggml_compute_forward_gelu_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| GGML_ASSERT(ggml_is_contiguous(src0)); | |
| GGML_ASSERT(ggml_is_contiguous(dst)); | |
| GGML_ASSERT(ggml_are_same_shape(src0, dst)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| const int nc = src0->ne[0]; | |
| const int nr = ggml_nrows(src0); | |
| // rows per thread | |
| const int dr = (nr + nth - 1)/nth; | |
| // row range for this thread | |
| const int ir0 = dr*ith; | |
| const int ir1 = MIN(ir0 + dr, nr); | |
| for (int i1 = ir0; i1 < ir1; i1++) { | |
| ggml_vec_gelu_f32(nc, | |
| (float *) ((char *) dst->data + i1*( dst->nb[1])), | |
| (float *) ((char *) src0->data + i1*(src0->nb[1]))); | |
| for (int k = 0; k < nc; k++) { | |
| const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; | |
| UNUSED(x); | |
| assert(!isnan(x)); | |
| assert(!isinf(x)); | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_gelu( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_gelu_f32(params, src0, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_norm | |
| void ggml_compute_forward_norm_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| GGML_ASSERT(ggml_are_same_shape(src0, dst)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| GGML_ASSERT(src0->nb[0] == sizeof(float)); | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| const int ne00 = src0->ne[0]; | |
| const int ne01 = src0->ne[1]; | |
| const int ne02 = src0->ne[2]; | |
| const int ne03 = src0->ne[3]; | |
| const size_t nb01 = src0->nb[1]; | |
| const size_t nb02 = src0->nb[2]; | |
| const size_t nb03 = src0->nb[3]; | |
| const size_t nb1 = dst->nb[1]; | |
| const size_t nb2 = dst->nb[2]; | |
| const size_t nb3 = dst->nb[3]; | |
| const ggml_float eps = 1e-5f; // TODO: make this a parameter | |
| // TODO: optimize | |
| for (int i03 = 0; i03 < ne03; i03++) { | |
| for (int i02 = 0; i02 < ne02; i02++) { | |
| for (int i01 = ith; i01 < ne01; i01 += nth) { | |
| const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); | |
| ggml_float mean = 0.0; | |
| for (int i00 = 0; i00 < ne00; i00++) { | |
| mean += x[i00]; | |
| } | |
| mean /= ne00; | |
| float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); | |
| ggml_float sum2 = 0.0; | |
| for (int i00 = 0; i00 < ne00; i00++) { | |
| ggml_float v = x[i00] - mean; | |
| y[i00] = v; | |
| sum2 += v*v; | |
| } | |
| const float scale = 1.0/sqrt(sum2/ne00 + eps); | |
| ggml_vec_scale_f32(ne00, y, scale); | |
| } | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_norm( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_norm_f32(params, src0, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_mul_mat | |
| // helper function to determine if it is better to use BLAS or not | |
| // for large matrices, BLAS is faster | |
| bool ggml_compute_forward_mul_mat_use_blas( | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| UNUSED(src0); | |
| const int ne10 = src1->ne[0]; | |
| const int ne0 = dst->ne[0]; | |
| const int ne1 = dst->ne[1]; | |
| // TODO: find the optimal values for these | |
| if (ggml_is_contiguous(src1) && ne0 >= 32 && ne1 >= 32 && ne10 >= 32) { | |
| //printf("BLAS: %d %d %d\n", ne0, ne1, ne10); | |
| return true; | |
| } | |
| return false; | |
| } | |
| void ggml_compute_forward_mul_mat_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| int64_t t0 = ggml_perf_time_us(); | |
| UNUSED(t0); | |
| const int ne00 = src0->ne[0]; | |
| const int ne01 = src0->ne[1]; | |
| const int ne02 = src0->ne[2]; | |
| const int ne03 = src0->ne[3]; | |
| const int ne10 = src1->ne[0]; | |
| const int ne11 = src1->ne[1]; | |
| const int ne12 = src1->ne[2]; | |
| const int ne13 = src1->ne[3]; | |
| const int ne0 = dst->ne[0]; | |
| const int ne1 = dst->ne[1]; | |
| const int ne2 = dst->ne[2]; | |
| const int ne3 = dst->ne[3]; | |
| const int ne = ne0*ne1*ne2*ne3; | |
| const int nb00 = src0->nb[0]; | |
| const int nb01 = src0->nb[1]; | |
| const int nb02 = src0->nb[2]; | |
| const int nb03 = src0->nb[3]; | |
| const int nb10 = src1->nb[0]; | |
| const int nb11 = src1->nb[1]; | |
| const int nb12 = src1->nb[2]; | |
| const int nb13 = src1->nb[3]; | |
| const int nb0 = dst->nb[0]; | |
| const int nb1 = dst->nb[1]; | |
| const int nb2 = dst->nb[2]; | |
| const int nb3 = dst->nb[3]; | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| assert(ne02 == ne12); | |
| assert(ne03 == ne13); | |
| assert(ne2 == ne12); | |
| assert(ne3 == ne13); | |
| // TODO: we don't support permuted src0 | |
| assert(nb00 == sizeof(float) || nb01 == sizeof(float)); | |
| // dst cannot be transposed or permuted | |
| assert(nb0 == sizeof(float)); | |
| assert(nb0 <= nb1); | |
| assert(nb1 <= nb2); | |
| assert(nb2 <= nb3); | |
| assert(ne0 == ne01); | |
| assert(ne1 == ne11); | |
| assert(ne2 == ne02); | |
| assert(ne3 == ne03); | |
| // nb01 >= nb00 - src0 is not transposed | |
| // compute by src0 rows | |
| // | |
| // nb00 < nb01 - src0 is transposed | |
| // compute by src0 columns | |
| if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { | |
| GGML_ASSERT(ggml_is_contiguous(src0)); | |
| GGML_ASSERT(nb10 == sizeof(float)); | |
| if (params->ith != 0) return; | |
| if (params->type == GGML_TASK_INIT) { | |
| return; | |
| } | |
| if (params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| for (int i03 = 0; i03 < ne03; i03++) { | |
| for (int i02 = 0; i02 < ne02; i02++) { | |
| const float * x = (float *) (src0->data); | |
| const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); | |
| float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); | |
| // zT = y * xT | |
| { | |
| cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, | |
| ne11, ne01, ne10, | |
| 1.0f, y, ne10, | |
| x, ne10, | |
| 0.0f, d, ne01); | |
| } | |
| } | |
| } | |
| //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); | |
| return; | |
| } | |
| if (params->type == GGML_TASK_INIT) { | |
| if (nb01 >= nb00) { | |
| return; | |
| } | |
| // TODO: fix this memset (wsize is overestimated) | |
| memset(params->wdata, 0, params->wsize); | |
| return; | |
| } | |
| if (params->type == GGML_TASK_FINALIZE) { | |
| if (nb01 >= nb00) { | |
| return; | |
| } | |
| // TODO: fix this memset (wsize is overestimated) | |
| //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth); | |
| float * const wdata = params->wdata; | |
| // cols per thread | |
| const int dc = (ne + nth - 1)/nth; | |
| // col range for this thread | |
| const int ic0 = dc*ith; | |
| const int ic1 = MIN(ic0 + dc, ne); | |
| ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0); | |
| for (int k = 1; k < nth; k++) { | |
| ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0); | |
| } | |
| return; | |
| } | |
| if (nb01 >= nb00) { | |
| // TODO: do not support transposed src1 | |
| assert(nb10 == sizeof(float)); | |
| // parallelize by src0 rows using ggml_vec_dot_f32 | |
| // total rows in src0 | |
| const int nr = ne01*ne02*ne03; | |
| // rows per thread | |
| const int dr = (nr + nth - 1)/nth; | |
| // row range for this thread | |
| const int ir0 = dr*ith; | |
| const int ir1 = MIN(ir0 + dr, nr); | |
| for (int ir = ir0; ir < ir1; ++ir) { | |
| // src0 indices | |
| const int i03 = ir/(ne02*ne01); | |
| const int i02 = (ir - i03*ne02*ne01)/ne01; | |
| const int i01 = (ir - i03*ne02*ne01 - i02*ne01); | |
| for (int ic = 0; ic < ne11; ++ic) { | |
| // src1 indices | |
| const int i13 = i03; | |
| const int i12 = i02; | |
| const int i11 = ic; | |
| // dst indices | |
| const int i0 = i01; | |
| const int i1 = i11; | |
| const int i2 = i02; | |
| const int i3 = i03; | |
| ggml_vec_dot_f32(ne00, | |
| (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), | |
| (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)), | |
| (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13))); | |
| } | |
| } | |
| } else { | |
| // parallelize by src1 columns using ggml_vec_mad_f32 | |
| // each thread has its own work data | |
| // during FINALIZE we accumulate all work data into dst | |
| // total columns in src1 | |
| const int nc = ne10; | |
| // columns per thread | |
| const int dc = (nc + nth - 1)/nth; | |
| // column range for this thread | |
| const int ic0 = dc*ith; | |
| const int ic1 = MIN(ic0 + dc, nc); | |
| // work data for thread | |
| const int wo = (ne + CACHE_LINE_SIZE_F32)*ith; | |
| float * const wdata = params->wdata; | |
| for (int i13 = 0; i13 < ne13; ++i13) { | |
| for (int i12 = 0; i12 < ne12; ++i12) { | |
| for (int i11 = 0; i11 < ne11; ++i11) { | |
| for (int ic = ic0; ic < ic1; ++ic) { | |
| // src1 indices | |
| const int i10 = ic; | |
| // src0 indices | |
| const int i03 = i13; | |
| const int i02 = i12; | |
| const int i00 = ic; | |
| // dst indices | |
| const int i1 = i11; | |
| const int i2 = i12; | |
| const int i3 = i13; | |
| assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize); | |
| ggml_vec_mad_f32(ne01, | |
| (float *) (wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0), | |
| (float *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03)), | |
| *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13))); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| //int64_t t1 = ggml_perf_time_us(); | |
| //static int64_t acc = 0; | |
| //acc += t1 - t0; | |
| //if (t1 - t0 > 10) { | |
| // printf("\n"); | |
| // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03); | |
| // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03); | |
| // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13); | |
| // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13); | |
| // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc); | |
| //} | |
| } | |
| void ggml_compute_forward_mul_mat_f16_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| int64_t t0 = ggml_perf_time_us(); | |
| UNUSED(t0); | |
| const int ne00 = src0->ne[0]; | |
| const int ne01 = src0->ne[1]; | |
| const int ne02 = src0->ne[2]; | |
| const int ne03 = src0->ne[3]; | |
| const int ne10 = src1->ne[0]; | |
| const int ne11 = src1->ne[1]; | |
| const int ne12 = src1->ne[2]; | |
| const int ne13 = src1->ne[3]; | |
| const int ne0 = dst->ne[0]; | |
| const int ne1 = dst->ne[1]; | |
| const int ne2 = dst->ne[2]; | |
| const int ne3 = dst->ne[3]; | |
| const int ne = ne0*ne1*ne2*ne3; | |
| const int nb00 = src0->nb[0]; | |
| const int nb01 = src0->nb[1]; | |
| const int nb02 = src0->nb[2]; | |
| const int nb03 = src0->nb[3]; | |
| const int nb10 = src1->nb[0]; | |
| const int nb11 = src1->nb[1]; | |
| const int nb12 = src1->nb[2]; | |
| const int nb13 = src1->nb[3]; | |
| const int nb0 = dst->nb[0]; | |
| const int nb1 = dst->nb[1]; | |
| const int nb2 = dst->nb[2]; | |
| const int nb3 = dst->nb[3]; | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| GGML_ASSERT(ne02 == ne12); | |
| GGML_ASSERT(ne03 == ne13); | |
| GGML_ASSERT(ne2 == ne12); | |
| GGML_ASSERT(ne3 == ne13); | |
| // TODO: we don't support permuted src0 | |
| GGML_ASSERT(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t)); | |
| // dst cannot be transposed or permuted | |
| GGML_ASSERT(nb0 == sizeof(float)); | |
| GGML_ASSERT(nb0 <= nb1); | |
| GGML_ASSERT(nb1 <= nb2); | |
| GGML_ASSERT(nb2 <= nb3); | |
| GGML_ASSERT(ne0 == ne01); | |
| GGML_ASSERT(ne1 == ne11); | |
| GGML_ASSERT(ne2 == ne02); | |
| GGML_ASSERT(ne3 == ne03); | |
| // nb01 >= nb00 - src0 is not transposed | |
| // compute by src0 rows | |
| // | |
| // nb00 < nb01 - src0 is transposed | |
| // compute by src0 columns | |
| if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { | |
| GGML_ASSERT(nb10 == sizeof(float)); | |
| if (params->ith != 0) return; | |
| if (params->type == GGML_TASK_INIT) { | |
| return; | |
| } | |
| if (params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| float * const wdata = params->wdata; | |
| for (int i03 = 0; i03 < ne03; i03++) { | |
| for (int i02 = 0; i02 < ne02; i02++) { | |
| { | |
| int id = 0; | |
| for (int i01 = 0; i01 < ne01; ++i01) { | |
| for (int i00 = 0; i00 < ne00; ++i00) { | |
| wdata[id++] = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00)); | |
| } | |
| } | |
| } | |
| const float * x = wdata; | |
| const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); | |
| // float * z = wdata + ne00*ne01; | |
| // z = x * yT | |
| //{ | |
| // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, | |
| // ne01, ne11, ne00, | |
| // 1.0f, x, ne00, | |
| // y, ne00, | |
| // 0.0f, z, ne11); | |
| //} | |
| float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); | |
| // transpose z | |
| //for (int j = 0; j < ne11; ++j) { | |
| // for (int i = 0; i < ne01; ++i) { | |
| // d[j*ne01 + i] = z[i*ne11 + j]; | |
| // } | |
| //} | |
| // zT = y * xT | |
| { | |
| cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, | |
| ne11, ne01, ne10, | |
| 1.0f, y, ne10, | |
| x, ne10, | |
| 0.0f, d, ne01); | |
| } | |
| } | |
| } | |
| //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); | |
| return; | |
| } | |
| if (params->type == GGML_TASK_INIT) { | |
| if (nb01 >= nb00) { | |
| ggml_fp16_t * const wdata = params->wdata; | |
| int id = 0; | |
| for (int i13 = 0; i13 < ne13; ++i13) { | |
| for (int i12 = 0; i12 < ne12; ++i12) { | |
| for (int i11 = 0; i11 < ne11; ++i11) { | |
| for (int i10 = 0; i10 < ne10; ++i10) { | |
| wdata[id++] = ggml_fp32_to_fp16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10)); | |
| } | |
| } | |
| } | |
| } | |
| GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize); | |
| return; | |
| } | |
| // TODO: fix this memset (wsize is overestimated) | |
| memset(params->wdata, 0, params->wsize); | |
| return; | |
| } | |
| if (params->type == GGML_TASK_FINALIZE) { | |
| if (nb01 >= nb00) { | |
| return; | |
| } | |
| // TODO: fix this memset (wsize is overestimated) | |
| //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth); | |
| ggml_fp16_t * const wdata = params->wdata; | |
| // cols per thread | |
| const int dc = (ne + nth - 1)/nth; | |
| // col range for this thread | |
| const int ic0 = dc*ith; | |
| const int ic1 = MIN(ic0 + dc, ne); | |
| for (int i = ic0; i < ic1; ++i) { | |
| ((float *) dst->data)[i] = ggml_fp16_to_fp32(wdata[i]); | |
| } | |
| for (int k = 1; k < nth; k++) { | |
| for (int i = ic0; i < ic1; ++i) { | |
| ((float *) dst->data)[i] += ggml_fp16_to_fp32(wdata[(ne + CACHE_LINE_SIZE_F32)*k + i]); | |
| } | |
| } | |
| return; | |
| } | |
| if (nb01 >= nb00) { | |
| // fp16 -> half the size, so divide by 2 | |
| // TODO: do not support transposed src1 | |
| assert(nb10/2 == sizeof(ggml_fp16_t)); | |
| // parallelize by src0 rows using ggml_vec_dot_f32 | |
| // total rows in src0 | |
| const int nr = ne01*ne02*ne03; | |
| // rows per thread | |
| const int dr = (nr + nth - 1)/nth; | |
| // row range for this thread | |
| const int ir0 = dr*ith; | |
| const int ir1 = MIN(ir0 + dr, nr); | |
| ggml_fp16_t * wdata = params->wdata; | |
| for (int ir = ir0; ir < ir1; ++ir) { | |
| // src0 indices | |
| const int i03 = ir/(ne02*ne01); | |
| const int i02 = (ir - i03*ne02*ne01)/ne01; | |
| const int i01 = (ir - i03*ne02*ne01 - i02*ne01); | |
| const int i13 = i03; | |
| const int i12 = i02; | |
| const int i0 = i01; | |
| const int i2 = i02; | |
| const int i3 = i03; | |
| ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)); | |
| ggml_fp16_t * src1_col = wdata + (i13*ne12*ne11 + i12*ne11 + 0)*ne00; | |
| float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3)); | |
| for (int ic = 0; ic < ne11; ++ic) { | |
| assert(ne00 % 32 == 0); | |
| ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00); | |
| } | |
| } | |
| } else { | |
| // parallelize by src1 columns using ggml_vec_mad_f32 | |
| // each thread has its own work data | |
| // during FINALIZE we accumulate all work data into dst | |
| // total columns in src1 | |
| const int nc = ne10; | |
| // columns per thread | |
| const int dc = (nc + nth - 1)/nth; | |
| // column range for this thread | |
| const int ic0 = dc*ith; | |
| const int ic1 = MIN(ic0 + dc, nc); | |
| // work data for thread | |
| const int wo = (ne + CACHE_LINE_SIZE_F32)*ith; | |
| ggml_fp16_t * const wdata = params->wdata; | |
| for (int i13 = 0; i13 < ne13; ++i13) { | |
| for (int i12 = 0; i12 < ne12; ++i12) { | |
| for (int i11 = 0; i11 < ne11; ++i11) { | |
| // dst indices | |
| const int i1 = i11; | |
| const int i2 = i12; | |
| const int i3 = i13; | |
| ggml_fp16_t * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0; | |
| for (int ic = ic0; ic < ic1; ++ic) { | |
| // src1 indices | |
| const int i10 = ic; | |
| // src0 indices | |
| const int i03 = i13; | |
| const int i02 = i12; | |
| const int i00 = ic; | |
| assert(sizeof(ggml_fp16_t)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize); | |
| ggml_fp16_t * src0_col = (ggml_fp16_t *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03)); | |
| float src1_val = * (float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); | |
| ggml_vec_mad_f16(ne01, dst_row, src0_col, src1_val); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| //int64_t t1 = ggml_time_us(); | |
| //static int64_t acc = 0; | |
| //acc += t1 - t0; | |
| //if (t1 - t0 > 10) { | |
| // printf("\n"); | |
| // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03); | |
| // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03); | |
| // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13); | |
| // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc); | |
| //} | |
| } | |
| void ggml_compute_forward_mul_mat( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F16: | |
| { | |
| ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst); | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_mul_mat_f32(params, src0, src1, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_scale | |
| void ggml_compute_forward_scale_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| GGML_ASSERT(ggml_is_contiguous(src0)); | |
| GGML_ASSERT(ggml_is_contiguous(dst)); | |
| GGML_ASSERT(ggml_are_same_shape(src0, dst)); | |
| GGML_ASSERT(ggml_is_scalar(src1)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| // scale factor | |
| const float v = *(float *) src1->data; | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| const int nc = src0->ne[0]; | |
| const int nr = ggml_nrows(src0); | |
| // rows per thread | |
| const int dr = (nr + nth - 1)/nth; | |
| // row range for this thread | |
| const int ir0 = dr*ith; | |
| const int ir1 = MIN(ir0 + dr, nr); | |
| for (int i1 = ir0; i1 < ir1; i1++) { | |
| ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v); | |
| } | |
| } | |
| void ggml_compute_forward_scale( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_scale_f32(params, src0, src1, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_cpy | |
| void ggml_compute_forward_cpy( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| ggml_compute_forward_dup(params, src0, dst); | |
| } | |
| // ggml_compute_forward_reshape | |
| void ggml_compute_forward_reshape( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| // NOP | |
| UNUSED(params); | |
| UNUSED(src0); | |
| UNUSED(dst); | |
| } | |
| // ggml_compute_forward_view | |
| void ggml_compute_forward_view( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0) { | |
| // NOP | |
| UNUSED(params); | |
| UNUSED(src0); | |
| } | |
| // ggml_compute_forward_permute | |
| void ggml_compute_forward_permute( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0) { | |
| // NOP | |
| UNUSED(params); | |
| UNUSED(src0); | |
| } | |
| // ggml_compute_forward_transpose | |
| void ggml_compute_forward_transpose( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0) { | |
| // NOP | |
| UNUSED(params); | |
| UNUSED(src0); | |
| } | |
| // ggml_compute_forward_get_rows | |
| void ggml_compute_forward_get_rows_f16( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int nc = src0->ne[0]; | |
| const int nr = ggml_nelements(src1); | |
| assert( dst->ne[0] == nc); | |
| assert( dst->ne[1] == nr); | |
| assert(src0->nb[0] == sizeof(ggml_fp16_t)); | |
| for (int i = 0; i < nr; ++i) { | |
| const int r = ((int32_t *) src1->data)[i]; | |
| for (int j = 0; j < nc; ++j) { | |
| ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j]; | |
| ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = ggml_fp16_to_fp32(v); | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_get_rows_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int nc = src0->ne[0]; | |
| const int nr = ggml_nelements(src1); | |
| assert( dst->ne[0] == nc); | |
| assert( dst->ne[1] == nr); | |
| assert(src0->nb[0] == sizeof(float)); | |
| for (int i = 0; i < nr; ++i) { | |
| const int r = ((int32_t *) src1->data)[i]; | |
| ggml_vec_cpy_f32(nc, | |
| (float *) ((char *) dst->data + i*dst->nb[1]), | |
| (float *) ((char *) src0->data + r*src0->nb[1])); | |
| } | |
| } | |
| void ggml_compute_forward_get_rows( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F16: | |
| { | |
| ggml_compute_forward_get_rows_f16(params, src0, src1, dst); | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_get_rows_f32(params, src0, src1, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_diag_mask_inf | |
| void ggml_compute_forward_diag_mask_inf_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| assert(src1->type == GGML_TYPE_I32); | |
| assert(ggml_nelements(src1) == 1); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int n_past = ((int32_t *) src1->data)[0]; | |
| // TODO: handle transposed/permuted matrices | |
| const int n = ggml_nrows(src0); | |
| const int nc = src0->ne[0]; | |
| const int nr = src0->ne[1]; | |
| const int nz = n/nr; | |
| assert( dst->nb[0] == sizeof(float)); | |
| assert(src0->nb[0] == sizeof(float)); | |
| for (int k = 0; k < nz; k++) { | |
| for (int j = 0; j < nr; j++) { | |
| for (int i = n_past; i < nc; i++) { | |
| if (i > n_past + j) { | |
| *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_diag_mask_inf( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_soft_max | |
| void ggml_compute_forward_soft_max_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| GGML_ASSERT(ggml_is_contiguous(src0)); | |
| GGML_ASSERT(ggml_is_contiguous(dst)); | |
| GGML_ASSERT(ggml_are_same_shape(src0, dst)); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| // TODO: handle transposed/permuted matrices | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| const int nc = src0->ne[0]; | |
| const int nr = ggml_nrows(src0); | |
| // rows per thread | |
| const int dr = (nr + nth - 1)/nth; | |
| // row range for this thread | |
| const int ir0 = dr*ith; | |
| const int ir1 = MIN(ir0 + dr, nr); | |
| for (int i1 = ir0; i1 < ir1; i1++) { | |
| float *p = (float *)((char *) dst->data + i1*dst->nb[1]); | |
| for (int i = 0; i < nc; ++i) { | |
| assert(!isnan(p[i])); | |
| } | |
| float max = -INFINITY; | |
| for (int i = 0; i < nc; i++) { | |
| max = MAX(max, p[i]); | |
| } | |
| ggml_float sum = 0.0; | |
| uint16_t ss; | |
| for (int i = 0; i < nc; i++) { | |
| if (p[i] == -INFINITY) { | |
| p[i] = 0.0; | |
| } else { | |
| //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max); | |
| ggml_fp16_t s = ggml_fp32_to_fp16(p[i] - max); | |
| memcpy(&ss, &s, sizeof(ss)); | |
| const float val = ggml_fp16_to_fp32(table_exp_f16[ss]); | |
| sum += val; | |
| p[i] = val; | |
| } | |
| } | |
| assert(sum > 0.0f); | |
| sum = 1.0/sum; | |
| ggml_vec_scale_f32(nc, p, sum); | |
| for (int i = 0; i < nc; ++i) { | |
| assert(!isnan(p[i])); | |
| assert(!isinf(p[i])); | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_soft_max( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_soft_max_f32(params, src0, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_rope | |
| void ggml_compute_forward_rope_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| assert(params->ith == 0); | |
| assert(src1->type == GGML_TYPE_I32); | |
| assert(ggml_nelements(src1) == 3); | |
| if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| const int n_past = ((int32_t *) src1->data)[0]; | |
| const int n_dims = ((int32_t *) src1->data)[1]; | |
| const int mode = ((int32_t *) src1->data)[2]; | |
| //const int ne0 = src0->ne[0]; | |
| const int ne1 = src0->ne[1]; | |
| const int ne2 = src0->ne[2]; | |
| const int ne3 = src0->ne[3]; | |
| const int nb0 = src0->nb[0]; | |
| const int nb1 = src0->nb[1]; | |
| const int nb2 = src0->nb[2]; | |
| const int nb3 = src0->nb[3]; | |
| //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); | |
| //printf("n_past = %d, ne2 = %d\n", n_past, ne2); | |
| assert(nb0 == sizeof(float)); | |
| // TODO: optimize | |
| for (int i3 = 0; i3 < ne3; i3++) { | |
| for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) { | |
| const int p = (mode == 0 ? n_past + i2 : i2); | |
| for (int i1 = 0; i1 < ne1; i1++) { | |
| for (int i0 = 0; i0 < n_dims; i0 += 2) { | |
| const double theta = pow(10000.0, ((double)-i0)/n_dims); | |
| const double cos_theta = cos(p*theta); | |
| const double sin_theta = sin(p*theta); | |
| const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); | |
| float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); | |
| double x0 = src[0]; | |
| double x1 = src[1]; | |
| dst_data[0] = x0*cos_theta - x1*sin_theta; | |
| dst_data[1] = x0*sin_theta + x1*cos_theta; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_rope( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_rope_f32(params, src0, src1, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_F16: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_conv_1d_1s | |
| void ggml_compute_forward_conv_1d_1s_f16_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| GGML_ASSERT(src0->type == GGML_TYPE_F16); | |
| GGML_ASSERT(src1->type == GGML_TYPE_F32); | |
| GGML_ASSERT( dst->type == GGML_TYPE_F32); | |
| int64_t t0 = ggml_perf_time_us(); | |
| UNUSED(t0); | |
| const int ne00 = src0->ne[0]; | |
| const int ne01 = src0->ne[1]; | |
| const int ne02 = src0->ne[2]; | |
| //const int ne03 = src0->ne[3]; | |
| const int ne10 = src1->ne[0]; | |
| const int ne11 = src1->ne[1]; | |
| //const int ne12 = src1->ne[2]; | |
| //const int ne13 = src1->ne[3]; | |
| //const int ne0 = dst->ne[0]; | |
| //const int ne1 = dst->ne[1]; | |
| //const int ne2 = dst->ne[2]; | |
| //const int ne3 = dst->ne[3]; | |
| //const int ne = ne0*ne1*ne2*ne3; | |
| const int nb00 = src0->nb[0]; | |
| const int nb01 = src0->nb[1]; | |
| const int nb02 = src0->nb[2]; | |
| //const int nb03 = src0->nb[3]; | |
| const int nb10 = src1->nb[0]; | |
| const int nb11 = src1->nb[1]; | |
| //const int nb12 = src1->nb[2]; | |
| //const int nb13 = src1->nb[3]; | |
| //const int nb0 = dst->nb[0]; | |
| const int nb1 = dst->nb[1]; | |
| //const int nb2 = dst->nb[2]; | |
| //const int nb3 = dst->nb[3]; | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| const int nk = ne00; | |
| const int nh = nk/2; | |
| const int ew0 = ggml_up32(ne01); | |
| GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes | |
| GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); | |
| GGML_ASSERT(nb10 == sizeof(float)); | |
| if (params->type == GGML_TASK_INIT) { | |
| // TODO: fix this memset (wsize is overestimated) | |
| memset(params->wdata, 0, params->wsize); | |
| // prepare kernel data (src0) | |
| { | |
| ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; | |
| for (int i02 = 0; i02 < ne02; i02++) { | |
| for (int i01 = 0; i01 < ne01; i01++) { | |
| const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01); | |
| ggml_fp16_t * dst_data = wdata + i02*ew0*ne00; | |
| for (int i00 = 0; i00 < ne00; i00++) { | |
| dst_data[i00*ew0 + i01] = src[i00]; | |
| } | |
| } | |
| } | |
| } | |
| // prepare source data (src1) | |
| { | |
| ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00; | |
| for (int i11 = 0; i11 < ne11; i11++) { | |
| const float * const src = (float *)((char *) src1->data + i11*nb11); | |
| ggml_fp16_t * dst_data = wdata; | |
| for (int i10 = 0; i10 < ne10; i10++) { | |
| dst_data[(i10 + nh)*ew0 + i11] = ggml_fp32_to_fp16(src[i10]); | |
| } | |
| } | |
| } | |
| return; | |
| } | |
| if (params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| // total rows in dst | |
| const int nr = ne02; | |
| // rows per thread | |
| const int dr = (nr + nth - 1)/nth; | |
| // row range for this thread | |
| const int ir0 = dr*ith; | |
| const int ir1 = MIN(ir0 + dr, nr); | |
| for (int i1 = ir0; i1 < ir1; i1++) { | |
| float * dst_data = (float *)((char *) dst->data + i1*nb1); | |
| for (int i0 = 0; i0 < ne10; ++i0) { | |
| dst_data[i0] = 0; | |
| for (int k = -nh; k <= nh; k++) { | |
| float v = 0.0f; | |
| ggml_vec_dot_f16(ew0, &v, | |
| (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0, | |
| (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0); | |
| dst_data[i0] += v; | |
| } | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_conv_1d_1s_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| GGML_ASSERT(src0->type == GGML_TYPE_F32); | |
| GGML_ASSERT(src1->type == GGML_TYPE_F32); | |
| GGML_ASSERT( dst->type == GGML_TYPE_F32); | |
| int64_t t0 = ggml_perf_time_us(); | |
| UNUSED(t0); | |
| const int ne00 = src0->ne[0]; | |
| const int ne01 = src0->ne[1]; | |
| const int ne02 = src0->ne[2]; | |
| //const int ne03 = src0->ne[3]; | |
| const int ne10 = src1->ne[0]; | |
| const int ne11 = src1->ne[1]; | |
| //const int ne12 = src1->ne[2]; | |
| //const int ne13 = src1->ne[3]; | |
| //const int ne0 = dst->ne[0]; | |
| //const int ne1 = dst->ne[1]; | |
| //const int ne2 = dst->ne[2]; | |
| //const int ne3 = dst->ne[3]; | |
| //const int ne = ne0*ne1*ne2*ne3; | |
| const int nb00 = src0->nb[0]; | |
| const int nb01 = src0->nb[1]; | |
| const int nb02 = src0->nb[2]; | |
| //const int nb03 = src0->nb[3]; | |
| const int nb10 = src1->nb[0]; | |
| const int nb11 = src1->nb[1]; | |
| //const int nb12 = src1->nb[2]; | |
| //const int nb13 = src1->nb[3]; | |
| //const int nb0 = dst->nb[0]; | |
| const int nb1 = dst->nb[1]; | |
| //const int nb2 = dst->nb[2]; | |
| //const int nb3 = dst->nb[3]; | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| const int nk = ne00; | |
| const int nh = nk/2; | |
| const int ew0 = ggml_up32(ne01); | |
| GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes | |
| GGML_ASSERT(nb00 == sizeof(float)); | |
| GGML_ASSERT(nb10 == sizeof(float)); | |
| if (params->type == GGML_TASK_INIT) { | |
| // TODO: fix this memset (wsize is overestimated) | |
| memset(params->wdata, 0, params->wsize); | |
| // prepare kernel data (src0) | |
| { | |
| float * const wdata = (float *) params->wdata + 0; | |
| for (int i02 = 0; i02 < ne02; i02++) { | |
| for (int i01 = 0; i01 < ne01; i01++) { | |
| const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01); | |
| float * dst_data = wdata + i02*ew0*ne00; | |
| for (int i00 = 0; i00 < ne00; i00++) { | |
| dst_data[i00*ew0 + i01] = src[i00]; | |
| } | |
| } | |
| } | |
| } | |
| // prepare source data (src1) | |
| { | |
| float * const wdata = (float *) params->wdata + ne02*ew0*ne00; | |
| for (int i11 = 0; i11 < ne11; i11++) { | |
| const float * const src = (float *)((char *) src1->data + i11*nb11); | |
| float * dst_data = wdata; | |
| for (int i10 = 0; i10 < ne10; i10++) { | |
| dst_data[(i10 + nh)*ew0 + i11] = src[i10]; | |
| } | |
| } | |
| } | |
| return; | |
| } | |
| if (params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| // total rows in dst | |
| const int nr = ne02; | |
| // rows per thread | |
| const int dr = (nr + nth - 1)/nth; | |
| // row range for this thread | |
| const int ir0 = dr*ith; | |
| const int ir1 = MIN(ir0 + dr, nr); | |
| for (int i1 = ir0; i1 < ir1; i1++) { | |
| float * dst_data = (float *)((char *) dst->data + i1*nb1); | |
| for (int i0 = 0; i0 < ne10; ++i0) { | |
| dst_data[i0] = 0; | |
| for (int k = -nh; k <= nh; k++) { | |
| float v = 0.0f; | |
| ggml_vec_dot_f32(ew0, &v, | |
| (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0, | |
| (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0); | |
| dst_data[i0] += v; | |
| } | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_conv_1d_1s( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F16: | |
| { | |
| ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst); | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_COUNT: | |
| { | |
| GGML_ASSERT(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_conv_1d_2s | |
| void ggml_compute_forward_conv_1d_2s_f16_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| GGML_ASSERT(src0->type == GGML_TYPE_F16); | |
| GGML_ASSERT(src1->type == GGML_TYPE_F32); | |
| GGML_ASSERT( dst->type == GGML_TYPE_F32); | |
| int64_t t0 = ggml_perf_time_us(); | |
| UNUSED(t0); | |
| const int ne00 = src0->ne[0]; | |
| const int ne01 = src0->ne[1]; | |
| const int ne02 = src0->ne[2]; | |
| //const int ne03 = src0->ne[3]; | |
| const int ne10 = src1->ne[0]; | |
| const int ne11 = src1->ne[1]; | |
| //const int ne12 = src1->ne[2]; | |
| //const int ne13 = src1->ne[3]; | |
| //const int ne0 = dst->ne[0]; | |
| //const int ne1 = dst->ne[1]; | |
| //const int ne2 = dst->ne[2]; | |
| //const int ne3 = dst->ne[3]; | |
| //const int ne = ne0*ne1*ne2*ne3; | |
| const int nb00 = src0->nb[0]; | |
| const int nb01 = src0->nb[1]; | |
| const int nb02 = src0->nb[2]; | |
| //const int nb03 = src0->nb[3]; | |
| const int nb10 = src1->nb[0]; | |
| const int nb11 = src1->nb[1]; | |
| //const int nb12 = src1->nb[2]; | |
| //const int nb13 = src1->nb[3]; | |
| //const int nb0 = dst->nb[0]; | |
| const int nb1 = dst->nb[1]; | |
| //const int nb2 = dst->nb[2]; | |
| //const int nb3 = dst->nb[3]; | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| const int nk = ne00; | |
| const int nh = nk/2; | |
| const int ew0 = ggml_up32(ne01); | |
| GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes | |
| GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); | |
| GGML_ASSERT(nb10 == sizeof(float)); | |
| if (params->type == GGML_TASK_INIT) { | |
| // TODO: fix this memset (wsize is overestimated) | |
| memset(params->wdata, 0, params->wsize); | |
| // prepare kernel data (src0) | |
| { | |
| ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; | |
| for (int i02 = 0; i02 < ne02; i02++) { | |
| for (int i01 = 0; i01 < ne01; i01++) { | |
| const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01); | |
| ggml_fp16_t * dst_data = wdata + i02*ew0*ne00; | |
| for (int i00 = 0; i00 < ne00; i00++) { | |
| dst_data[i00*ew0 + i01] = src[i00]; | |
| } | |
| } | |
| } | |
| } | |
| // prepare source data (src1) | |
| { | |
| ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00; | |
| for (int i11 = 0; i11 < ne11; i11++) { | |
| const float * const src = (float *)((char *) src1->data + i11*nb11); | |
| ggml_fp16_t * dst_data = wdata; | |
| for (int i10 = 0; i10 < ne10; i10++) { | |
| dst_data[(i10 + nh)*ew0 + i11] = ggml_fp32_to_fp16(src[i10]); | |
| } | |
| } | |
| } | |
| return; | |
| } | |
| if (params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| // total rows in dst | |
| const int nr = ne02; | |
| // rows per thread | |
| const int dr = (nr + nth - 1)/nth; | |
| // row range for this thread | |
| const int ir0 = dr*ith; | |
| const int ir1 = MIN(ir0 + dr, nr); | |
| for (int i1 = ir0; i1 < ir1; i1++) { | |
| float * dst_data = (float *)((char *) dst->data + i1*nb1); | |
| for (int i0 = 0; i0 < ne10; i0 += 2) { | |
| dst_data[i0/2] = 0; | |
| for (int k = -nh; k <= nh; k++) { | |
| float v = 0.0f; | |
| ggml_vec_dot_f16(ew0, &v, | |
| (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0, | |
| (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0); | |
| dst_data[i0/2] += v; | |
| } | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_conv_1d_2s_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| GGML_ASSERT(src0->type == GGML_TYPE_F32); | |
| GGML_ASSERT(src1->type == GGML_TYPE_F32); | |
| GGML_ASSERT( dst->type == GGML_TYPE_F32); | |
| int64_t t0 = ggml_perf_time_us(); | |
| UNUSED(t0); | |
| const int ne00 = src0->ne[0]; | |
| const int ne01 = src0->ne[1]; | |
| const int ne02 = src0->ne[2]; | |
| //const int ne03 = src0->ne[3]; | |
| const int ne10 = src1->ne[0]; | |
| const int ne11 = src1->ne[1]; | |
| //const int ne12 = src1->ne[2]; | |
| //const int ne13 = src1->ne[3]; | |
| //const int ne0 = dst->ne[0]; | |
| //const int ne1 = dst->ne[1]; | |
| //const int ne2 = dst->ne[2]; | |
| //const int ne3 = dst->ne[3]; | |
| //const int ne = ne0*ne1*ne2*ne3; | |
| const int nb00 = src0->nb[0]; | |
| const int nb01 = src0->nb[1]; | |
| const int nb02 = src0->nb[2]; | |
| //const int nb03 = src0->nb[3]; | |
| const int nb10 = src1->nb[0]; | |
| const int nb11 = src1->nb[1]; | |
| //const int nb12 = src1->nb[2]; | |
| //const int nb13 = src1->nb[3]; | |
| //const int nb0 = dst->nb[0]; | |
| const int nb1 = dst->nb[1]; | |
| //const int nb2 = dst->nb[2]; | |
| //const int nb3 = dst->nb[3]; | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| const int nk = ne00; | |
| const int nh = nk/2; | |
| const int ew0 = ggml_up32(ne01); | |
| GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes | |
| GGML_ASSERT(nb00 == sizeof(float)); | |
| GGML_ASSERT(nb10 == sizeof(float)); | |
| if (params->type == GGML_TASK_INIT) { | |
| // TODO: fix this memset (wsize is overestimated) | |
| memset(params->wdata, 0, params->wsize); | |
| // prepare kernel data (src0) | |
| { | |
| float * const wdata = (float *) params->wdata + 0; | |
| for (int i02 = 0; i02 < ne02; i02++) { | |
| for (int i01 = 0; i01 < ne01; i01++) { | |
| const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01); | |
| float * dst_data = wdata + i02*ew0*ne00; | |
| for (int i00 = 0; i00 < ne00; i00++) { | |
| dst_data[i00*ew0 + i01] = src[i00]; | |
| } | |
| } | |
| } | |
| } | |
| // prepare source data (src1) | |
| { | |
| float * const wdata = (float *) params->wdata + ne02*ew0*ne00; | |
| for (int i11 = 0; i11 < ne11; i11++) { | |
| const float * const src = (float *)((char *) src1->data + i11*nb11); | |
| float * dst_data = wdata; | |
| for (int i10 = 0; i10 < ne10; i10++) { | |
| dst_data[(i10 + nh)*ew0 + i11] = src[i10]; | |
| } | |
| } | |
| } | |
| return; | |
| } | |
| if (params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| // total rows in dst | |
| const int nr = ne02; | |
| // rows per thread | |
| const int dr = (nr + nth - 1)/nth; | |
| // row range for this thread | |
| const int ir0 = dr*ith; | |
| const int ir1 = MIN(ir0 + dr, nr); | |
| for (int i1 = ir0; i1 < ir1; i1++) { | |
| float * dst_data = (float *)((char *) dst->data + i1*nb1); | |
| for (int i0 = 0; i0 < ne10; i0 += 2) { | |
| dst_data[i0/2] = 0; | |
| for (int k = -nh; k <= nh; k++) { | |
| float v = 0.0f; | |
| ggml_vec_dot_f32(ew0, &v, | |
| (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0, | |
| (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0); | |
| dst_data[i0/2] += v; | |
| } | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_conv_1d_2s( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * src0, | |
| const struct ggml_tensor * src1, | |
| struct ggml_tensor * dst) { | |
| switch (src0->type) { | |
| case GGML_TYPE_F16: | |
| { | |
| ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst); | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_COUNT: | |
| { | |
| GGML_ASSERT(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_flash_attn | |
| void ggml_compute_forward_flash_attn_f32( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * q, | |
| const struct ggml_tensor * k, | |
| const struct ggml_tensor * v, | |
| const bool masked, | |
| struct ggml_tensor * dst) { | |
| int64_t t0 = ggml_perf_time_us(); | |
| UNUSED(t0); | |
| const int neq0 = q->ne[0]; | |
| const int neq1 = q->ne[1]; | |
| const int neq2 = q->ne[2]; | |
| const int neq3 = q->ne[3]; | |
| const int nek0 = k->ne[0]; | |
| const int nek1 = k->ne[1]; | |
| //const int nek2 = k->ne[2]; | |
| //const int nek3 = k->ne[3]; | |
| //const int nev0 = v->ne[0]; | |
| const int nev1 = v->ne[1]; | |
| //const int nev2 = v->ne[2]; | |
| //const int nev3 = v->ne[3]; | |
| const int ne0 = dst->ne[0]; | |
| const int ne1 = dst->ne[1]; | |
| //const int ne2 = dst->ne[2]; | |
| //const int ne3 = dst->ne[3]; | |
| const int nbk0 = k->nb[0]; | |
| const int nbk1 = k->nb[1]; | |
| const int nbk2 = k->nb[2]; | |
| const int nbk3 = k->nb[3]; | |
| const int nbq0 = q->nb[0]; | |
| const int nbq1 = q->nb[1]; | |
| const int nbq2 = q->nb[2]; | |
| const int nbq3 = q->nb[3]; | |
| const int nbv0 = v->nb[0]; | |
| const int nbv1 = v->nb[1]; | |
| const int nbv2 = v->nb[2]; | |
| const int nbv3 = v->nb[3]; | |
| const int nb0 = dst->nb[0]; | |
| const int nb1 = dst->nb[1]; | |
| const int nb2 = dst->nb[2]; | |
| const int nb3 = dst->nb[3]; | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| const int D = neq0; | |
| const int N = neq1; | |
| const int P = nek1 - N; | |
| const int M = P + N; | |
| GGML_ASSERT(ne0 == D); | |
| GGML_ASSERT(ne1 == N); | |
| GGML_ASSERT(P >= 0); | |
| GGML_ASSERT(nbq0 == sizeof(float)); | |
| GGML_ASSERT(nbk0 == sizeof(float)); | |
| GGML_ASSERT(nbv0 == sizeof(float)); | |
| GGML_ASSERT(neq0 == D); | |
| GGML_ASSERT(nek0 == D); | |
| GGML_ASSERT(nev1 == D); | |
| GGML_ASSERT(neq1 == N); | |
| GGML_ASSERT(nek1 == N + P); | |
| GGML_ASSERT(nev1 == D); | |
| // dst cannot be transposed or permuted | |
| GGML_ASSERT(nb0 == sizeof(float)); | |
| GGML_ASSERT(nb0 <= nb1); | |
| GGML_ASSERT(nb1 <= nb2); | |
| GGML_ASSERT(nb2 <= nb3); | |
| if (params->type == GGML_TASK_INIT) { | |
| return; | |
| } | |
| if (params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| // parallelize by q rows using ggml_vec_dot_f32 | |
| // total rows in q | |
| const int nr = neq1*neq2*neq3; | |
| // rows per thread | |
| const int dr = (nr + nth - 1)/nth; | |
| // row range for this thread | |
| const int ir0 = dr*ith; | |
| const int ir1 = MIN(ir0 + dr, nr); | |
| const float scale = 1.0/sqrt((double) D); | |
| //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale); | |
| for (int ir = ir0; ir < ir1; ++ir) { | |
| // q indices | |
| const int iq3 = ir/(neq2*neq1); | |
| const int iq2 = (ir - iq3*neq2*neq1)/neq1; | |
| const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1); | |
| float * S = (float *) params->wdata + ith*(M + CACHE_LINE_SIZE_F32); | |
| for (int ic = 0; ic < nek1; ++ic) { | |
| // k indices | |
| const int ik3 = iq3; | |
| const int ik2 = iq2; | |
| const int ik1 = ic; | |
| // S indices | |
| const int i1 = ik1; | |
| ggml_vec_dot_f32(neq0, | |
| S + i1, | |
| (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), | |
| (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3))); | |
| } | |
| // scale | |
| ggml_vec_scale_f32(nek1, S, scale); | |
| if (masked) { | |
| for (int i = P; i < M; i++) { | |
| if (i > P + iq1) { | |
| S[i] = -INFINITY; | |
| } | |
| } | |
| } | |
| // softmax | |
| { | |
| float max = -INFINITY; | |
| for (int i = 0; i < M; i++) { | |
| max = MAX(max, S[i]); | |
| } | |
| ggml_float sum = 0.0; | |
| uint16_t ss; | |
| for (int i = 0; i < M; i++) { | |
| if (S[i] == -INFINITY) { | |
| S[i] = 0.0; | |
| } else { | |
| //const float val = (S[i] == -INFINITY) ? 0.0 : exp(S[i] - max); | |
| ggml_fp16_t s = ggml_fp32_to_fp16(S[i] - max); | |
| memcpy(&ss, &s, sizeof(ss)); | |
| const float val = ggml_fp16_to_fp32(table_exp_f16[ss]); | |
| sum += val; | |
| S[i] = val; | |
| } | |
| } | |
| assert(sum > 0.0f); | |
| sum = 1.0/sum; | |
| ggml_vec_scale_f32(M, S, sum); | |
| } | |
| for (int ic = 0; ic < nev1; ++ic) { | |
| // dst indices | |
| const int i1 = iq1; | |
| const int i2 = iq2; | |
| const int i3 = iq3; | |
| ggml_vec_dot_f32(nek1, | |
| (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), | |
| (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)), | |
| S); | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_flash_attn_f16( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * q, | |
| const struct ggml_tensor * k, | |
| const struct ggml_tensor * v, | |
| const bool masked, | |
| struct ggml_tensor * dst) { | |
| int64_t t0 = ggml_perf_time_us(); | |
| UNUSED(t0); | |
| const int neq0 = q->ne[0]; | |
| const int neq1 = q->ne[1]; | |
| const int neq2 = q->ne[2]; | |
| const int neq3 = q->ne[3]; | |
| const int nek0 = k->ne[0]; | |
| const int nek1 = k->ne[1]; | |
| //const int nek2 = k->ne[2]; | |
| //const int nek3 = k->ne[3]; | |
| //const int nev0 = v->ne[0]; | |
| const int nev1 = v->ne[1]; | |
| //const int nev2 = v->ne[2]; | |
| //const int nev3 = v->ne[3]; | |
| const int ne0 = dst->ne[0]; | |
| const int ne1 = dst->ne[1]; | |
| //const int ne2 = dst->ne[2]; | |
| //const int ne3 = dst->ne[3]; | |
| const int nbk0 = k->nb[0]; | |
| const int nbk1 = k->nb[1]; | |
| const int nbk2 = k->nb[2]; | |
| const int nbk3 = k->nb[3]; | |
| const int nbq0 = q->nb[0]; | |
| const int nbq1 = q->nb[1]; | |
| const int nbq2 = q->nb[2]; | |
| const int nbq3 = q->nb[3]; | |
| const int nbv0 = v->nb[0]; | |
| const int nbv1 = v->nb[1]; | |
| const int nbv2 = v->nb[2]; | |
| const int nbv3 = v->nb[3]; | |
| const int nb0 = dst->nb[0]; | |
| const int nb1 = dst->nb[1]; | |
| const int nb2 = dst->nb[2]; | |
| const int nb3 = dst->nb[3]; | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| const int D = neq0; | |
| const int N = neq1; | |
| const int P = nek1 - N; | |
| const int M = P + N; | |
| GGML_ASSERT(ne0 == D); | |
| GGML_ASSERT(ne1 == N); | |
| GGML_ASSERT(P >= 0); | |
| GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t)); | |
| GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t)); | |
| GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t)); | |
| GGML_ASSERT(neq0 == D); | |
| GGML_ASSERT(nek0 == D); | |
| GGML_ASSERT(nev1 == D); | |
| GGML_ASSERT(neq1 == N); | |
| GGML_ASSERT(nek1 == N + P); | |
| GGML_ASSERT(nev1 == D); | |
| // dst cannot be transposed or permuted | |
| GGML_ASSERT(nb0 == sizeof(float)); | |
| GGML_ASSERT(nb0 <= nb1); | |
| GGML_ASSERT(nb1 <= nb2); | |
| GGML_ASSERT(nb2 <= nb3); | |
| if (params->type == GGML_TASK_INIT) { | |
| return; | |
| } | |
| if (params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| // parallelize by q rows using ggml_vec_dot_f32 | |
| // total rows in q | |
| const int nr = neq1*neq2*neq3; | |
| // rows per thread | |
| const int dr = (nr + nth - 1)/nth; | |
| // row range for this thread | |
| const int ir0 = dr*ith; | |
| const int ir1 = MIN(ir0 + dr, nr); | |
| const float scale = 1.0/sqrt((double) D); | |
| //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale); | |
| for (int ir = ir0; ir < ir1; ++ir) { | |
| // q indices | |
| const int iq3 = ir/(neq2*neq1); | |
| const int iq2 = (ir - iq3*neq2*neq1)/neq1; | |
| const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1); | |
| float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32); | |
| for (int ic = 0; ic < nek1; ++ic) { | |
| // k indices | |
| const int ik3 = iq3; | |
| const int ik2 = iq2; | |
| const int ik1 = ic; | |
| // S indices | |
| const int i1 = ik1; | |
| ggml_vec_dot_f16(neq0, | |
| S + i1, | |
| (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), | |
| (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3))); | |
| } | |
| // scale | |
| ggml_vec_scale_f32(nek1, S, scale); | |
| if (masked) { | |
| for (int i = P; i < M; i++) { | |
| if (i > P + iq1) { | |
| S[i] = -INFINITY; | |
| } | |
| } | |
| } | |
| // softmax | |
| { | |
| float max = -INFINITY; | |
| for (int i = 0; i < M; i++) { | |
| max = MAX(max, S[i]); | |
| } | |
| ggml_float sum = 0.0; | |
| uint16_t ss; | |
| for (int i = 0; i < M; i++) { | |
| if (S[i] == -INFINITY) { | |
| S[i] = 0.0; | |
| } else { | |
| //const float val = (S[i] == -INFINITY) ? 0.0 : exp(S[i] - max); | |
| ggml_fp16_t s = ggml_fp32_to_fp16(S[i] - max); | |
| memcpy(&ss, &s, sizeof(ss)); | |
| const float val = ggml_fp16_to_fp32(table_exp_f16[ss]); | |
| sum += val; | |
| S[i] = val; | |
| } | |
| } | |
| assert(sum > 0.0f); | |
| sum = 1.0/sum; | |
| ggml_vec_scale_f32(M, S, sum); | |
| } | |
| ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M); | |
| for (int i = 0; i < M; i++) { | |
| S16[i] = ggml_fp32_to_fp16(S[i]); | |
| } | |
| for (int ic = 0; ic < nev1; ++ic) { | |
| // dst indices | |
| const int i1 = iq1; | |
| const int i2 = iq2; | |
| const int i3 = iq3; | |
| ggml_vec_dot_f16(nek1, | |
| (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), | |
| (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)), | |
| S16); | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_flash_attn( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * q, | |
| const struct ggml_tensor * k, | |
| const struct ggml_tensor * v, | |
| const bool masked, | |
| struct ggml_tensor * dst) { | |
| switch (q->type) { | |
| case GGML_TYPE_F16: | |
| { | |
| ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst); | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst); | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| // ggml_compute_forward_flash_ff | |
| void ggml_compute_forward_flash_ff_f16( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * a, // F16 | |
| const struct ggml_tensor * b0, // F16 fc_w | |
| const struct ggml_tensor * b1, // F32 fc_b | |
| const struct ggml_tensor * c0, // F16 proj_w | |
| const struct ggml_tensor * c1, // F32 proj_b | |
| struct ggml_tensor * dst) { | |
| int64_t t0 = ggml_perf_time_us(); | |
| UNUSED(t0); | |
| const int nea0 = a->ne[0]; | |
| const int nea1 = a->ne[1]; | |
| const int nea2 = a->ne[2]; | |
| const int nea3 = a->ne[3]; | |
| const int neb00 = b0->ne[0]; | |
| const int neb01 = b0->ne[1]; | |
| //const int neb02 = b0->ne[2]; | |
| //const int neb03 = b0->ne[3]; | |
| const int neb10 = b1->ne[0]; | |
| const int neb11 = b1->ne[1]; | |
| //const int neb12 = b1->ne[2]; | |
| //const int neb13 = b1->ne[3]; | |
| const int nec00 = c0->ne[0]; | |
| const int nec01 = c0->ne[1]; | |
| //const int nec02 = c0->ne[2]; | |
| //const int nec03 = c0->ne[3]; | |
| const int nec10 = c1->ne[0]; | |
| const int nec11 = c1->ne[1]; | |
| //const int nec12 = c1->ne[2]; | |
| //const int nec13 = c1->ne[3]; | |
| const int ne0 = dst->ne[0]; | |
| const int ne1 = dst->ne[1]; | |
| const int ne2 = dst->ne[2]; | |
| //const int ne3 = dst->ne[3]; | |
| const int nba0 = a->nb[0]; | |
| const int nba1 = a->nb[1]; | |
| const int nba2 = a->nb[2]; | |
| const int nba3 = a->nb[3]; | |
| const int nbb00 = b0->nb[0]; | |
| const int nbb01 = b0->nb[1]; | |
| const int nbb02 = b0->nb[2]; | |
| const int nbb03 = b0->nb[3]; | |
| const int nbb10 = b1->nb[0]; | |
| //const int nbb11 = b1->nb[1]; | |
| //const int nbb12 = b1->nb[2]; | |
| //const int nbb13 = b1->nb[3]; | |
| const int nbc00 = c0->nb[0]; | |
| const int nbc01 = c0->nb[1]; | |
| const int nbc02 = c0->nb[2]; | |
| const int nbc03 = c0->nb[3]; | |
| const int nbc10 = c1->nb[0]; | |
| //const int nbc11 = c1->nb[1]; | |
| //const int nbc12 = c1->nb[2]; | |
| //const int nbc13 = c1->nb[3]; | |
| const int nb0 = dst->nb[0]; | |
| const int nb1 = dst->nb[1]; | |
| const int nb2 = dst->nb[2]; | |
| const int nb3 = dst->nb[3]; | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| const int D = nea0; | |
| //const int N = nea1; | |
| const int M = neb01; | |
| GGML_ASSERT(ne0 == nea0); | |
| GGML_ASSERT(ne1 == nea1); | |
| GGML_ASSERT(ne2 == nea2); | |
| GGML_ASSERT(nba0 == sizeof(ggml_fp16_t)); | |
| GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t)); | |
| GGML_ASSERT(nbb10 == sizeof(float)); | |
| GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t)); | |
| GGML_ASSERT(nbc10 == sizeof(float)); | |
| GGML_ASSERT(neb00 == D); | |
| GGML_ASSERT(neb01 == M); | |
| GGML_ASSERT(neb10 == M); | |
| GGML_ASSERT(neb11 == 1); | |
| GGML_ASSERT(nec00 == M); | |
| GGML_ASSERT(nec01 == D); | |
| GGML_ASSERT(nec10 == D); | |
| GGML_ASSERT(nec11 == 1); | |
| // dst cannot be transposed or permuted | |
| GGML_ASSERT(nb0 == sizeof(float)); | |
| GGML_ASSERT(nb0 <= nb1); | |
| GGML_ASSERT(nb1 <= nb2); | |
| GGML_ASSERT(nb2 <= nb3); | |
| if (params->type == GGML_TASK_INIT) { | |
| return; | |
| } | |
| if (params->type == GGML_TASK_FINALIZE) { | |
| return; | |
| } | |
| // parallelize by a rows using ggml_vec_dot_f32 | |
| // total rows in a | |
| const int nr = nea1*nea2*nea3; | |
| // rows per thread | |
| const int dr = (nr + nth - 1)/nth; | |
| // row range for this thread | |
| const int ir0 = dr*ith; | |
| const int ir1 = MIN(ir0 + dr, nr); | |
| for (int ir = ir0; ir < ir1; ++ir) { | |
| // a indices | |
| const int ia3 = ir/(nea2*nea1); | |
| const int ia2 = (ir - ia3*nea2*nea1)/nea1; | |
| const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1); | |
| float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32); | |
| for (int ic = 0; ic < neb01; ++ic) { | |
| // b0 indices | |
| const int ib03 = ia3; | |
| const int ib02 = ia2; | |
| const int ib01 = ic; | |
| // S indices | |
| const int i1 = ib01; | |
| ggml_vec_dot_f16(nea0, | |
| S + i1, | |
| (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), | |
| (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3))); | |
| } | |
| ggml_vec_add_f32(neb01, S, S, (float *) b1->data); | |
| //ggml_vec_gelu_f32(neb01, S, S); | |
| ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M); | |
| for (int i = 0; i < M; i++) { | |
| S16[i] = ggml_fp32_to_fp16(S[i]); | |
| } | |
| ggml_vec_gelu_f16(neb01, S16, S16); | |
| { | |
| // dst indices | |
| const int i1 = ia1; | |
| const int i2 = ia2; | |
| const int i3 = ia3; | |
| for (int ic = 0; ic < nec01; ++ic) { | |
| ggml_vec_dot_f16(neb01, | |
| (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), | |
| (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), | |
| S16); | |
| } | |
| ggml_vec_add_f32(nec01, | |
| (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)), | |
| (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)), | |
| (float *) c1->data); | |
| } | |
| } | |
| } | |
| void ggml_compute_forward_flash_ff( | |
| const struct ggml_compute_params * params, | |
| const struct ggml_tensor * a, | |
| const struct ggml_tensor * b0, | |
| const struct ggml_tensor * b1, | |
| const struct ggml_tensor * c0, | |
| const struct ggml_tensor * c1, | |
| struct ggml_tensor * dst) { | |
| switch (b0->type) { | |
| case GGML_TYPE_F16: | |
| { | |
| ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst); | |
| } break; | |
| case GGML_TYPE_F32: | |
| { | |
| GGML_ASSERT(false); // TODO | |
| } break; | |
| case GGML_TYPE_I8: | |
| case GGML_TYPE_I16: | |
| case GGML_TYPE_I32: | |
| case GGML_TYPE_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| } | |
| } | |
| ///////////////////////////////// | |
| void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { | |
| assert(params); | |
| switch (tensor->op) { | |
| case GGML_OP_DUP: | |
| { | |
| ggml_compute_forward_dup(params, tensor->src0, tensor); | |
| } break; | |
| case GGML_OP_ADD: | |
| { | |
| ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor); | |
| } break; | |
| case GGML_OP_SUB: | |
| { | |
| ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor); | |
| } break; | |
| case GGML_OP_MUL: | |
| { | |
| ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor); | |
| } break; | |
| case GGML_OP_DIV: | |
| { | |
| ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor); | |
| } break; | |
| case GGML_OP_SQR: | |
| { | |
| ggml_compute_forward_sqr(params, tensor->src0, tensor); | |
| } break; | |
| case GGML_OP_SQRT: | |
| { | |
| ggml_compute_forward_sqrt(params, tensor->src0, tensor); | |
| } break; | |
| case GGML_OP_SUM: | |
| { | |
| ggml_compute_forward_sum(params, tensor->src0, tensor); | |
| } break; | |
| case GGML_OP_MEAN: | |
| { | |
| ggml_compute_forward_mean(params, tensor->src0, tensor); | |
| } break; | |
| case GGML_OP_REPEAT: | |
| { | |
| ggml_compute_forward_repeat(params, tensor->src0, tensor); | |
| } break; | |
| case GGML_OP_ABS: | |
| { | |
| ggml_compute_forward_abs(params, tensor->src0, tensor); | |
| } break; | |
| case GGML_OP_SGN: | |
| { | |
| ggml_compute_forward_sgn(params, tensor->src0, tensor); | |
| } break; | |
| case GGML_OP_NEG: | |
| { | |
| ggml_compute_forward_neg(params, tensor->src0, tensor); | |
| } break; | |
| case GGML_OP_STEP: | |
| { | |
| ggml_compute_forward_step(params, tensor->src0, tensor); | |
| } break; | |
| case GGML_OP_RELU: | |
| { | |
| ggml_compute_forward_relu(params, tensor->src0, tensor); | |
| } break; | |
| case GGML_OP_GELU: | |
| { | |
| ggml_compute_forward_gelu(params, tensor->src0, tensor); | |
| } break; | |
| case GGML_OP_NORM: | |
| { | |
| ggml_compute_forward_norm(params, tensor->src0, tensor); | |
| } break; | |
| case GGML_OP_MUL_MAT: | |
| { | |
| ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor); | |
| } break; | |
| case GGML_OP_SCALE: | |
| { | |
| ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor); | |
| } break; | |
| case GGML_OP_CPY: | |
| { | |
| ggml_compute_forward_cpy(params, tensor->src0, tensor); | |
| } break; | |
| case GGML_OP_RESHAPE: | |
| { | |
| ggml_compute_forward_reshape(params, tensor->src0, tensor); | |
| } break; | |
| case GGML_OP_VIEW: | |
| { | |
| ggml_compute_forward_view(params, tensor->src0); | |
| } break; | |
| case GGML_OP_PERMUTE: | |
| { | |
| ggml_compute_forward_permute(params, tensor->src0); | |
| } break; | |
| case GGML_OP_TRANSPOSE: | |
| { | |
| ggml_compute_forward_transpose(params, tensor->src0); | |
| } break; | |
| case GGML_OP_GET_ROWS: | |
| { | |
| ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor); | |
| } break; | |
| case GGML_OP_DIAG_MASK_INF: | |
| { | |
| ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor); | |
| } break; | |
| case GGML_OP_SOFT_MAX: | |
| { | |
| ggml_compute_forward_soft_max(params, tensor->src0, tensor); | |
| } break; | |
| case GGML_OP_ROPE: | |
| { | |
| ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor); | |
| } break; | |
| case GGML_OP_CONV_1D_1S: | |
| { | |
| ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor); | |
| } break; | |
| case GGML_OP_CONV_1D_2S: | |
| { | |
| ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor); | |
| } break; | |
| case GGML_OP_FLASH_ATTN: | |
| { | |
| int32_t t = ggml_get_i32_1d(tensor->opt[1], 0); | |
| GGML_ASSERT(t == 0 || t == 1); | |
| bool masked = t != 0; | |
| ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor); | |
| } break; | |
| case GGML_OP_FLASH_FF: | |
| { | |
| ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor); | |
| } break; | |
| case GGML_OP_NONE: | |
| { | |
| // nop | |
| } break; | |
| case GGML_OP_COUNT: | |
| { | |
| GGML_ASSERT(false); | |
| } break; | |
| }; | |
| } | |
| //////////////////////////////////////////////////////////////////////////////// | |
| void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) { | |
| struct ggml_tensor * src0 = tensor->src0; | |
| struct ggml_tensor * src1 = tensor->src1; | |
| switch (tensor->op) { | |
| case GGML_OP_DUP: | |
| { | |
| if (src0->grad) { | |
| src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); | |
| } | |
| } break; | |
| case GGML_OP_ADD: | |
| { | |
| if (src0->grad) { | |
| src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); | |
| } | |
| if (src1->grad) { | |
| src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace); | |
| } | |
| } break; | |
| case GGML_OP_SUB: | |
| { | |
| if (src0->grad) { | |
| src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); | |
| } | |
| if (src1->grad) { | |
| src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace); | |
| } | |
| } break; | |
| case GGML_OP_MUL: | |
| { | |
| if (src0->grad) { | |
| src0->grad = | |
| ggml_add_impl(ctx, | |
| src0->grad, | |
| ggml_mul(ctx, src1, tensor->grad), | |
| inplace); | |
| } | |
| if (src1->grad) { | |
| src1->grad = | |
| ggml_add_impl(ctx, | |
| src1->grad, | |
| ggml_mul(ctx, src0, tensor->grad), | |
| inplace); | |
| } | |
| } break; | |
| case GGML_OP_DIV: | |
| { | |
| if (src0->grad) { | |
| src0->grad = | |
| ggml_add_impl(ctx, | |
| src0->grad, | |
| ggml_div(ctx, tensor->grad, src1), | |
| inplace); | |
| } | |
| if (src1->grad) { | |
| src1->grad = | |
| ggml_sub_impl(ctx, | |
| src1->grad, | |
| ggml_mul(ctx, | |
| tensor->grad, | |
| ggml_div(ctx, tensor, src1)), | |
| inplace); | |
| } | |
| } break; | |
| case GGML_OP_SQR: | |
| { | |
| if (src0->grad) { | |
| src0->grad = | |
| ggml_add_impl(ctx, | |
| src0->grad, | |
| ggml_mul(ctx, | |
| ggml_mul(ctx, src0, tensor->grad), | |
| ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)), | |
| inplace); | |
| } | |
| } break; | |
| case GGML_OP_SQRT: | |
| { | |
| if (src0->grad) { | |
| src0->grad = | |
| ggml_add_impl(ctx, | |
| src0->grad, | |
| ggml_div(ctx, | |
| ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor), | |
| tensor), | |
| inplace); | |
| } | |
| } break; | |
| case GGML_OP_SUM: | |
| { | |
| if (src0->grad) { | |
| src0->grad = | |
| ggml_add_impl(ctx, | |
| src0->grad, | |
| ggml_repeat(ctx, tensor->grad, src0->grad), | |
| inplace); | |
| } | |
| } break; | |
| case GGML_OP_MEAN: | |
| { | |
| assert(false); // TODO: implement | |
| } break; | |
| case GGML_OP_REPEAT: | |
| { | |
| if (src0->grad) { | |
| src0->grad = | |
| ggml_add_impl(ctx, | |
| src0->grad, | |
| ggml_sum(ctx, tensor->grad), | |
| inplace); | |
| } | |
| } break; | |
| case GGML_OP_ABS: | |
| { | |
| if (src0->grad) { | |
| src0->grad = | |
| ggml_add_impl(ctx, | |
| src0->grad, | |
| ggml_mul(ctx, | |
| ggml_sgn(ctx, src0), | |
| tensor->grad), | |
| inplace); | |
| } | |
| } break; | |
| case GGML_OP_SGN: | |
| { | |
| if (src0->grad) { | |
| // noop | |
| } | |
| } break; | |
| case GGML_OP_NEG: | |
| { | |
| if (src0->grad) { | |
| src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace); | |
| } | |
| } break; | |
| case GGML_OP_STEP: | |
| { | |
| if (src0->grad) { | |
| // noop | |
| } | |
| } break; | |
| case GGML_OP_RELU: | |
| { | |
| if (src0->grad) { | |
| src0->grad = ggml_sub_impl(ctx, | |
| src0->grad, | |
| ggml_mul(ctx, | |
| ggml_step(ctx, src0), | |
| tensor->grad), | |
| inplace); | |
| } | |
| } break; | |
| case GGML_OP_GELU: | |
| { | |
| assert(false); // TODO: not implemented | |
| } break; | |
| case GGML_OP_NORM: | |
| { | |
| assert(false); // TODO: not implemented | |
| } break; | |
| case GGML_OP_MUL_MAT: | |
| { | |
| if (src0->grad) { | |
| // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad); | |
| assert(false); | |
| } | |
| if (src1->grad) { | |
| src1->grad = | |
| ggml_add_impl(ctx, | |
| src1->grad, | |
| // TODO: fix transpose, the node will break the graph connections | |
| ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad), | |
| inplace); | |
| } | |
| } break; | |
| case GGML_OP_SCALE: | |
| { | |
| GGML_ASSERT(false); // TODO: not implemented | |
| } break; | |
| case GGML_OP_CPY: | |
| { | |
| GGML_ASSERT(false); // TODO: not implemented | |
| } break; | |
| case GGML_OP_RESHAPE: | |
| { | |
| GGML_ASSERT(false); // TODO: not implemented | |
| } break; | |
| case GGML_OP_VIEW: | |
| { | |
| GGML_ASSERT(false); // not supported | |
| } break; | |
| case GGML_OP_PERMUTE: | |
| { | |
| GGML_ASSERT(false); // TODO: not implemented | |
| } break; | |
| case GGML_OP_TRANSPOSE: | |
| { | |
| GGML_ASSERT(false); // TODO: not implemented | |
| } break; | |
| case GGML_OP_GET_ROWS: | |
| { | |
| GGML_ASSERT(false); // TODO: not implemented | |
| } break; | |
| case GGML_OP_DIAG_MASK_INF: | |
| { | |
| GGML_ASSERT(false); // TODO: not implemented | |
| } break; | |
| case GGML_OP_SOFT_MAX: | |
| { | |
| GGML_ASSERT(false); // TODO: not implemented | |
| } break; | |
| case GGML_OP_ROPE: | |
| { | |
| GGML_ASSERT(false); // TODO: not implemented | |
| } break; | |
| case GGML_OP_CONV_1D_1S: | |
| { | |
| GGML_ASSERT(false); // TODO: not implemented | |
| } break; | |
| case GGML_OP_CONV_1D_2S: | |
| { | |
| GGML_ASSERT(false); // TODO: not implemented | |
| } break; | |
| case GGML_OP_FLASH_ATTN: | |
| { | |
| GGML_ASSERT(false); // not supported | |
| } break; | |
| case GGML_OP_FLASH_FF: | |
| { | |
| GGML_ASSERT(false); // not supported | |
| } break; | |
| case GGML_OP_NONE: | |
| { | |
| // nop | |
| } break; | |
| case GGML_OP_COUNT: | |
| { | |
| GGML_ASSERT(false); | |
| } break; | |
| }; | |
| } | |
| void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) { | |
| if (node->grad == NULL) { | |
| // this usually happens when we generate intermediate nodes from constants in the backward pass | |
| // it can also happen during forward pass, if the user performs computations with constants | |
| if (node->op != GGML_OP_NONE) { | |
| //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op); | |
| } | |
| } | |
| // check if already visited | |
| for (int i = 0; i < cgraph->n_nodes; i++) { | |
| if (cgraph->nodes[i] == node) { | |
| return; | |
| } | |
| } | |
| for (int i = 0; i < cgraph->n_leafs; i++) { | |
| if (cgraph->leafs[i] == node) { | |
| return; | |
| } | |
| } | |
| if (node->src0) { | |
| ggml_visit_parents(cgraph, node->src0); | |
| } | |
| if (node->src1) { | |
| ggml_visit_parents(cgraph, node->src1); | |
| } | |
| for (int i = 0; i < GGML_MAX_OPT; ++i) { | |
| if (node->opt[i]) { | |
| ggml_visit_parents(cgraph, node->opt[i]); | |
| } | |
| } | |
| if (node->op == GGML_OP_NONE && node->grad == NULL) { | |
| // reached a leaf node, not part of the gradient graph (e.g. a constant) | |
| assert(cgraph->n_leafs < GGML_MAX_NODES); | |
| cgraph->leafs[cgraph->n_leafs] = node; | |
| cgraph->n_leafs++; | |
| } else { | |
| assert(cgraph->n_nodes < GGML_MAX_NODES); | |
| cgraph->nodes[cgraph->n_nodes] = node; | |
| cgraph->grads[cgraph->n_nodes] = node->grad; | |
| cgraph->n_nodes++; | |
| } | |
| } | |
| void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) { | |
| if (!expand) { | |
| cgraph->n_nodes = 0; | |
| cgraph->n_leafs = 0; | |
| } | |
| const int n0 = cgraph->n_nodes; | |
| UNUSED(n0); | |
| ggml_visit_parents(cgraph, tensor); | |
| const int n_new = cgraph->n_nodes - n0; | |
| GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new); | |
| if (n_new > 0) { | |
| // the last added node should always be starting point | |
| assert(cgraph->nodes[cgraph->n_nodes - 1] == tensor); | |
| } | |
| } | |
| void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) { | |
| ggml_build_forward_impl(cgraph, tensor, true); | |
| } | |
| struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) { | |
| struct ggml_cgraph result = { | |
| /*.n_nodes =*/ 0, | |
| /*.n_leafs =*/ 0, | |
| /*.n_threads =*/ 0, | |
| /*.work_size =*/ 0, | |
| /*.work =*/ NULL, | |
| /*.nodes =*/ { NULL }, | |
| /*.grads =*/ { NULL }, | |
| /*.leafs =*/ { NULL }, | |
| /*.perf_runs =*/ 0, | |
| /*.perf_cycles =*/ 0, | |
| /*.perf_time_us =*/ 0, | |
| }; | |
| ggml_build_forward_impl(&result, tensor, false); | |
| return result; | |
| } | |
| struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) { | |
| struct ggml_cgraph result = *gf; | |
| assert(gf->n_nodes > 0); | |
| // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph | |
| if (keep) { | |
| for (int i = 0; i < gf->n_nodes; i++) { | |
| struct ggml_tensor * node = gf->nodes[i]; | |
| if (node->grad) { | |
| node->grad = ggml_dup_tensor(ctx, node); | |
| gf->grads[i] = node->grad; | |
| } | |
| } | |
| } | |
| for (int i = gf->n_nodes - 1; i >= 0; i--) { | |
| struct ggml_tensor * node = gf->nodes[i]; | |
| // because we detached the grad nodes from the original graph, we can afford inplace operations | |
| if (node->grad) { | |
| ggml_compute_backward(ctx, node, keep); | |
| } | |
| } | |
| for (int i = gf->n_nodes - 1; i >= 0; i--) { | |
| struct ggml_tensor * node = gf->nodes[i]; | |
| if (node->is_param) { | |
| GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node); | |
| ggml_build_forward_impl(&result, node->grad, true); | |
| } | |
| } | |
| return result; | |
| } | |
| // | |
| // thread data | |
| // | |
| // synchronization is done via busy loops | |
| // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops | |
| // | |
| //#include <os/lock.h> | |
| //typedef os_unfair_lock ggml_lock_t; | |
| // | |
| //#define ggml_lock_init(x) UNUSED(x) | |
| //#define ggml_lock_destroy(x) UNUSED(x) | |
| //#define ggml_lock_lock os_unfair_lock_lock | |
| //#define ggml_lock_unlock os_unfair_lock_unlock | |
| // | |
| //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT | |
| typedef int ggml_lock_t; | |
| //typedef pthread_spinlock_t ggml_lock_t; | |
| //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE) | |
| //#define ggml_lock_destroy pthread_spin_destroy | |
| //#define ggml_lock_lock pthread_spin_lock | |
| //#define ggml_lock_unlock pthread_spin_unlock | |
| typedef int ggml_lock_t; | |
| struct ggml_compute_state_shared { | |
| ggml_lock_t spin; | |
| int n_threads; | |
| // synchronization primitives | |
| atomic_int n_ready; | |
| atomic_bool has_work; | |
| atomic_bool stop; // stop all threads | |
| }; | |
| struct ggml_compute_state { | |
| pthread_t thrd; | |
| struct ggml_compute_params params; | |
| struct ggml_tensor * node; | |
| struct ggml_compute_state_shared * shared; | |
| }; | |
| // function used by each compute thread | |
| void * ggml_graph_compute_one(void * data) { | |
| struct ggml_compute_state * state = (struct ggml_compute_state *) data; | |
| ggml_compute_forward(&state->params, state->node); | |
| return NULL; | |
| } | |
| thread_ret_t ggml_graph_compute_thread(void * data) { | |
| struct ggml_compute_state * state = (struct ggml_compute_state *) data; | |
| const int n_threads = state->shared->n_threads; | |
| while (true) { | |
| if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) { | |
| atomic_store(&state->shared->has_work, false); | |
| } else { | |
| while (atomic_load(&state->shared->has_work)) { | |
| if (atomic_load(&state->shared->stop)) { | |
| return 0; | |
| } | |
| ggml_lock_lock (&state->shared->spin); | |
| ggml_lock_unlock(&state->shared->spin); | |
| } | |
| } | |
| atomic_fetch_sub(&state->shared->n_ready, 1); | |
| // wait for work | |
| while (!atomic_load(&state->shared->has_work)) { | |
| if (atomic_load(&state->shared->stop)) { | |
| return 0; | |
| } | |
| ggml_lock_lock (&state->shared->spin); | |
| ggml_lock_unlock(&state->shared->spin); | |
| } | |
| // check if we should stop | |
| if (atomic_load(&state->shared->stop)) { | |
| break; | |
| } | |
| if (state->node) { | |
| ggml_compute_forward(&state->params, state->node); | |
| state->node = NULL; | |
| } else { | |
| break; | |
| } | |
| } | |
| return 0; | |
| } | |
| void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) { | |
| if (cgraph->n_threads <= 0) { | |
| cgraph->n_threads = 8; | |
| } | |
| const int n_threads = cgraph->n_threads; | |
| struct ggml_compute_state_shared state_shared = { | |
| /*.spin =*/ GGML_LOCK_INITIALIZER, | |
| /*.n_threads =*/ n_threads, | |
| /*.n_ready =*/ 0, | |
| /*.has_work =*/ false, | |
| /*.stop =*/ false, | |
| }; | |
| struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL; | |
| // create thread pool | |
| if (n_threads > 1) { | |
| ggml_lock_init(&state_shared.spin); | |
| atomic_store(&state_shared.has_work, true); | |
| for (int j = 0; j < n_threads - 1; j++) { | |
| workers[j] = (struct ggml_compute_state) { | |
| .thrd = 0, | |
| .params = { | |
| .type = GGML_TASK_COMPUTE, | |
| .ith = j + 1, | |
| .nth = n_threads, | |
| .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0, | |
| .wdata = cgraph->work ? cgraph->work->data : NULL, | |
| }, | |
| .node = NULL, | |
| .shared = &state_shared, | |
| }; | |
| int rc = pthread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]); | |
| assert(rc == 0); | |
| UNUSED(rc); | |
| } | |
| } | |
| // initialize tasks + work buffer | |
| { | |
| size_t work_size = 0; | |
| // thread scheduling for the different operations | |
| for (int i = 0; i < cgraph->n_nodes; i++) { | |
| struct ggml_tensor * node = cgraph->nodes[i]; | |
| switch (node->op) { | |
| case GGML_OP_DUP: | |
| { | |
| node->n_tasks = 1; | |
| } break; | |
| case GGML_OP_ADD: | |
| { | |
| node->n_tasks = n_threads; | |
| } break; | |
| case GGML_OP_SUB: | |
| case GGML_OP_MUL: | |
| case GGML_OP_DIV: | |
| case GGML_OP_SQR: | |
| case GGML_OP_SQRT: | |
| case GGML_OP_SUM: | |
| case GGML_OP_MEAN: | |
| case GGML_OP_REPEAT: | |
| case GGML_OP_ABS: | |
| case GGML_OP_SGN: | |
| case GGML_OP_NEG: | |
| case GGML_OP_STEP: | |
| case GGML_OP_RELU: | |
| { | |
| node->n_tasks = 1; | |
| } break; | |
| case GGML_OP_GELU: | |
| { | |
| node->n_tasks = n_threads; | |
| } break; | |
| case GGML_OP_NORM: | |
| { | |
| node->n_tasks = n_threads; | |
| } break; | |
| case GGML_OP_MUL_MAT: | |
| { | |
| // TODO: use different scheduling for different matrix sizes | |
| node->n_tasks = n_threads; | |
| size_t cur = 0; | |
| // TODO: better way to determine if the matrix is transposed | |
| if (node->src0->nb[1] < node->src0->nb[0]) { | |
| cur = ggml_nbytes(node)*node->n_tasks; // TODO: this can become (n_tasks-1) | |
| } else { | |
| if (node->src0->type == GGML_TYPE_F16 && | |
| node->src1->type == GGML_TYPE_F32) { | |
| if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { | |
| cur = sizeof(float)*(node->src0->ne[0]*node->src0->ne[1]); | |
| } else { | |
| cur = sizeof(ggml_fp16_t)*ggml_nelements(node->src1); | |
| } | |
| cur = sizeof(ggml_fp16_t)*ggml_nelements(node->src1); | |
| } else if (node->src0->type == GGML_TYPE_F32 && | |
| node->src1->type == GGML_TYPE_F32) { | |
| cur = 0; | |
| } else { | |
| GGML_ASSERT(false); | |
| } | |
| } | |
| work_size = MAX(work_size, cur); | |
| } break; | |
| case GGML_OP_SCALE: | |
| { | |
| node->n_tasks = n_threads; | |
| } break; | |
| case GGML_OP_CPY: | |
| case GGML_OP_RESHAPE: | |
| case GGML_OP_VIEW: | |
| case GGML_OP_PERMUTE: | |
| case GGML_OP_TRANSPOSE: | |
| case GGML_OP_GET_ROWS: | |
| case GGML_OP_DIAG_MASK_INF: | |
| { | |
| node->n_tasks = 1; | |
| } break; | |
| case GGML_OP_SOFT_MAX: | |
| { | |
| node->n_tasks = n_threads; | |
| } break; | |
| case GGML_OP_ROPE: | |
| { | |
| node->n_tasks = 1; | |
| } break; | |
| case GGML_OP_CONV_1D_1S: | |
| case GGML_OP_CONV_1D_2S: | |
| { | |
| node->n_tasks = n_threads; | |
| GGML_ASSERT(node->src0->ne[3] == 1); | |
| GGML_ASSERT(node->src1->ne[2] == 1); | |
| GGML_ASSERT(node->src1->ne[3] == 1); | |
| size_t cur = 0; | |
| const int nk = node->src0->ne[0]; | |
| if (node->src0->type == GGML_TYPE_F16 && | |
| node->src1->type == GGML_TYPE_F32) { | |
| cur = sizeof(ggml_fp16_t)*( | |
| nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] + | |
| ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1] | |
| ); | |
| } else if (node->src0->type == GGML_TYPE_F32 && | |
| node->src1->type == GGML_TYPE_F32) { | |
| cur = sizeof(float)*( | |
| nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] + | |
| ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1] | |
| ); | |
| } else { | |
| GGML_ASSERT(false); | |
| } | |
| work_size = MAX(work_size, cur); | |
| } break; | |
| case GGML_OP_FLASH_ATTN: | |
| { | |
| node->n_tasks = n_threads; | |
| size_t cur = 0; | |
| if (node->src1->type == GGML_TYPE_F32) { | |
| cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1) | |
| cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2 | |
| } | |
| if (node->src1->type == GGML_TYPE_F16) { | |
| cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1) | |
| cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2 | |
| } | |
| work_size = MAX(work_size, cur); | |
| } break; | |
| case GGML_OP_FLASH_FF: | |
| { | |
| node->n_tasks = n_threads; | |
| size_t cur = 0; | |
| if (node->src1->type == GGML_TYPE_F32) { | |
| cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1) | |
| cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2 | |
| } | |
| if (node->src1->type == GGML_TYPE_F16) { | |
| cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1) | |
| cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2 | |
| } | |
| work_size = MAX(work_size, cur); | |
| } break; | |
| case GGML_OP_NONE: | |
| { | |
| node->n_tasks = 1; | |
| } break; | |
| case GGML_OP_COUNT: | |
| { | |
| assert(false); | |
| } break; | |
| }; | |
| } | |
| if (cgraph->work != NULL && work_size > cgraph->work_size) { | |
| assert(false); // TODO: better handling | |
| } | |
| if (work_size > 0 && cgraph->work == NULL) { | |
| cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1); | |
| GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size); | |
| cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size); | |
| } | |
| } | |
| const int64_t perf_start_cycles = ggml_perf_cycles(); | |
| const int64_t perf_start_time_us = ggml_perf_time_us(); | |
| for (int i = 0; i < cgraph->n_nodes; i++) { | |
| GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes); | |
| struct ggml_tensor * node = cgraph->nodes[i]; | |
| // TODO: this could be used to avoid unnecessary computations, but it needs to be improved | |
| //if (node->grad == NULL && node->perf_runs > 0) { | |
| // continue; | |
| //} | |
| const int64_t perf_node_start_cycles = ggml_perf_cycles(); | |
| const int64_t perf_node_start_time_us = ggml_perf_time_us(); | |
| // INIT | |
| struct ggml_compute_params params = { | |
| /*.type =*/ GGML_TASK_INIT, | |
| /*.ith =*/ 0, | |
| /*.nth =*/ node->n_tasks, | |
| /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0, | |
| /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL, | |
| }; | |
| ggml_compute_forward(¶ms, node); | |
| // COMPUTE | |
| if (node->n_tasks > 1) { | |
| if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) { | |
| atomic_store(&state_shared.has_work, false); | |
| } | |
| while (atomic_load(&state_shared.has_work)) { | |
| ggml_lock_lock (&state_shared.spin); | |
| ggml_lock_unlock(&state_shared.spin); | |
| } | |
| // launch thread pool | |
| for (int j = 0; j < n_threads - 1; j++) { | |
| workers[j].params = (struct ggml_compute_params) { | |
| .type = GGML_TASK_COMPUTE, | |
| .ith = j + 1, | |
| .nth = n_threads, | |
| .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0, | |
| .wdata = cgraph->work ? cgraph->work->data : NULL, | |
| }; | |
| workers[j].node = node; | |
| } | |
| atomic_fetch_sub(&state_shared.n_ready, 1); | |
| while (atomic_load(&state_shared.n_ready) > 0) { | |
| ggml_lock_lock (&state_shared.spin); | |
| ggml_lock_unlock(&state_shared.spin); | |
| } | |
| atomic_store(&state_shared.has_work, true); | |
| } | |
| params.type = GGML_TASK_COMPUTE; | |
| ggml_compute_forward(¶ms, node); | |
| // wait for thread pool | |
| if (node->n_tasks > 1) { | |
| if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) { | |
| atomic_store(&state_shared.has_work, false); | |
| } | |
| while (atomic_load(&state_shared.has_work)) { | |
| ggml_lock_lock (&state_shared.spin); | |
| ggml_lock_unlock(&state_shared.spin); | |
| } | |
| atomic_fetch_sub(&state_shared.n_ready, 1); | |
| while (atomic_load(&state_shared.n_ready) != 0) { | |
| ggml_lock_lock (&state_shared.spin); | |
| ggml_lock_unlock(&state_shared.spin); | |
| } | |
| } | |
| // FINALIZE | |
| if (node->n_tasks > 1) { | |
| if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) { | |
| atomic_store(&state_shared.has_work, false); | |
| } | |
| while (atomic_load(&state_shared.has_work)) { | |
| ggml_lock_lock (&state_shared.spin); | |
| ggml_lock_unlock(&state_shared.spin); | |
| } | |
| // launch thread pool | |
| for (int j = 0; j < n_threads - 1; j++) { | |
| workers[j].params = (struct ggml_compute_params) { | |
| .type = GGML_TASK_FINALIZE, | |
| .ith = j + 1, | |
| .nth = n_threads, | |
| .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0, | |
| .wdata = cgraph->work ? cgraph->work->data : NULL, | |
| }; | |
| workers[j].node = node; | |
| } | |
| atomic_fetch_sub(&state_shared.n_ready, 1); | |
| while (atomic_load(&state_shared.n_ready) > 0) { | |
| ggml_lock_lock (&state_shared.spin); | |
| ggml_lock_unlock(&state_shared.spin); | |
| } | |
| atomic_store(&state_shared.has_work, true); | |
| } | |
| params.type = GGML_TASK_FINALIZE; | |
| ggml_compute_forward(¶ms, node); | |
| // wait for thread pool | |
| if (node->n_tasks > 1) { | |
| if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) { | |
| atomic_store(&state_shared.has_work, false); | |
| } | |
| while (atomic_load(&state_shared.has_work)) { | |
| ggml_lock_lock (&state_shared.spin); | |
| ggml_lock_unlock(&state_shared.spin); | |
| } | |
| atomic_fetch_sub(&state_shared.n_ready, 1); | |
| while (atomic_load(&state_shared.n_ready) != 0) { | |
| ggml_lock_lock (&state_shared.spin); | |
| ggml_lock_unlock(&state_shared.spin); | |
| } | |
| } | |
| // performance stats (node) | |
| { | |
| int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles; | |
| int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us; | |
| node->perf_runs++; | |
| node->perf_cycles += perf_cycles_cur; | |
| node->perf_time_us += perf_time_us_cur; | |
| } | |
| } | |
| // join thread pool | |
| if (n_threads > 1) { | |
| atomic_store(&state_shared.stop, true); | |
| atomic_store(&state_shared.has_work, true); | |
| for (int j = 0; j < n_threads - 1; j++) { | |
| int rc = pthread_join(workers[j].thrd, NULL); | |
| assert(rc == 0); | |
| UNUSED(rc); | |
| } | |
| ggml_lock_destroy(&state_shared.spin); | |
| } | |
| // performance stats (graph) | |
| { | |
| int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles; | |
| int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us; | |
| cgraph->perf_runs++; | |
| cgraph->perf_cycles += perf_cycles_cur; | |
| cgraph->perf_time_us += perf_time_us_cur; | |
| GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n", | |
| __func__, cgraph->perf_runs, | |
| (double) perf_cycles_cur / (double) ggml_cycles_per_ms(), | |
| (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs, | |
| (double) perf_time_us_cur / 1000.0, | |
| (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs); | |
| } | |
| } | |
| void ggml_graph_reset(struct ggml_cgraph * cgraph) { | |
| for (int i = 0; i < cgraph->n_nodes; i++) { | |
| struct ggml_tensor * grad = cgraph->grads[i]; | |
| if (grad) { | |
| ggml_set_zero(grad); | |
| } | |
| } | |
| } | |
| void ggml_graph_print(const struct ggml_cgraph * cgraph) { | |
| int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0}; | |
| GGML_PRINT("=== GRAPH ===\n"); | |
| GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads); | |
| GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size); | |
| GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes); | |
| for (int i = 0; i < cgraph->n_nodes; i++) { | |
| struct ggml_tensor * node = cgraph->nodes[i]; | |
| perf_total_per_op_us[node->op] += node->perf_time_us; | |
| GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n", | |
| i, | |
| node->ne[0], node->ne[1], node->ne[2], | |
| GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs, | |
| (double) node->perf_cycles / (double) ggml_cycles_per_ms(), | |
| (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs, | |
| (double) node->perf_time_us / 1000.0, | |
| (double) node->perf_time_us / 1000.0 / node->perf_runs); | |
| } | |
| GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs); | |
| for (int i = 0; i < cgraph->n_leafs; i++) { | |
| struct ggml_tensor * node = cgraph->leafs[i]; | |
| GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n", | |
| i, | |
| node->ne[0], node->ne[1], | |
| GGML_OP_LABEL[node->op]); | |
| } | |
| for (int i = 0; i < GGML_OP_COUNT; i++) { | |
| GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0); | |
| } | |
| GGML_PRINT("========================================\n"); | |
| } | |
| // check if node is part of the graph | |
| bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { | |
| if (cgraph == NULL) { | |
| return true; | |
| } | |
| for (int i = 0; i < cgraph->n_nodes; i++) { | |
| if (cgraph->nodes[i] == node) { | |
| return true; | |
| } | |
| } | |
| return false; | |
| } | |
| struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { | |
| for (int i = 0; i < cgraph->n_nodes; i++) { | |
| struct ggml_tensor * parent = cgraph->nodes[i]; | |
| if (parent->grad == node) { | |
| return parent; | |
| } | |
| } | |
| return NULL; | |
| } | |
| void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) { | |
| char color[16]; | |
| FILE * fp = fopen(filename, "w"); | |
| assert(fp); | |
| fprintf(fp, "digraph G {\n"); | |
| fprintf(fp, " newrank = true;\n"); | |
| fprintf(fp, " rankdir = LR;\n"); | |
| for (int i = 0; i < gb->n_nodes; i++) { | |
| struct ggml_tensor * node = gb->nodes[i]; | |
| if (ggml_graph_get_parent(gb, node) != NULL) { | |
| continue; | |
| } | |
| if (node->is_param) { | |
| snprintf(color, sizeof(color), "yellow"); | |
| } else if (node->grad) { | |
| if (ggml_graph_find(gf, node)) { | |
| snprintf(color, sizeof(color), "green"); | |
| } else { | |
| snprintf(color, sizeof(color), "lightblue"); | |
| } | |
| } else { | |
| snprintf(color, sizeof(color), "white"); | |
| } | |
| fprintf(fp, " \"%p\" [ \ | |
| style = filled; fillcolor = %s; shape = record; \ | |
| label=\"%d [%d, %d] | <x>%s", | |
| (void *) node, color, | |
| i, node->ne[0], node->ne[1], | |
| GGML_OP_SYMBOL[node->op]); | |
| if (node->grad) { | |
| fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]); | |
| } else { | |
| fprintf(fp, "\"; ]\n"); | |
| } | |
| } | |
| for (int i = 0; i < gb->n_leafs; i++) { | |
| struct ggml_tensor * node = gb->leafs[i]; | |
| snprintf(color, sizeof(color), "pink"); | |
| if (ggml_nelements(node) == 1) { | |
| fprintf(fp, " \"%p\" [ \ | |
| style = filled; fillcolor = %s; shape = record; \ | |
| label=\"<x>%.1e\"; ]\n", | |
| (void *) node, color, ggml_get_f32_1d(node, 0)); | |
| } else { | |
| fprintf(fp, " \"%p\" [ \ | |
| style = filled; fillcolor = %s; shape = record; \ | |
| label=\"<x>CONST %d [%d, %d]\"; ]\n", | |
| (void *) node, color, | |
| i, node->ne[0], node->ne[1]); | |
| } | |
| } | |
| for (int i = 0; i < gb->n_nodes; i++) { | |
| struct ggml_tensor * node = gb->nodes[i]; | |
| struct ggml_tensor * parent = ggml_graph_get_parent(gb, node); | |
| if (node->src0) { | |
| struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0); | |
| fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n", | |
| parent0 ? (void *) parent0 : (void *) node->src0, | |
| parent0 ? "g" : "x", | |
| parent ? (void *) parent : (void *) node, | |
| parent ? "g" : "x", | |
| parent ? "empty" : "vee", | |
| parent ? "dashed" : "solid"); | |
| } | |
| if (node->src1) { | |
| struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1); | |
| fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n", | |
| parent1 ? (void *) parent1 : (void *) node->src1, | |
| parent1 ? "g" : "x", | |
| parent ? (void *) parent : (void *) node, | |
| parent ? "g" : "x", | |
| parent ? "empty" : "vee", | |
| parent ? "dashed" : "solid"); | |
| } | |
| } | |
| for (int i = 0; i < gb->n_leafs; i++) { | |
| struct ggml_tensor * node = gb->leafs[i]; | |
| if (node->src0) { | |
| fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n", | |
| (void *) node->src0, "x", | |
| (void *) node, "x"); | |
| } | |
| if (node->src1) { | |
| fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n", | |
| (void *) node->src1, "x", | |
| (void *) node, "x"); | |
| } | |
| } | |
| fprintf(fp, "}\n"); | |
| fclose(fp); | |
| GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename); | |
| } | |
| //////////////////////////////////////////////////////////////////////////////// | |
| void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) { | |
| int i = 0; | |
| for (int p = 0; p < np; ++p) { | |
| const int ne = ggml_nelements(ps[p]) ; | |
| // TODO: add function to set tensor from array | |
| for (int j = 0; j < ne; ++j) { | |
| ggml_set_f32_1d(ps[p], j, x[i++]); | |
| } | |
| } | |
| } | |
| void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) { | |
| int i = 0; | |
| for (int p = 0; p < np; ++p) { | |
| const int ne = ggml_nelements(ps[p]) ; | |
| // TODO: add function to get all elements at once | |
| for (int j = 0; j < ne; ++j) { | |
| x[i++] = ggml_get_f32_1d(ps[p], j); | |
| } | |
| } | |
| } | |
| void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) { | |
| int i = 0; | |
| for (int p = 0; p < np; ++p) { | |
| const int ne = ggml_nelements(ps[p]) ; | |
| // TODO: add function to get all elements at once | |
| for (int j = 0; j < ne; ++j) { | |
| g[i++] = ggml_get_f32_1d(ps[p]->grad, j); | |
| } | |
| } | |
| } | |
| // | |
| // ADAM | |
| // | |
| // ref: https://arxiv.org/pdf/1412.6980.pdf | |
| // | |
| enum ggml_opt_result ggml_opt_adam( | |
| struct ggml_context * ctx, | |
| struct ggml_opt_params params, | |
| struct ggml_tensor * f, | |
| struct ggml_cgraph * gf, | |
| struct ggml_cgraph * gb) { | |
| assert(ggml_is_scalar(f)); | |
| gf->n_threads = params.n_threads; | |
| gb->n_threads = params.n_threads; | |
| // these will store the parameters we want to optimize | |
| struct ggml_tensor * ps[GGML_MAX_PARAMS]; | |
| int np = 0; | |
| int nx = 0; | |
| for (int i = 0; i < gf->n_nodes; ++i) { | |
| if (gf->nodes[i]->is_param) { | |
| GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op); | |
| assert(np < GGML_MAX_PARAMS); | |
| ps[np++] = gf->nodes[i]; | |
| nx += ggml_nelements(gf->nodes[i]); | |
| } | |
| } | |
| // constants | |
| const float alpha = params.adam.alpha; | |
| const float beta1 = params.adam.beta1; | |
| const float beta2 = params.adam.beta2; | |
| const float eps = params.adam.eps; | |
| float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters | |
| float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient | |
| float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared | |
| float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment | |
| float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment | |
| float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat | |
| float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat | |
| float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values | |
| // initialize | |
| ggml_vec_set_f32(nx, m, 0.0f); | |
| ggml_vec_set_f32(nx, v, 0.0f); | |
| // update view | |
| ggml_opt_get_params(np, ps, x); | |
| // compute the function value | |
| ggml_graph_reset (gf); | |
| ggml_set_f32 (f->grad, 1.0f); | |
| ggml_graph_compute(ctx, gb); | |
| float fx_prev = ggml_get_f32_1d(f, 0); | |
| if (pf) { | |
| pf[0] = fx_prev; | |
| } | |
| int n_no_improvement = 0; | |
| float fx_best = fx_prev; | |
| // run the optimizer | |
| for (int t = 0; t < params.adam.n_iter; ++t) { | |
| GGML_PRINT_DEBUG ("=== iter %d ===\n", t); | |
| GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0)); | |
| GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0)); | |
| GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0)); | |
| for (int i = 0; i < np; ++i) { | |
| GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i, | |
| ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0)); | |
| } | |
| const int64_t t_start_wall = ggml_time_us(); | |
| const int64_t t_start_cpu = ggml_cycles(); | |
| UNUSED(t_start_wall); | |
| UNUSED(t_start_cpu); | |
| { | |
| // update the gradient | |
| ggml_opt_get_grad(np, ps, g1); | |
| // m_t = beta1*m_t-1 + (1 - beta1)*g_t | |
| ggml_vec_scale_f32(nx, m, beta1); | |
| ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1); | |
| // g2 = g1^2 | |
| ggml_vec_sqr_f32 (nx, g2, g1); | |
| // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2 | |
| ggml_vec_scale_f32(nx, v, beta2); | |
| ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2); | |
| // m^hat = m_t / (1 - beta1^t) | |
| // v^hat = v_t / (1 - beta2^t) | |
| // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps) | |
| ggml_vec_cpy_f32 (nx, mh, m); | |
| ggml_vec_cpy_f32 (nx, vh, v); | |
| ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1))); | |
| ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1))); | |
| ggml_vec_sqrt_f32 (nx, vh, vh); | |
| ggml_vec_acc1_f32 (nx, vh, eps); | |
| ggml_vec_div_f32 (nx, mh, mh, vh); | |
| ggml_vec_sub_f32 (nx, x, x, mh); | |
| // update the parameters | |
| ggml_opt_set_params(np, ps, x); | |
| } | |
| ggml_graph_reset (gf); | |
| ggml_set_f32 (f->grad, 1.0f); | |
| ggml_graph_compute(ctx, gb); | |
| const float fx = ggml_get_f32_1d(f, 0); | |
| // check convergence | |
| if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) { | |
| GGML_PRINT_DEBUG("converged\n"); | |
| return GGML_OPT_OK; | |
| } | |
| // delta-based convergence test | |
| if (pf != NULL) { | |
| // need at least params.past iterations to start checking for convergence | |
| if (params.past <= t) { | |
| const float rate = (pf[t%params.past] - fx)/fx; | |
| if (fabs(rate) < params.delta) { | |
| return GGML_OPT_OK; | |
| } | |
| } | |
| pf[t%params.past] = fx; | |
| } | |
| // check for improvement | |
| if (params.max_no_improvement > 0) { | |
| if (fx_best > fx) { | |
| fx_best = fx; | |
| n_no_improvement = 0; | |
| } else { | |
| ++n_no_improvement; | |
| if (n_no_improvement >= params.max_no_improvement) { | |
| return GGML_OPT_OK; | |
| } | |
| } | |
| } | |
| fx_prev = fx; | |
| { | |
| const int64_t t_end_cpu = ggml_cycles(); | |
| GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC); | |
| UNUSED(t_end_cpu); | |
| const int64_t t_end_wall = ggml_time_us(); | |
| GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6); | |
| UNUSED(t_end_wall); | |
| } | |
| } | |
| return GGML_OPT_DID_NOT_CONVERGE; | |
| } | |
| // | |
| // L-BFGS | |
| // | |
| // the L-BFGS implementation below is based on the following implementation: | |
| // | |
| // https://github.com/chokkan/liblbfgs | |
| // | |
| struct ggml_lbfgs_iteration_data { | |
| float alpha; | |
| float ys; | |
| float * s; | |
| float * y; | |
| }; | |
| static enum ggml_opt_result linesearch_backtracking( | |
| struct ggml_context * ctx, | |
| const struct ggml_opt_params * params, | |
| int nx, | |
| float * x, | |
| float * fx, | |
| float * g, | |
| float * d, | |
| float * step, | |
| const float * xp, | |
| struct ggml_tensor * f, | |
| struct ggml_cgraph * gf, | |
| struct ggml_cgraph * gb, | |
| const int np, | |
| struct ggml_tensor * ps[]) { | |
| int count = 0; | |
| float width = 0.0f; | |
| float dg = 0.0f; | |
| float finit = 0.0f; | |
| float dginit = 0.0f; | |
| float dgtest = 0.0f; | |
| const float dec = 0.5f; | |
| const float inc = 2.1f; | |
| if (*step <= 0.) { | |
| return GGML_LINESEARCH_INVALID_PARAMETERS; | |
| } | |
| // compute the initial gradient in the search direction | |
| ggml_vec_dot_f32(nx, &dginit, g, d); | |
| // make sure that d points to a descent direction | |
| if (0 < dginit) { | |
| return GGML_LINESEARCH_FAIL; | |
| } | |
| // initialize local variables | |
| finit = *fx; | |
| dgtest = params->lbfgs.ftol*dginit; | |
| while (true) { | |
| ggml_vec_cpy_f32(nx, x, xp); | |
| ggml_vec_mad_f32(nx, x, d, *step); | |
| // evaluate the function and gradient values | |
| { | |
| ggml_opt_set_params(np, ps, x); | |
| ggml_graph_reset (gf); | |
| ggml_set_f32 (f->grad, 1.0f); | |
| ggml_graph_compute(ctx, gb); | |
| ggml_opt_get_grad(np, ps, g); | |
| *fx = ggml_get_f32_1d(f, 0); | |
| } | |
| ++count; | |
| if (*fx > finit + (*step)*dgtest) { | |
| width = dec; | |
| } else { | |
| // Armijo condition is satisfied | |
| if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) { | |
| return count; | |
| } | |
| ggml_vec_dot_f32(nx, &dg, g, d); | |
| // check the Wolfe condition | |
| if (dg < params->lbfgs.wolfe * dginit) { | |
| width = inc; | |
| } else { | |
| if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) { | |
| // regular Wolfe conditions | |
| return count; | |
| } | |
| if(dg > -params->lbfgs.wolfe*dginit) { | |
| width = dec; | |
| } else { | |
| // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) | |
| return count; | |
| } | |
| return count; | |
| } | |
| } | |
| if (*step < params->lbfgs.min_step) { | |
| return GGML_LINESEARCH_MINIMUM_STEP; | |
| } | |
| if (*step > params->lbfgs.max_step) { | |
| return GGML_LINESEARCH_MAXIMUM_STEP; | |
| } | |
| if (params->lbfgs.max_linesearch <= count) { | |
| return GGML_LINESEARCH_MAXIMUM_ITERATIONS; | |
| } | |
| (*step) *= width; | |
| } | |
| return GGML_LINESEARCH_FAIL; | |
| } | |
| enum ggml_opt_result ggml_opt_lbfgs( | |
| struct ggml_context * ctx, | |
| struct ggml_opt_params params, | |
| struct ggml_tensor * f, | |
| struct ggml_cgraph * gf, | |
| struct ggml_cgraph * gb) { | |
| if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE || | |
| params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) { | |
| if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) { | |
| return GGML_OPT_INVALID_WOLFE; | |
| } | |
| } | |
| gf->n_threads = params.n_threads; | |
| gb->n_threads = params.n_threads; | |
| const int m = params.lbfgs.m; | |
| // these will store the parameters we want to optimize | |
| struct ggml_tensor * ps[GGML_MAX_PARAMS]; | |
| int np = 0; | |
| int nx = 0; | |
| for (int i = 0; i < gf->n_nodes; ++i) { | |
| if (gf->nodes[i]->is_param) { | |
| GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op); | |
| assert(np < GGML_MAX_PARAMS); | |
| ps[np++] = gf->nodes[i]; | |
| nx += ggml_nelements(gf->nodes[i]); | |
| } | |
| } | |
| float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters | |
| float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters | |
| float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient | |
| float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient | |
| float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction | |
| float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values | |
| float fx = 0.0f; // cost function value | |
| float xnorm = 0.0f; // ||x|| | |
| float gnorm = 0.0f; // ||g|| | |
| float step = 0.0f; | |
| // initialize x from the graph nodes | |
| ggml_opt_get_params(np, ps, x); | |
| // the L-BFGS memory | |
| struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m); | |
| for (int i = 0; i < m; ++i) { | |
| lm[i].alpha = 0.0f; | |
| lm[i].ys = 0.0f; | |
| lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; | |
| lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; | |
| } | |
| // evaluate the function value and its gradient | |
| { | |
| ggml_opt_set_params(np, ps, x); | |
| ggml_graph_reset (gf); | |
| ggml_set_f32 (f->grad, 1.0f); | |
| ggml_graph_compute(ctx, gb); | |
| ggml_opt_get_grad(np, ps, g); | |
| fx = ggml_get_f32_1d(f, 0); | |
| } | |
| if (pf) { | |
| pf[0] = fx; | |
| } | |
| float fx_best = fx; | |
| // search direction = -gradient | |
| ggml_vec_neg_f32(nx, d, g); | |
| // ||x||, ||g|| | |
| ggml_vec_norm_f32(nx, &xnorm, x); | |
| ggml_vec_norm_f32(nx, &gnorm, g); | |
| if (xnorm < 1.0f) { | |
| xnorm = 1.0f; | |
| } | |
| // already optimized | |
| if (gnorm/xnorm <= params.lbfgs.eps) { | |
| return GGML_OPT_OK; | |
| } | |
| // initial step | |
| ggml_vec_norm_inv_f32(nx, &step, d); | |
| int j = 0; | |
| int k = 1; | |
| int ls = 0; | |
| int end = 0; | |
| int bound = 0; | |
| int n_no_improvement = 0; | |
| float ys = 0.0f; | |
| float yy = 0.0f; | |
| float beta = 0.0f; | |
| while (true) { | |
| // store the current position and gradient vectors | |
| ggml_vec_cpy_f32(nx, xp, x); | |
| ggml_vec_cpy_f32(nx, gp, g); | |
| ls = linesearch_backtracking(ctx, ¶ms, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps); | |
| if (ls < 0) { | |
| // linesearch failed - go back to the previous point and return | |
| ggml_vec_cpy_f32(nx, x, xp); | |
| ggml_vec_cpy_f32(nx, g, gp); | |
| return ls; | |
| } | |
| ggml_vec_norm_f32(nx, &xnorm, x); | |
| ggml_vec_norm_f32(nx, &gnorm, g); | |
| GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0)); | |
| if (xnorm < 1.0) { | |
| xnorm = 1.0; | |
| } | |
| if (gnorm/xnorm <= params.lbfgs.eps) { | |
| // converged | |
| return GGML_OPT_OK; | |
| } | |
| // delta-based convergence test | |
| if (pf != NULL) { | |
| // need at least params.past iterations to start checking for convergence | |
| if (params.past <= k) { | |
| const float rate = (pf[k%params.past] - fx)/fx; | |
| if (fabs(rate) < params.delta) { | |
| return GGML_OPT_OK; | |
| } | |
| } | |
| pf[k%params.past] = fx; | |
| } | |
| // check for improvement | |
| if (params.max_no_improvement > 0) { | |
| if (fx < fx_best) { | |
| fx_best = fx; | |
| n_no_improvement = 0; | |
| } else { | |
| n_no_improvement++; | |
| if (n_no_improvement >= params.max_no_improvement) { | |
| return GGML_OPT_OK; | |
| } | |
| } | |
| } | |
| if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) { | |
| // reached the maximum number of iterations | |
| return GGML_OPT_DID_NOT_CONVERGE; | |
| } | |
| // update vectors s and y: | |
| // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}. | |
| // y_{k+1} = g_{k+1} - g_{k}. | |
| // | |
| ggml_vec_sub_f32(nx, lm[end].s, x, xp); | |
| ggml_vec_sub_f32(nx, lm[end].y, g, gp); | |
| // compute scalars ys and yy: | |
| // ys = y^t \cdot s -> 1 / \rho. | |
| // yy = y^t \cdot y. | |
| // | |
| ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s); | |
| ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y); | |
| lm[end].ys = ys; | |
| // find new search direction | |
| // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS | |
| bound = (m <= k) ? m : k; | |
| k++; | |
| end = (end + 1)%m; | |
| // initialize search direction with -g | |
| ggml_vec_neg_f32(nx, d, g); | |
| j = end; | |
| for (int i = 0; i < bound; ++i) { | |
| j = (j + m - 1) % m; | |
| // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1} | |
| ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d); | |
| lm[j].alpha /= lm[j].ys; | |
| // q_{i} = q_{i+1} - \alpha_{i} y_{i} | |
| ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha); | |
| } | |
| ggml_vec_scale_f32(nx, d, ys/yy); | |
| for (int i = 0; i < bound; ++i) { | |
| // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i} | |
| ggml_vec_dot_f32(nx, &beta, lm[j].y, d); | |
| beta /= lm[j].ys; | |
| // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j} | |
| ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta); | |
| j = (j + 1)%m; | |
| } | |
| step = 1.0; | |
| } | |
| return GGML_OPT_DID_NOT_CONVERGE; | |
| } | |
| struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) { | |
| struct ggml_opt_params result; | |
| switch (type) { | |
| case GGML_OPT_ADAM: | |
| { | |
| result = (struct ggml_opt_params) { | |
| .type = GGML_OPT_ADAM, | |
| .n_threads = 1, | |
| .past = 0, | |
| .delta = 1e-5f, | |
| .max_no_improvement = 100, | |
| .print_forward_graph = true, | |
| .print_backward_graph = true, | |
| .adam = { | |
| .n_iter = 10000, | |
| .alpha = 0.001f, | |
| .beta1 = 0.9f, | |
| .beta2 = 0.999f, | |
| .eps = 1e-8f, | |
| .eps_f = 1e-5f, | |
| .eps_g = 1e-3f, | |
| }, | |
| }; | |
| } break; | |
| case GGML_OPT_LBFGS: | |
| { | |
| result = (struct ggml_opt_params) { | |
| .type = GGML_OPT_LBFGS, | |
| .n_threads = 1, | |
| .past = 0, | |
| .delta = 1e-5f, | |
| .max_no_improvement = 0, | |
| .print_forward_graph = true, | |
| .print_backward_graph = true, | |
| .lbfgs = { | |
| .m = 6, | |
| .n_iter = 100, | |
| .max_linesearch = 20, | |
| .eps = 1e-5f, | |
| .ftol = 1e-4f, | |
| .wolfe = 0.9f, | |
| .min_step = 1e-20f, | |
| .max_step = 1e+20f, | |
| .linesearch = GGML_LINESEARCH_DEFAULT, | |
| }, | |
| }; | |
| } break; | |
| } | |
| return result; | |
| } | |
| enum ggml_opt_result ggml_opt( | |
| struct ggml_context * ctx, | |
| struct ggml_opt_params params, | |
| struct ggml_tensor * f) { | |
| bool free_ctx = false; | |
| if (ctx == NULL) { | |
| struct ggml_init_params params_ctx = { | |
| .mem_size = 16*1024*1024, | |
| .mem_buffer = NULL, | |
| }; | |
| ctx = ggml_init(params_ctx); | |
| if (ctx == NULL) { | |
| return GGML_OPT_NO_CONTEXT; | |
| } | |
| free_ctx = true; | |
| } | |
| enum ggml_opt_result result = GGML_OPT_OK; | |
| // build forward + backward compute graphs | |
| struct ggml_cgraph gf = ggml_build_forward (f); | |
| struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false); | |
| switch (params.type) { | |
| case GGML_OPT_ADAM: | |
| { | |
| result = ggml_opt_adam(ctx, params, f, &gf, &gb); | |
| } break; | |
| case GGML_OPT_LBFGS: | |
| { | |
| result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb); | |
| } break; | |
| } | |
| if (params.print_forward_graph) { | |
| ggml_graph_print (&gf); | |
| ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot"); | |
| } | |
| if (params.print_backward_graph) { | |
| ggml_graph_print (&gb); | |
| ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot"); | |
| } | |
| if (free_ctx) { | |
| ggml_free(ctx); | |
| } | |
| return result; | |
| } | |
| //////////////////////////////////////////////////////////////////////////////// | |
| int ggml_cpu_has_avx(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_avx2(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_avx512(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_neon(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_fp16_va(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_wasm_simd(void) { | |
| return 1; | |
| return 0; | |
| } | |
| int ggml_cpu_has_blas(void) { | |
| return 1; | |
| return 0; | |
| } | |
| //////////////////////////////////////////////////////////////////////////////// | |