Spaces:
Running
Running
| //#define GGML_ALLOCATOR_DEBUG | |
| //#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__) | |
| // TODO: GGML_PAD ? | |
| static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { | |
| assert(alignment && !(alignment & (alignment - 1))); // power of 2 | |
| size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment; | |
| return offset + align; | |
| } | |
| struct free_block { | |
| void * addr; | |
| size_t size; | |
| }; | |
| struct ggml_tallocr { | |
| struct ggml_backend_buffer * buffer; | |
| bool buffer_owned; | |
| void * base; | |
| size_t alignment; | |
| int n_free_blocks; | |
| struct free_block free_blocks[MAX_FREE_BLOCKS]; | |
| size_t max_size; | |
| bool measure; | |
| struct ggml_tensor * allocated_tensors[1024]; | |
| }; | |
| static void add_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) { | |
| for (int i = 0; i < 1024; i++) { | |
| if (alloc->allocated_tensors[i] == NULL) { | |
| alloc->allocated_tensors[i] = tensor; | |
| return; | |
| } | |
| } | |
| GGML_ASSERT(!"out of allocated_tensors"); | |
| } | |
| static void remove_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) { | |
| for (int i = 0; i < 1024; i++) { | |
| if (alloc->allocated_tensors[i] == tensor || | |
| (alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) { | |
| alloc->allocated_tensors[i] = NULL; | |
| return; | |
| } | |
| } | |
| printf("tried to free tensor %s not found\n", tensor->name); | |
| GGML_ASSERT(!"tensor not found"); | |
| } | |
| // check if a tensor is allocated by this buffer | |
| static bool ggml_tallocr_is_own(ggml_tallocr_t alloc, const struct ggml_tensor * tensor) { | |
| return tensor->buffer == alloc->buffer; | |
| } | |
| static bool ggml_is_view(struct ggml_tensor * t) { | |
| return t->view_src != NULL; | |
| } | |
| void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) { | |
| GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources | |
| GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated | |
| size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor); | |
| size = aligned_offset(NULL, size, alloc->alignment); | |
| AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size); | |
| size_t max_avail = 0; | |
| // find the best fitting free block besides the last block | |
| int best_fit_block = -1; | |
| size_t best_fit_size = SIZE_MAX; | |
| for (int i = 0; i < alloc->n_free_blocks - 1; i++) { | |
| struct free_block * block = &alloc->free_blocks[i]; | |
| max_avail = MAX(max_avail, block->size); | |
| if (block->size >= size && block->size <= best_fit_size) { | |
| best_fit_block = i; | |
| best_fit_size = block->size; | |
| } | |
| } | |
| AT_PRINTF("block %d\n", best_fit_block); | |
| if (best_fit_block == -1) { | |
| // the last block is our last resort | |
| struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1]; | |
| max_avail = MAX(max_avail, block->size); | |
| if (block->size >= size) { | |
| best_fit_block = alloc->n_free_blocks - 1; | |
| } else { | |
| fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n", | |
| __func__, size, max_avail); | |
| GGML_ASSERT(!"not enough space in the buffer"); | |
| return; | |
| } | |
| } | |
| struct free_block * block = &alloc->free_blocks[best_fit_block]; | |
| void * addr = block->addr; | |
| block->addr = (char*)block->addr + size; | |
| block->size -= size; | |
| if (block->size == 0) { | |
| // remove block if empty | |
| alloc->n_free_blocks--; | |
| for (int j = best_fit_block; j < alloc->n_free_blocks; j++) { | |
| alloc->free_blocks[j] = alloc->free_blocks[j+1]; | |
| } | |
| } | |
| tensor->data = addr; | |
| tensor->buffer = alloc->buffer; | |
| if (!alloc->measure) { | |
| ggml_backend_buffer_init_tensor(alloc->buffer, tensor); | |
| } | |
| add_allocated_tensor(alloc, tensor); | |
| size_t cur_max = (char*)addr - (char*)alloc->data + size; | |
| if (cur_max > alloc->max_size) { | |
| printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0); | |
| for (int i = 0; i < 1024; i++) { | |
| if (alloc->allocated_tensors[i]) { | |
| printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0); | |
| } | |
| } | |
| printf("\n"); | |
| } | |
| alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->base + size); | |
| } | |
| // this is a very naive implementation, but for our case the number of free blocks should be very small | |
| static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) { | |
| if (ggml_tallocr_is_own(alloc, tensor) == false) { | |
| // the tensor was not allocated in this buffer | |
| // this can happen because the graph allocator will try to free weights and other tensors from different buffers | |
| // the easiest way to deal with this is just to ignore it | |
| // AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer); | |
| return; | |
| } | |
| void * ptr = tensor->data; | |
| size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor); | |
| size = aligned_offset(NULL, size, alloc->alignment); | |
| AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks); | |
| if (!alloc->measure) { | |
| ggml_backend_buffer_free_tensor(alloc->buffer, tensor); | |
| } | |
| remove_allocated_tensor(alloc, tensor); | |
| // see if we can merge with an existing block | |
| for (int i = 0; i < alloc->n_free_blocks; i++) { | |
| struct free_block * block = &alloc->free_blocks[i]; | |
| // check if ptr is at the end of the block | |
| if ((char*)block->addr + block->size == ptr) { | |
| block->size += size; | |
| // check if we can merge with the next block | |
| if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) { | |
| block->size += alloc->free_blocks[i+1].size; | |
| alloc->n_free_blocks--; | |
| for (int j = i+1; j < alloc->n_free_blocks; j++) { | |
| alloc->free_blocks[j] = alloc->free_blocks[j+1]; | |
| } | |
| } | |
| return; | |
| } | |
| // check if ptr is at the beginning of the block | |
| if ((char*)ptr + size == block->addr) { | |
| block->addr = ptr; | |
| block->size += size; | |
| // check if we can merge with the previous block | |
| if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) { | |
| alloc->free_blocks[i-1].size += block->size; | |
| alloc->n_free_blocks--; | |
| for (int j = i; j < alloc->n_free_blocks; j++) { | |
| alloc->free_blocks[j] = alloc->free_blocks[j+1]; | |
| } | |
| } | |
| return; | |
| } | |
| } | |
| // otherwise, add a new block | |
| GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks"); | |
| // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster) | |
| int insert_pos = 0; | |
| while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) { | |
| insert_pos++; | |
| } | |
| // shift all blocks from insert_pos onward to make room for the new block | |
| for (int i = alloc->n_free_blocks; i > insert_pos; i--) { | |
| alloc->free_blocks[i] = alloc->free_blocks[i-1]; | |
| } | |
| // insert the new block | |
| alloc->free_blocks[insert_pos].addr = ptr; | |
| alloc->free_blocks[insert_pos].size = size; | |
| alloc->n_free_blocks++; | |
| } | |
| void ggml_tallocr_reset(ggml_tallocr_t alloc) { | |
| alloc->n_free_blocks = 1; | |
| size_t align_offset = aligned_offset(alloc->base, 0, alloc->alignment); | |
| alloc->free_blocks[0].addr = (char *)alloc->base + align_offset; | |
| if (alloc->measure) { | |
| alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows | |
| } else { | |
| alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset; | |
| } | |
| } | |
| ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment) { | |
| struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(NULL, data, size); | |
| ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr)); | |
| *alloc = (struct ggml_tallocr) { | |
| /*.buffer = */ buffer, | |
| /*.buffer_owned = */ true, | |
| /*.base = */ ggml_backend_buffer_get_base(buffer), | |
| /*.alignment = */ alignment, | |
| /*.n_free_blocks = */ 0, | |
| /*.free_blocks = */ {{0}}, | |
| /*.max_size = */ 0, | |
| /*.measure = */ false, | |
| /*.allocated_tensors = */ {0}, | |
| }; | |
| ggml_tallocr_reset(alloc); | |
| return alloc; | |
| } | |
| ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment) { | |
| ggml_tallocr_t alloc = ggml_tallocr_new((void *)0x1000, SIZE_MAX/2, alignment); | |
| alloc->measure = true; | |
| return alloc; | |
| } | |
| ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) { | |
| // create a backend buffer to get the correct tensor allocation sizes | |
| ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, 1); | |
| // TODO: move alloc initialization to a common ggml_tallocr_new_impl function | |
| ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer); | |
| alloc->buffer_owned = true; | |
| alloc->measure = true; | |
| ggml_tallocr_reset(alloc); | |
| return alloc; | |
| } | |
| ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) { | |
| ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, size); | |
| ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer); | |
| alloc->buffer_owned = true; | |
| return alloc; | |
| } | |
| ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer) { | |
| ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr)); | |
| *alloc = (struct ggml_tallocr) { | |
| /*.buffer = */ buffer, | |
| /*.buffer_owned = */ false, | |
| /*.base = */ ggml_backend_buffer_get_base(buffer), | |
| /*.alignment = */ ggml_backend_buffer_get_alignment(buffer), | |
| /*.n_free_blocks = */ 0, | |
| /*.free_blocks = */ {{0}}, | |
| /*.max_size = */ 0, | |
| /*.measure = */ false, | |
| /*.allocated_tensors = */ {0}, | |
| }; | |
| ggml_tallocr_reset(alloc); | |
| return alloc; | |
| } | |
| struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t alloc) { | |
| return alloc->buffer; | |
| } | |
| void ggml_tallocr_free(ggml_tallocr_t alloc) { | |
| if (alloc == NULL) { | |
| return; | |
| } | |
| if (alloc->buffer_owned) { | |
| ggml_backend_buffer_free(alloc->buffer); | |
| } | |
| free(alloc); | |
| } | |
| bool ggml_tallocr_is_measure(ggml_tallocr_t alloc) { | |
| return alloc->measure; | |
| } | |
| size_t ggml_tallocr_max_size(ggml_tallocr_t alloc) { | |
| return alloc->max_size; | |
| } | |
| // graph allocator | |
| struct hash_node { | |
| int n_children; | |
| int n_views; | |
| }; | |
| struct ggml_gallocr { | |
| ggml_tallocr_t talloc; | |
| struct ggml_hash_set hash_set; | |
| struct hash_node * hash_values; | |
| size_t hash_values_size; | |
| ggml_tallocr_t * hash_allocs; | |
| int * parse_seq; | |
| int parse_seq_len; | |
| }; | |
| ggml_gallocr_t ggml_gallocr_new(void) { | |
| ggml_gallocr_t galloc = (ggml_gallocr_t)malloc(sizeof(struct ggml_gallocr)); | |
| *galloc = (struct ggml_gallocr) { | |
| /*.talloc = */ NULL, | |
| /*.hash_set = */ {0}, | |
| /*.hash_values = */ NULL, | |
| /*.hash_values_size = */ 0, | |
| /*.hash_allocs = */ NULL, | |
| /*.parse_seq = */ NULL, | |
| /*.parse_seq_len = */ 0, | |
| }; | |
| return galloc; | |
| } | |
| void ggml_gallocr_free(ggml_gallocr_t galloc) { | |
| if (galloc == NULL) { | |
| return; | |
| } | |
| if (galloc->hash_set.keys != NULL) { | |
| free(galloc->hash_set.keys); | |
| } | |
| if (galloc->hash_values != NULL) { | |
| free(galloc->hash_values); | |
| } | |
| if (galloc->hash_allocs != NULL) { | |
| free(galloc->hash_allocs); | |
| } | |
| if (galloc->parse_seq != NULL) { | |
| free(galloc->parse_seq); | |
| } | |
| free(galloc); | |
| } | |
| void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n) { | |
| free(galloc->parse_seq); | |
| galloc->parse_seq = malloc(sizeof(int) * n); | |
| for (int i = 0; i < n; i++) { | |
| galloc->parse_seq[i] = list[i]; | |
| } | |
| galloc->parse_seq_len = n; | |
| } | |
| static struct hash_node * hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) { | |
| size_t i = ggml_hash_find_or_insert(galloc->hash_set, t); | |
| return &galloc->hash_values[i]; | |
| } | |
| static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { | |
| if (a->type != b->type) { | |
| return false; | |
| } | |
| for (int i = 0; i < GGML_MAX_DIMS; i++) { | |
| if (a->ne[i] != b->ne[i]) { | |
| return false; | |
| } | |
| if (a->nb[i] != b->nb[i]) { | |
| return false; | |
| } | |
| } | |
| return true; | |
| } | |
| static bool ggml_op_can_inplace(enum ggml_op op) { | |
| switch (op) { | |
| case GGML_OP_SCALE: | |
| case GGML_OP_DIAG_MASK_ZERO: | |
| case GGML_OP_DIAG_MASK_INF: | |
| case GGML_OP_ADD: | |
| case GGML_OP_ADD1: | |
| case GGML_OP_SUB: | |
| case GGML_OP_MUL: | |
| case GGML_OP_DIV: | |
| case GGML_OP_SQR: | |
| case GGML_OP_SQRT: | |
| case GGML_OP_LOG: | |
| case GGML_OP_UNARY: | |
| case GGML_OP_ROPE: | |
| case GGML_OP_RMS_NORM: | |
| case GGML_OP_SOFT_MAX: | |
| return true; | |
| default: | |
| return false; | |
| } | |
| } | |
| static ggml_tallocr_t node_tallocr(ggml_gallocr_t galloc, struct ggml_tensor * node) { | |
| if (galloc->talloc != NULL) { | |
| return galloc->talloc; | |
| } | |
| return galloc->hash_allocs[ggml_hash_find_or_insert(galloc->hash_set, node)]; | |
| } | |
| static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view) { | |
| ggml_tallocr_t alloc = node_tallocr(galloc, view); | |
| //printf("init_view: %s from src %s\n", view->name, view->view_src->name); | |
| GGML_ASSERT(view->view_src != NULL && view->view_src->data != NULL); | |
| view->backend = view->view_src->backend; | |
| view->buffer = view->view_src->buffer; | |
| view->data = (char *)view->view_src->data + view->view_offs; | |
| // FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend | |
| // due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras | |
| assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend); | |
| if (!alloc->measure) { | |
| ggml_backend_buffer_init_tensor(alloc->buffer, view); | |
| } | |
| } | |
| static void allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node) { | |
| ggml_tallocr_t alloc = node_tallocr(galloc, node); | |
| if (node->data == NULL) { | |
| if (ggml_is_view(node)) { | |
| init_view(galloc, node); | |
| } else { | |
| // see if we can reuse a parent's buffer (inplace) | |
| if (ggml_op_can_inplace(node->op)) { | |
| for (int i = 0; i < GGML_MAX_SRC; i++) { | |
| struct ggml_tensor * parent = node->src[i]; | |
| if (parent == NULL) { | |
| break; | |
| } | |
| // if the node's data is external, then we cannot re-use it | |
| if (ggml_tallocr_is_own(alloc, parent) == false) { | |
| AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data); | |
| continue; | |
| } | |
| struct hash_node * p_hn = hash_get(galloc, parent); | |
| if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) { | |
| if (ggml_is_view(parent)) { | |
| struct ggml_tensor * view_src = parent->view_src; | |
| struct hash_node * view_src_hn = hash_get(galloc, view_src); | |
| if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) { | |
| // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite | |
| // the parent's data that it will need later (same layout requirement). the problem is that then | |
| // we cannot free the tensor because the original address of the allocation is lost. | |
| // adding a view_src pointer to the tensor would solve this and simplify the code dealing with views | |
| // for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data) | |
| AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name); | |
| node->view_src = view_src; | |
| view_src_hn->n_views += 1; | |
| init_view(galloc, node); | |
| return; | |
| } | |
| } | |
| else { | |
| AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); | |
| node->view_src = parent; | |
| p_hn->n_views += 1; | |
| init_view(galloc, node); | |
| return; | |
| } | |
| } | |
| } | |
| } | |
| ggml_tallocr_alloc(alloc, node); | |
| } | |
| } | |
| } | |
| static void free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) { | |
| ggml_tallocr_t alloc = node_tallocr(galloc, node); | |
| ggml_tallocr_free_tensor(alloc, node); | |
| } | |
| static void ggml_tallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * gf) { | |
| const int * parse_seq = galloc->parse_seq; | |
| int parse_seq_len = galloc->parse_seq_len; | |
| // count number of children and views | |
| for (int i = 0; i < gf->n_nodes; i++) { | |
| struct ggml_tensor * node = gf->nodes[i]; | |
| if (ggml_is_view(node)) { | |
| struct ggml_tensor * view_src = node->view_src; | |
| hash_get(galloc, view_src)->n_views += 1; | |
| if (node->buffer == NULL && node->data != NULL) { | |
| // view of a pre-allocated tensor, didn't call init_view() yet | |
| init_view(galloc, node); | |
| } | |
| } | |
| for (int j = 0; j < GGML_MAX_SRC; j++) { | |
| struct ggml_tensor * parent = node->src[j]; | |
| if (parent == NULL) { | |
| break; | |
| } | |
| hash_get(galloc, parent)->n_children += 1; | |
| if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) { | |
| init_view(galloc, parent); | |
| } | |
| } | |
| } | |
| // allocate tensors | |
| // if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers | |
| int last_barrier_pos = 0; | |
| int n_nodes = parse_seq_len ? parse_seq_len : gf->n_nodes; | |
| for (int ind = 0; ind < n_nodes; ind++) { | |
| // allocate a node if there is no parse_seq or this is not a barrier | |
| if (parse_seq_len == 0 || parse_seq[ind] != -1) { | |
| int i = parse_seq_len ? parse_seq[ind] : ind; | |
| struct ggml_tensor * node = gf->nodes[i]; | |
| // allocate parents (leafs) | |
| for (int j = 0; j < GGML_MAX_SRC; j++) { | |
| struct ggml_tensor * parent = node->src[j]; | |
| if (parent == NULL) { | |
| break; | |
| } | |
| allocate_node(galloc, parent); | |
| } | |
| // allocate node | |
| allocate_node(galloc, node); | |
| AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name); | |
| for (int j = 0; j < GGML_MAX_SRC; j++) { | |
| struct ggml_tensor * parent = node->src[j]; | |
| if (parent == NULL) { | |
| break; | |
| } | |
| AT_PRINTF("%s", parent->name); | |
| if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) { | |
| AT_PRINTF(", "); | |
| } | |
| } | |
| AT_PRINTF("\n"); | |
| } | |
| // update parents | |
| // update immediately if there is no parse_seq | |
| // update only at barriers if there is parse_seq | |
| if ((parse_seq_len == 0) || parse_seq[ind] == -1) { | |
| int update_start = parse_seq_len ? last_barrier_pos : ind; | |
| int update_end = parse_seq_len ? ind : ind + 1; | |
| for (int i = update_start; i < update_end; i++) { | |
| int node_i = parse_seq_len ? parse_seq[i] : i; | |
| struct ggml_tensor * node = gf->nodes[node_i]; | |
| for (int j = 0; j < GGML_MAX_SRC; j++) { | |
| struct ggml_tensor * parent = node->src[j]; | |
| if (parent == NULL) { | |
| break; | |
| } | |
| struct hash_node * p_hn = hash_get(galloc, parent); | |
| p_hn->n_children -= 1; | |
| //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views); | |
| if (p_hn->n_children == 0 && p_hn->n_views == 0) { | |
| if (ggml_is_view(parent)) { | |
| struct ggml_tensor * view_src = parent->view_src; | |
| struct hash_node * view_src_hn = hash_get(galloc, view_src); | |
| view_src_hn->n_views -= 1; | |
| AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views); | |
| if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0) { | |
| free_node(galloc, view_src); | |
| } | |
| } | |
| else { | |
| free_node(galloc, parent); | |
| } | |
| } | |
| } | |
| } | |
| AT_PRINTF("\n"); | |
| if (parse_seq_len) { | |
| last_barrier_pos = ind + 1; | |
| } | |
| } | |
| } | |
| } | |
| size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph) { | |
| size_t hash_size = graph->visited_hash_table.size; | |
| // check if the hash table is initialized and large enough | |
| if (galloc->hash_set.size < hash_size) { | |
| if (galloc->hash_set.keys != NULL) { | |
| free(galloc->hash_set.keys); | |
| } | |
| if (galloc->hash_values != NULL) { | |
| free(galloc->hash_values); | |
| } | |
| galloc->hash_set.keys = malloc(sizeof(struct ggml_tensor *) * hash_size); | |
| galloc->hash_set.size = hash_size; | |
| galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size); | |
| } | |
| // reset hash table | |
| memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * hash_size); | |
| memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size); | |
| galloc->talloc = talloc; | |
| ggml_tallocr_alloc_graph_impl(galloc, graph); | |
| galloc->talloc = NULL; | |
| size_t max_size = ggml_tallocr_max_size(talloc); | |
| return max_size; | |
| } | |
| void ggml_gallocr_alloc_graph_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, struct ggml_hash_set hash_set, ggml_tallocr_t * hash_node_alloct) { | |
| const size_t hash_size = hash_set.size; | |
| GGML_ASSERT(hash_size >= (size_t)(graph->n_nodes + graph->n_leafs)); | |
| galloc->talloc = NULL; | |
| // alloc hash_values if needed | |
| if (galloc->hash_values == NULL || galloc->hash_values_size < hash_size) { | |
| free(galloc->hash_values); | |
| galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size); | |
| galloc->hash_values_size = hash_size; | |
| } | |
| // free hash_set.keys if needed | |
| if (galloc->hash_set.keys != NULL) { | |
| free(galloc->hash_set.keys); | |
| } | |
| galloc->hash_set = hash_set; | |
| // reset hash values | |
| memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size); | |
| galloc->hash_allocs = hash_node_alloct; | |
| ggml_tallocr_alloc_graph_impl(galloc, graph); | |
| // remove unowned resources | |
| galloc->hash_set.keys = NULL; | |
| galloc->hash_allocs = NULL; | |
| } | |
| // legacy API wrapper | |
| struct ggml_allocr { | |
| ggml_tallocr_t talloc; | |
| ggml_gallocr_t galloc; | |
| }; | |
| static ggml_allocr_t ggml_allocr_new_impl(ggml_tallocr_t talloc) { | |
| ggml_allocr_t alloc = (ggml_allocr_t)malloc(sizeof(struct ggml_allocr)); | |
| *alloc = (struct ggml_allocr) { | |
| /*.talloc = */ talloc, | |
| /*.galloc = */ ggml_gallocr_new(), | |
| }; | |
| return alloc; | |
| } | |
| ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment) { | |
| return ggml_allocr_new_impl(ggml_tallocr_new(data, size, alignment)); | |
| } | |
| ggml_allocr_t ggml_allocr_new_measure(size_t alignment) { | |
| return ggml_allocr_new_impl(ggml_tallocr_new_measure(alignment)); | |
| } | |
| ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) { | |
| return ggml_allocr_new_impl(ggml_tallocr_new_from_buffer(buffer)); | |
| } | |
| ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size) { | |
| return ggml_allocr_new_impl(ggml_tallocr_new_from_backend(backend, size)); | |
| } | |
| ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend) { | |
| return ggml_allocr_new_impl(ggml_tallocr_new_measure_from_backend(backend)); | |
| } | |
| struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc) { | |
| return ggml_tallocr_get_buffer(alloc->talloc); | |
| } | |
| void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n) { | |
| ggml_gallocr_set_parse_seq(alloc->galloc, list, n); | |
| } | |
| void ggml_allocr_free(ggml_allocr_t alloc) { | |
| ggml_gallocr_free(alloc->galloc); | |
| ggml_tallocr_free(alloc->talloc); | |
| free(alloc); | |
| } | |
| bool ggml_allocr_is_measure(ggml_allocr_t alloc) { | |
| return ggml_tallocr_is_measure(alloc->talloc); | |
| } | |
| void ggml_allocr_reset(ggml_allocr_t alloc) { | |
| ggml_tallocr_reset(alloc->talloc); | |
| } | |
| void ggml_allocr_alloc(ggml_allocr_t alloc, struct ggml_tensor * tensor) { | |
| ggml_tallocr_alloc(alloc->talloc, tensor); | |
| } | |
| size_t ggml_allocr_max_size(ggml_allocr_t alloc) { | |
| return ggml_tallocr_max_size(alloc->talloc); | |
| } | |
| size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph) { | |
| return ggml_gallocr_alloc_graph(alloc->galloc, alloc->talloc, graph); | |
| } | |