Spaces:
Running
Running
| import argparse | |
| import torch | |
| from whisper import load_model | |
| import os | |
| from openvino.tools import mo | |
| from openvino.frontend import FrontEndManager | |
| from openvino.runtime import serialize | |
| import shutil | |
| def convert_encoder(hparams, encoder, mname): | |
| encoder.eval() | |
| mel = torch.zeros((1, hparams.n_mels, 3000)) | |
| onnx_folder = os.path.join(os.path.dirname(__file__), "onnx_encoder") | |
| #create a directory to store the onnx model, and other collateral that is saved during onnx export procedure | |
| if not os.path.isdir(onnx_folder): | |
| os.makedirs(onnx_folder) | |
| onnx_path = os.path.join(onnx_folder, "whisper_encoder.onnx") | |
| # Export the PyTorch model to ONNX | |
| torch.onnx.export( | |
| encoder, | |
| mel, | |
| onnx_path, | |
| input_names=["mel"], | |
| output_names=["output_features"] | |
| ) | |
| # Convert ONNX to OpenVINO IR format using the frontend | |
| fem = FrontEndManager() | |
| onnx_fe = fem.load_by_framework("onnx") | |
| onnx_model = onnx_fe.load(onnx_path) | |
| ov_model = onnx_fe.convert(onnx_model) | |
| # Serialize the OpenVINO model to XML and BIN files | |
| serialize(ov_model, xml_path=os.path.join(os.path.dirname(__file__), "ggml-" + mname + "-encoder-openvino.xml")) | |
| # Cleanup | |
| if os.path.isdir(onnx_folder): | |
| shutil.rmtree(onnx_folder) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model", type=str, help="model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large-v1, large-v2, large-v3, large-v3-turbo)", required=True) | |
| args = parser.parse_args() | |
| if args.model not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large-v1", "large-v2", "large-v3", "large-v3-turbo"]: | |
| raise ValueError("Invalid model name") | |
| whisper = load_model(args.model).cpu() | |
| hparams = whisper.dims | |
| encoder = whisper.encoder | |
| # Convert encoder to onnx | |
| convert_encoder(hparams, encoder, args.model) | |