Spaces:
Running
Running
| //#define GGML_ALLOCATOR_DEBUG | |
| //#define AT_PRINTF printf | |
| struct hash_node { | |
| struct ggml_tensor * t; | |
| int n_children; | |
| int n_views; | |
| }; | |
| static size_t hash(void * p) { | |
| return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE; | |
| } | |
| static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) { | |
| size_t h = hash(t); | |
| // linear probing | |
| size_t i = h; | |
| while (hash_table[i].t != NULL) { | |
| if (hash_table[i].t == t) { | |
| return &hash_table[i]; | |
| } | |
| i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE; | |
| if (i == h) { | |
| // hash table is full | |
| GGML_ASSERT(false); | |
| } | |
| } | |
| hash_table[i].t = t; | |
| return &hash_table[i]; | |
| } | |
| // TODO: GGML_PAD ? | |
| static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { | |
| assert(alignment && !(alignment & (alignment - 1))); // power of 2 | |
| size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment; | |
| return offset + align; | |
| } | |
| struct free_block { | |
| void * addr; | |
| size_t size; | |
| }; | |
| struct ggml_allocr { | |
| void * data; | |
| size_t size; | |
| size_t alignment; | |
| int n_free_blocks; | |
| struct free_block free_blocks[MAX_FREE_BLOCKS]; | |
| struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE]; | |
| size_t max_size; | |
| bool measure; | |
| int parse_seq[GGML_MAX_CONCUR]; | |
| int parse_seq_len; | |
| struct ggml_tensor * allocated_tensors[1024]; | |
| }; | |
| static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { | |
| for (int i = 0; i < 1024; i++) { | |
| if (alloc->allocated_tensors[i] == NULL) { | |
| alloc->allocated_tensors[i] = tensor; | |
| return; | |
| } | |
| } | |
| GGML_ASSERT(!"out of allocated_tensors"); | |
| } | |
| static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { | |
| for (int i = 0; i < 1024; i++) { | |
| if (alloc->allocated_tensors[i] == tensor || | |
| (alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) { | |
| alloc->allocated_tensors[i] = NULL; | |
| return; | |
| } | |
| } | |
| printf("tried to free tensor %s not found\n", tensor->name); | |
| GGML_ASSERT(!"tensor not found"); | |
| } | |
| static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { | |
| return ggml_nbytes(tensor); | |
| UNUSED(alloc); | |
| } | |
| void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { | |
| size_t size = ggml_allocator_get_alloc_size(alloc, tensor); | |
| size = aligned_offset(NULL, size, alloc->alignment); | |
| AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size); | |
| size_t max_avail = 0; | |
| // find the best fitting free block besides the last block | |
| int best_fit_block = -1; | |
| size_t best_fit_size = SIZE_MAX; | |
| for (int i = 0; i < alloc->n_free_blocks - 1; i++) { | |
| struct free_block * block = &alloc->free_blocks[i]; | |
| max_avail = MAX(max_avail, block->size); | |
| if (block->size >= size && block->size <= best_fit_size) { | |
| best_fit_block = i; | |
| best_fit_size = block->size; | |
| } | |
| } | |
| AT_PRINTF("block %d\n", best_fit_block); | |
| if (best_fit_block == -1) { | |
| // the last block is our last resort | |
| struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1]; | |
| if (block->size >= size) { | |
| best_fit_block = alloc->n_free_blocks - 1; | |
| max_avail = MAX(max_avail, block->size); | |
| } else { | |
| fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n", | |
| __func__, size, max_avail); | |
| GGML_ASSERT(!"not enough space in the buffer"); | |
| return; | |
| } | |
| } | |
| struct free_block * block = &alloc->free_blocks[best_fit_block]; | |
| void * addr = block->addr; | |
| block->addr = (char*)block->addr + size; | |
| block->size -= size; | |
| if (block->size == 0) { | |
| // remove block if empty | |
| alloc->n_free_blocks--; | |
| for (int j = best_fit_block; j < alloc->n_free_blocks; j++) { | |
| alloc->free_blocks[j] = alloc->free_blocks[j+1]; | |
| } | |
| } | |
| tensor->data = addr; | |
| add_allocated_tensor(alloc, tensor); | |
| size_t cur_max = (char*)addr - (char*)alloc->data + size; | |
| if (cur_max > alloc->max_size) { | |
| printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0); | |
| for (int i = 0; i < 1024; i++) { | |
| if (alloc->allocated_tensors[i]) { | |
| printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0); | |
| } | |
| } | |
| printf("\n"); | |
| } | |
| alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size); | |
| } | |
| // this is a very naive implementation, but for our case the number of free blocks should be very small | |
| static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { | |
| void * ptr = tensor->data; | |
| if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) { | |
| // the tensor was not allocated in this buffer | |
| // this can happen because the graph allocator will try to free weights and other tensors from different buffers | |
| // the easiest way to deal with this is just to ignore it | |
| return; | |
| } | |
| size_t size = ggml_allocator_get_alloc_size(alloc, tensor); | |
| size = aligned_offset(NULL, size, alloc->alignment); | |
| AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks); | |
| remove_allocated_tensor(alloc, tensor); | |
| // see if we can merge with an existing block | |
| for (int i = 0; i < alloc->n_free_blocks; i++) { | |
| struct free_block * block = &alloc->free_blocks[i]; | |
| // check if ptr is at the end of the block | |
| if ((char*)block->addr + block->size == ptr) { | |
| block->size += size; | |
| // check if we can merge with the next block | |
| if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) { | |
| block->size += alloc->free_blocks[i+1].size; | |
| alloc->n_free_blocks--; | |
| for (int j = i+1; j < alloc->n_free_blocks; j++) { | |
| alloc->free_blocks[j] = alloc->free_blocks[j+1]; | |
| } | |
| } | |
| return; | |
| } | |
| // check if ptr is at the beginning of the block | |
| if ((char*)ptr + size == block->addr) { | |
| block->addr = ptr; | |
| block->size += size; | |
| // check if we can merge with the previous block | |
| if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) { | |
| alloc->free_blocks[i-1].size += block->size; | |
| alloc->n_free_blocks--; | |
| for (int j = i; j < alloc->n_free_blocks; j++) { | |
| alloc->free_blocks[j] = alloc->free_blocks[j+1]; | |
| } | |
| } | |
| return; | |
| } | |
| } | |
| // otherwise, add a new block | |
| GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks"); | |
| // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster) | |
| int insert_pos = 0; | |
| while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) { | |
| insert_pos++; | |
| } | |
| // shift all blocks from insert_pos onward to make room for the new block | |
| for (int i = alloc->n_free_blocks; i > insert_pos; i--) { | |
| alloc->free_blocks[i] = alloc->free_blocks[i-1]; | |
| } | |
| // insert the new block | |
| alloc->free_blocks[insert_pos].addr = ptr; | |
| alloc->free_blocks[insert_pos].size = size; | |
| alloc->n_free_blocks++; | |
| } | |
| void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) { | |
| for (int i = 0; i < n; i++) { | |
| alloc->parse_seq[i] = list[i]; | |
| } | |
| alloc->parse_seq_len = n; | |
| } | |
| void ggml_allocr_reset(struct ggml_allocr * alloc) { | |
| alloc->n_free_blocks = 1; | |
| size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment); | |
| alloc->free_blocks[0].addr = (char *)alloc->data + align_offset; | |
| alloc->free_blocks[0].size = alloc->size - align_offset; | |
| } | |
| struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) { | |
| struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */); | |
| *alloc = (struct ggml_allocr){ | |
| /*.data = */ data, | |
| /*.size = */ size, | |
| /*.alignment = */ alignment, | |
| /*.n_free_blocks = */ 0, | |
| /*.free_blocks = */ {{0}}, | |
| /*.hash_table = */ {{0}}, | |
| /*.max_size = */ 0, | |
| /*.measure = */ false, | |
| /*.parse_seq = */ {0}, | |
| /*.parse_seq_len = */ 0, | |
| /*.allocated_tensors = */ {0}, | |
| }; | |
| ggml_allocr_reset(alloc); | |
| return alloc; | |
| } | |
| // address and size of the buffer when measuring | |
| // it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers | |
| static void * const MEASURE_BASE_ADDR = (void *) 0x1000; | |
| static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB | |
| struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) { | |
| struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */); | |
| *alloc = (struct ggml_allocr){ | |
| /*.data = */ MEASURE_BASE_ADDR, | |
| /*.size = */ MEASURE_MAX_SIZE, | |
| /*.alignment = */ alignment, | |
| /*.n_free_blocks = */ 0, | |
| /*.free_blocks = */ {{0}}, | |
| /*.hash_table = */ {{0}}, | |
| /*.max_size = */ 0, | |
| /*.measure = */ true, | |
| /*.parse_seq = */ {0}, | |
| /*.parse_seq_len = */ 0, | |
| /*.allocated_tensors = */ {0}, | |
| }; | |
| ggml_allocr_reset(alloc); | |
| return alloc; | |
| } | |
| void ggml_allocr_free(struct ggml_allocr * alloc) { | |
| free(alloc); | |
| } | |
| bool ggml_allocr_is_measure(struct ggml_allocr * alloc) { | |
| return alloc->measure; | |
| } | |
| //////////// compute graph allocator | |
| static bool ggml_is_view(struct ggml_tensor * t) { | |
| return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE || | |
| t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY; | |
| } | |
| static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { | |
| if (a->type != b->type) { | |
| return false; | |
| } | |
| for (int i = 0; i < GGML_MAX_DIMS; i++) { | |
| if (a->ne[i] != b->ne[i]) { | |
| return false; | |
| } | |
| if (a->nb[i] != b->nb[i]) { | |
| return false; | |
| } | |
| } | |
| return true; | |
| } | |
| static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) { | |
| switch (t->op) { | |
| case GGML_OP_PERMUTE: | |
| case GGML_OP_RESHAPE: | |
| case GGML_OP_TRANSPOSE: | |
| case GGML_OP_VIEW: | |
| return t->src[0]; | |
| case GGML_OP_CPY: | |
| return t->src[1]; | |
| default: | |
| return NULL; | |
| } | |
| } | |
| static struct ggml_tensor * get_view_source(struct ggml_tensor * t) { | |
| struct ggml_tensor * parent = t; | |
| do { | |
| parent = get_view_parent(parent); | |
| } while (ggml_is_view(parent)); | |
| return parent; | |
| } | |
| static bool ggml_op_can_inplace(enum ggml_op op) { | |
| switch (op) { | |
| case GGML_OP_SCALE: | |
| case GGML_OP_DIAG_MASK_ZERO: | |
| case GGML_OP_DIAG_MASK_INF: | |
| case GGML_OP_ADD: | |
| case GGML_OP_ADD1: | |
| case GGML_OP_ACC: | |
| case GGML_OP_SUB: | |
| case GGML_OP_MUL: | |
| case GGML_OP_DIV: | |
| case GGML_OP_SQR: | |
| case GGML_OP_SQRT: | |
| case GGML_OP_LOG: | |
| case GGML_OP_UNARY: | |
| case GGML_OP_ROPE: | |
| case GGML_OP_RMS_NORM: | |
| case GGML_OP_SET: | |
| case GGML_OP_SOFT_MAX: | |
| case GGML_OP_CONT: | |
| case GGML_OP_ADD_REL_POS: | |
| return true; | |
| default: | |
| return false; | |
| } | |
| } | |
| static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) { | |
| struct hash_node * ht = alloc->hash_table; | |
| if (node->data == NULL) { | |
| if (ggml_is_view(node)) { | |
| size_t offset; | |
| switch(node->op) { | |
| case GGML_OP_VIEW: | |
| memcpy(&offset, node->op_params, sizeof(size_t)); | |
| node->data = (char *) node->src[0]->data + offset; | |
| break; | |
| case GGML_OP_PERMUTE: | |
| case GGML_OP_RESHAPE: | |
| case GGML_OP_TRANSPOSE: | |
| node->data = node->src[0]->data; | |
| break; | |
| case GGML_OP_CPY: | |
| node->data = node->src[1]->data; | |
| break; | |
| default: | |
| GGML_ASSERT(!"unknown view op"); | |
| break; | |
| } | |
| } else { | |
| // see if we can reuse a parent's buffer (inplace) | |
| if (ggml_op_can_inplace(node->op)) { | |
| for (int i = 0; i < GGML_MAX_SRC; i++) { | |
| struct ggml_tensor * parent = node->src[i]; | |
| if (parent == NULL) { | |
| break; | |
| } | |
| // if the node's data is external, then we cannot re-use it | |
| if ((char *) parent->data < (char *) alloc->data || | |
| (char *) parent->data >= ((char *) alloc->data + alloc->size)) { | |
| AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data); | |
| continue; | |
| } | |
| struct hash_node * p_hn = hash_get(ht, parent); | |
| if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) { | |
| if (ggml_is_view(parent)) { | |
| struct ggml_tensor * view_src = get_view_source(parent); | |
| struct hash_node * view_src_hn = hash_get(ht, view_src); | |
| if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) { | |
| // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite | |
| // the parent's data that it will need later (same layout requirement). the problem is that then | |
| // we cannot free the tensor because the original address of the allocation is lost. | |
| // adding a view_src pointer to the tensor would solve this and simplify the code dealing with views | |
| // for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data) | |
| AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name); | |
| node->data = parent->data; | |
| return; | |
| } | |
| } | |
| else { | |
| AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); | |
| node->data = parent->data; | |
| return; | |
| } | |
| } | |
| } | |
| } | |
| ggml_allocr_alloc(alloc, node); | |
| } | |
| } | |
| } | |
| static size_t ggml_allocator_alloc_graph_tensors_n( | |
| struct ggml_allocr * alloc, | |
| struct ggml_cgraph ** graphs, int n_graphs, | |
| struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) { | |
| // reset hash table | |
| struct hash_node * ht = alloc->hash_table; | |
| memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE); | |
| // count number of children and views | |
| for (int g = 0; g < n_graphs; g++) { | |
| struct ggml_cgraph * gf = graphs[g]; | |
| for (int i = 0; i < gf->n_nodes; i++) { | |
| struct ggml_tensor * node = gf->nodes[i]; | |
| if (ggml_is_view(node)) { | |
| struct ggml_tensor * view_src = get_view_source(node); | |
| hash_get(ht, view_src)->n_views += 1; | |
| } | |
| for (int j = 0; j < GGML_MAX_SRC; j++) { | |
| struct ggml_tensor * parent = node->src[j]; | |
| if (parent == NULL) { | |
| break; | |
| } | |
| hash_get(ht, parent)->n_children += 1; | |
| } | |
| } | |
| } | |
| // allocate tensors | |
| for (int g = 0; g < n_graphs; g++) { | |
| struct ggml_cgraph * gf = graphs[g]; | |
| AT_PRINTF("####### graph %d/%d\n", g, n_graphs); | |
| // graph inputs are allocated first to ensure that they are not overwritten by each other | |
| if (inputs != NULL && inputs[g] != NULL) { | |
| for (int i = 0; inputs[g][i] != NULL; i++) { | |
| struct ggml_tensor * input = inputs[g][i]; | |
| AT_PRINTF("input: %s\n", input->name); | |
| allocate_node(alloc, input); | |
| } | |
| } | |
| // if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers | |
| int last_barrier_pos = 0; | |
| int n_nodes = alloc->parse_seq_len ? alloc->parse_seq_len : gf->n_nodes; | |
| for (int ind = 0; ind < n_nodes; ind++) { | |
| // allocate a node if there is no parse_seq or this is not a barrier | |
| if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] != -1) { | |
| int i = alloc->parse_seq_len ? alloc->parse_seq[ind] : ind; | |
| struct ggml_tensor * node = gf->nodes[i]; | |
| // allocate parents (leafs) | |
| for (int j = 0; j < GGML_MAX_SRC; j++) { | |
| struct ggml_tensor * parent = node->src[j]; | |
| if (parent == NULL) { | |
| break; | |
| } | |
| allocate_node(alloc, parent); | |
| } | |
| // allocate node | |
| allocate_node(alloc, node); | |
| AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name); | |
| for (int j = 0; j < GGML_MAX_SRC; j++) { | |
| struct ggml_tensor * parent = node->src[j]; | |
| if (parent == NULL) { | |
| break; | |
| } | |
| AT_PRINTF("%s", parent->name); | |
| if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) { | |
| AT_PRINTF(", "); | |
| } | |
| } | |
| AT_PRINTF("\n"); | |
| } | |
| // update parents | |
| // update immediately if there is no parse_seq | |
| // update only at barriers if there is parse_seq | |
| if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] == -1) { | |
| int update_start = alloc->parse_seq_len ? last_barrier_pos : ind; | |
| int update_end = alloc->parse_seq_len ? ind : ind + 1; | |
| for (int i = update_start; i < update_end; i++) { | |
| int node_i = alloc->parse_seq_len ? alloc->parse_seq[i] : i; | |
| struct ggml_tensor * node = gf->nodes[node_i]; | |
| for (int j = 0; j < GGML_MAX_SRC; j++) { | |
| struct ggml_tensor * parent = node->src[j]; | |
| if (parent == NULL) { | |
| break; | |
| } | |
| struct hash_node * p_hn = hash_get(ht, parent); | |
| p_hn->n_children -= 1; | |
| //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views); | |
| if (p_hn->n_children == 0 && p_hn->n_views == 0) { | |
| if (ggml_is_view(parent)) { | |
| struct ggml_tensor * view_src = get_view_source(parent); | |
| struct hash_node * view_src_hn = hash_get(ht, view_src); | |
| view_src_hn->n_views -= 1; | |
| AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views); | |
| if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) { | |
| ggml_allocator_free_tensor(alloc, view_src); | |
| } | |
| } | |
| else { | |
| if (parent->data != node->data) { | |
| ggml_allocator_free_tensor(alloc, parent); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| AT_PRINTF("\n"); | |
| if (alloc->parse_seq_len) { | |
| last_barrier_pos = ind + 1; | |
| } | |
| } | |
| } | |
| // free graph outputs here that wouldn't be freed otherwise because they have no children | |
| if (outputs != NULL && outputs[g] != NULL) { | |
| for (int i = 0; outputs[g][i] != NULL; i++) { | |
| struct ggml_tensor * output = outputs[g][i]; | |
| AT_PRINTF("output: %s\n", output->name); | |
| ggml_allocator_free_tensor(alloc, output); | |
| } | |
| } | |
| } | |
| return alloc->max_size; | |
| } | |
| size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) { | |
| return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL); | |
| } | |