Spaces:
Running
Running
talk-llama : sync llama.cpp
Browse files- examples/talk-llama/llama.cpp +219 -51
- examples/talk-llama/llama.h +3 -2
examples/talk-llama/llama.cpp
CHANGED
|
@@ -179,6 +179,7 @@ enum llm_arch {
|
|
| 179 |
LLM_ARCH_COMMAND_R,
|
| 180 |
LLM_ARCH_DBRX,
|
| 181 |
LLM_ARCH_OLMO,
|
|
|
|
| 182 |
LLM_ARCH_OLMOE,
|
| 183 |
LLM_ARCH_OPENELM,
|
| 184 |
LLM_ARCH_ARCTIC,
|
|
@@ -232,6 +233,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|
| 232 |
{ LLM_ARCH_COMMAND_R, "command-r" },
|
| 233 |
{ LLM_ARCH_DBRX, "dbrx" },
|
| 234 |
{ LLM_ARCH_OLMO, "olmo" },
|
|
|
|
| 235 |
{ LLM_ARCH_OLMOE, "olmoe" },
|
| 236 |
{ LLM_ARCH_OPENELM, "openelm" },
|
| 237 |
{ LLM_ARCH_ARCTIC, "arctic" },
|
|
@@ -1207,6 +1209,25 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
|
| 1207 |
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
| 1208 |
},
|
| 1209 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1210 |
{
|
| 1211 |
LLM_ARCH_OLMOE,
|
| 1212 |
{
|
|
@@ -2907,9 +2928,15 @@ struct llama_model {
|
|
| 2907 |
// for quantize-stats only
|
| 2908 |
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
|
| 2909 |
|
| 2910 |
-
int64_t t_load_us
|
| 2911 |
int64_t t_start_us = 0;
|
| 2912 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2913 |
// keep track of loaded lora adapters
|
| 2914 |
std::set<struct llama_lora_adapter *> lora_adapters;
|
| 2915 |
|
|
@@ -3454,21 +3481,13 @@ static bool llama_kv_cache_init(
|
|
| 3454 |
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
| 3455 |
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
| 3456 |
|
| 3457 |
-
|
| 3458 |
if (offload) {
|
| 3459 |
-
|
|
|
|
| 3460 |
} else {
|
| 3461 |
-
|
| 3462 |
}
|
| 3463 |
-
ggml_backend_buffer_type_t buft = select_buft(*buft_list,
|
| 3464 |
-
[&](ggml_context * ctx) {
|
| 3465 |
-
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
| 3466 |
-
if (hparams.rope_type == LLAMA_ROPE_TYPE_NONE) {
|
| 3467 |
-
return k;
|
| 3468 |
-
}
|
| 3469 |
-
ggml_tensor * p = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
|
| 3470 |
-
return ggml_rope(ctx, k, p, hparams.n_rot, hparams.rope_type);
|
| 3471 |
-
});
|
| 3472 |
ggml_context * ctx = ctx_for_buft(buft);
|
| 3473 |
|
| 3474 |
if (!ctx) {
|
|
@@ -4275,8 +4294,8 @@ struct llama_model_loader {
|
|
| 4275 |
int n_tensors = 0;
|
| 4276 |
int n_created = 0;
|
| 4277 |
|
| 4278 |
-
|
| 4279 |
-
size_t n_bytes
|
| 4280 |
|
| 4281 |
bool use_mmap = false;
|
| 4282 |
bool check_tensors;
|
|
@@ -5344,6 +5363,11 @@ static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
|
|
| 5344 |
}
|
| 5345 |
}
|
| 5346 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5347 |
static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
|
| 5348 |
model.arch = ml.get_arch();
|
| 5349 |
if (model.arch == LLM_ARCH_UNKNOWN) {
|
|
@@ -5874,6 +5898,17 @@ static void llm_load_hparams(
|
|
| 5874 |
default: model.type = e_model::MODEL_UNKNOWN;
|
| 5875 |
}
|
| 5876 |
} break;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5877 |
case LLM_ARCH_OLMOE:
|
| 5878 |
{
|
| 5879 |
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
@@ -7254,7 +7289,7 @@ static llama_model::buft_list_t make_cpu_buft_list(llama_model & model) {
|
|
| 7254 |
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
| 7255 |
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
|
| 7256 |
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
|
| 7257 |
-
ggml_backend_reg_get_proc_address(cpu_reg, "
|
| 7258 |
if (ggml_backend_dev_get_extra_bufts_fn) {
|
| 7259 |
ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
|
| 7260 |
while (extra_bufts && *extra_bufts) {
|
|
@@ -7521,7 +7556,7 @@ static bool llm_load_tensors(
|
|
| 7521 |
|
| 7522 |
// avoid using a host buffer when using mmap
|
| 7523 |
auto * buft_dev = ggml_backend_buft_get_device(buft);
|
| 7524 |
-
if (ml.use_mmap && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
|
| 7525 |
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
| 7526 |
buft = ggml_backend_dev_buffer_type(cpu_dev);
|
| 7527 |
}
|
|
@@ -8556,6 +8591,31 @@ static bool llm_load_tensors(
|
|
| 8556 |
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
| 8557 |
}
|
| 8558 |
} break;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8559 |
case LLM_ARCH_OLMOE:
|
| 8560 |
{
|
| 8561 |
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
@@ -9128,6 +9188,10 @@ static bool llm_load_tensors(
|
|
| 9128 |
|
| 9129 |
// check if it is possible to use buffer_from_host_ptr with this buffer type
|
| 9130 |
ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9131 |
ggml_backend_dev_props props;
|
| 9132 |
ggml_backend_dev_get_props(dev, &props);
|
| 9133 |
bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
|
|
@@ -9252,6 +9316,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|
|
| 9252 |
throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
|
| 9253 |
}
|
| 9254 |
|
|
|
|
| 9255 |
llm_load_print_meta(ml, model);
|
| 9256 |
|
| 9257 |
if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
|
|
@@ -14416,6 +14481,130 @@ struct llm_build_context {
|
|
| 14416 |
return gf;
|
| 14417 |
}
|
| 14418 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14419 |
// based on the build_qwen2moe() function, changes:
|
| 14420 |
// * removed shared experts
|
| 14421 |
// * removed bias
|
|
@@ -16608,6 +16797,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|
| 16608 |
{
|
| 16609 |
result = llm.build_olmo();
|
| 16610 |
} break;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16611 |
case LLM_ARCH_OLMOE:
|
| 16612 |
{
|
| 16613 |
result = llm.build_olmoe();
|
|
@@ -18020,7 +18213,7 @@ static void llama_kv_cache_update_internal(struct llama_context & lctx) {
|
|
| 18020 |
|
| 18021 |
// apply K-shift if needed
|
| 18022 |
if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
|
| 18023 |
-
if (lctx
|
| 18024 |
GGML_ABORT("Deepseek2 does not support K-shift");
|
| 18025 |
}
|
| 18026 |
|
|
@@ -18597,6 +18790,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
| 18597 |
llama_model model;
|
| 18598 |
llm_load_arch(ml, model);
|
| 18599 |
llm_load_hparams(ml, model);
|
|
|
|
| 18600 |
|
| 18601 |
struct quantize_state_internal qs(model, params);
|
| 18602 |
|
|
@@ -19876,6 +20070,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|
| 19876 |
case LLM_ARCH_QWEN:
|
| 19877 |
case LLM_ARCH_QWEN2:
|
| 19878 |
case LLM_ARCH_QWEN2MOE:
|
|
|
|
| 19879 |
case LLM_ARCH_OLMOE:
|
| 19880 |
case LLM_ARCH_PHI2:
|
| 19881 |
case LLM_ARCH_PHI3:
|
|
@@ -19949,19 +20144,11 @@ int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t bu
|
|
| 19949 |
}
|
| 19950 |
|
| 19951 |
uint64_t llama_model_size(const struct llama_model * model) {
|
| 19952 |
-
|
| 19953 |
-
for (const auto & it : model->tensors_by_name) {
|
| 19954 |
-
size += ggml_nbytes(it.second);
|
| 19955 |
-
}
|
| 19956 |
-
return size;
|
| 19957 |
}
|
| 19958 |
|
| 19959 |
uint64_t llama_model_n_params(const struct llama_model * model) {
|
| 19960 |
-
|
| 19961 |
-
for (const auto & it : model->tensors_by_name) {
|
| 19962 |
-
nparams += ggml_nelements(it.second);
|
| 19963 |
-
}
|
| 19964 |
-
return nparams;
|
| 19965 |
}
|
| 19966 |
|
| 19967 |
struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
|
|
@@ -20275,6 +20462,10 @@ void llama_kv_cache_update(struct llama_context * ctx) {
|
|
| 20275 |
llama_kv_cache_update_internal(*ctx);
|
| 20276 |
}
|
| 20277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20278 |
// deprecated
|
| 20279 |
size_t llama_get_state_size(struct llama_context * ctx) {
|
| 20280 |
return llama_state_get_size(ctx);
|
|
@@ -22021,7 +22212,6 @@ const char * llama_print_system_info(void) {
|
|
| 22021 |
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
|
| 22022 |
s += "RISCV_VECT = " + std::to_string(ggml_cpu_has_riscv_v()) + " | ";
|
| 22023 |
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
|
| 22024 |
-
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
|
| 22025 |
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
|
| 22026 |
s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
|
| 22027 |
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
|
|
@@ -22067,28 +22257,6 @@ void llama_perf_context_reset(struct llama_context * ctx) {
|
|
| 22067 |
ctx->t_p_eval_us = ctx->n_p_eval = 0;
|
| 22068 |
}
|
| 22069 |
|
| 22070 |
-
void llama_perf_dump_yaml(FILE * stream, const llama_context * ctx) {
|
| 22071 |
-
fprintf(stream, "\n");
|
| 22072 |
-
fprintf(stream, "###########\n");
|
| 22073 |
-
fprintf(stream, "# Timings #\n");
|
| 22074 |
-
fprintf(stream, "###########\n");
|
| 22075 |
-
fprintf(stream, "\n");
|
| 22076 |
-
|
| 22077 |
-
fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
|
| 22078 |
-
1.0e-3 * ctx->t_eval_us / ctx->n_eval);
|
| 22079 |
-
fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
|
| 22080 |
-
1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
|
| 22081 |
-
fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
|
| 22082 |
-
fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
|
| 22083 |
-
fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
|
| 22084 |
-
fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
|
| 22085 |
-
fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
|
| 22086 |
-
fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
|
| 22087 |
-
1.0e6 * ctx->n_eval / ctx->t_eval_us);
|
| 22088 |
-
fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
|
| 22089 |
-
1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
|
| 22090 |
-
}
|
| 22091 |
-
|
| 22092 |
// For internal test use
|
| 22093 |
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
|
| 22094 |
struct llama_context * ctx
|
|
|
|
| 179 |
LLM_ARCH_COMMAND_R,
|
| 180 |
LLM_ARCH_DBRX,
|
| 181 |
LLM_ARCH_OLMO,
|
| 182 |
+
LLM_ARCH_OLMO_1124,
|
| 183 |
LLM_ARCH_OLMOE,
|
| 184 |
LLM_ARCH_OPENELM,
|
| 185 |
LLM_ARCH_ARCTIC,
|
|
|
|
| 233 |
{ LLM_ARCH_COMMAND_R, "command-r" },
|
| 234 |
{ LLM_ARCH_DBRX, "dbrx" },
|
| 235 |
{ LLM_ARCH_OLMO, "olmo" },
|
| 236 |
+
{ LLM_ARCH_OLMO_1124, "olmo_1124" },
|
| 237 |
{ LLM_ARCH_OLMOE, "olmoe" },
|
| 238 |
{ LLM_ARCH_OPENELM, "openelm" },
|
| 239 |
{ LLM_ARCH_ARCTIC, "arctic" },
|
|
|
|
| 1209 |
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
| 1210 |
},
|
| 1211 |
},
|
| 1212 |
+
{
|
| 1213 |
+
LLM_ARCH_OLMO_1124,
|
| 1214 |
+
{
|
| 1215 |
+
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
| 1216 |
+
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
| 1217 |
+
{ LLM_TENSOR_OUTPUT, "output" },
|
| 1218 |
+
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
| 1219 |
+
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
| 1220 |
+
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
| 1221 |
+
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
| 1222 |
+
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
|
| 1223 |
+
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
| 1224 |
+
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
| 1225 |
+
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
| 1226 |
+
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
| 1227 |
+
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
| 1228 |
+
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
| 1229 |
+
},
|
| 1230 |
+
},
|
| 1231 |
{
|
| 1232 |
LLM_ARCH_OLMOE,
|
| 1233 |
{
|
|
|
|
| 2928 |
// for quantize-stats only
|
| 2929 |
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
|
| 2930 |
|
| 2931 |
+
int64_t t_load_us = 0;
|
| 2932 |
int64_t t_start_us = 0;
|
| 2933 |
|
| 2934 |
+
// total number of parameters in the model
|
| 2935 |
+
uint64_t n_elements = 0;
|
| 2936 |
+
|
| 2937 |
+
// total size of all the tensors in the model in bytes
|
| 2938 |
+
size_t n_bytes = 0;
|
| 2939 |
+
|
| 2940 |
// keep track of loaded lora adapters
|
| 2941 |
std::set<struct llama_lora_adapter *> lora_adapters;
|
| 2942 |
|
|
|
|
| 3481 |
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
| 3482 |
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
| 3483 |
|
| 3484 |
+
ggml_backend_buffer_type_t buft;
|
| 3485 |
if (offload) {
|
| 3486 |
+
auto * dev = model.dev_layer.at(i).dev;
|
| 3487 |
+
buft = ggml_backend_dev_buffer_type(dev);
|
| 3488 |
} else {
|
| 3489 |
+
buft = ggml_backend_cpu_buffer_type();
|
| 3490 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3491 |
ggml_context * ctx = ctx_for_buft(buft);
|
| 3492 |
|
| 3493 |
if (!ctx) {
|
|
|
|
| 4294 |
int n_tensors = 0;
|
| 4295 |
int n_created = 0;
|
| 4296 |
|
| 4297 |
+
uint64_t n_elements = 0;
|
| 4298 |
+
size_t n_bytes = 0;
|
| 4299 |
|
| 4300 |
bool use_mmap = false;
|
| 4301 |
bool check_tensors;
|
|
|
|
| 5363 |
}
|
| 5364 |
}
|
| 5365 |
|
| 5366 |
+
static void llm_load_stats(llama_model_loader & ml, llama_model & model) {
|
| 5367 |
+
model.n_elements = ml.n_elements;
|
| 5368 |
+
model.n_bytes = ml.n_bytes;
|
| 5369 |
+
}
|
| 5370 |
+
|
| 5371 |
static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
|
| 5372 |
model.arch = ml.get_arch();
|
| 5373 |
if (model.arch == LLM_ARCH_UNKNOWN) {
|
|
|
|
| 5898 |
default: model.type = e_model::MODEL_UNKNOWN;
|
| 5899 |
}
|
| 5900 |
} break;
|
| 5901 |
+
case LLM_ARCH_OLMO_1124:
|
| 5902 |
+
{
|
| 5903 |
+
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
| 5904 |
+
|
| 5905 |
+
switch (hparams.n_layer) {
|
| 5906 |
+
case 16: model.type = e_model::MODEL_1B; break;
|
| 5907 |
+
case 32: model.type = e_model::MODEL_7B; break;
|
| 5908 |
+
case 40: model.type = e_model::MODEL_13B; break;
|
| 5909 |
+
default: model.type = e_model::MODEL_UNKNOWN;
|
| 5910 |
+
}
|
| 5911 |
+
} break;
|
| 5912 |
case LLM_ARCH_OLMOE:
|
| 5913 |
{
|
| 5914 |
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
|
|
| 7289 |
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
| 7290 |
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
|
| 7291 |
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
|
| 7292 |
+
ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
|
| 7293 |
if (ggml_backend_dev_get_extra_bufts_fn) {
|
| 7294 |
ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
|
| 7295 |
while (extra_bufts && *extra_bufts) {
|
|
|
|
| 7556 |
|
| 7557 |
// avoid using a host buffer when using mmap
|
| 7558 |
auto * buft_dev = ggml_backend_buft_get_device(buft);
|
| 7559 |
+
if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
|
| 7560 |
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
| 7561 |
buft = ggml_backend_dev_buffer_type(cpu_dev);
|
| 7562 |
}
|
|
|
|
| 8591 |
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
| 8592 |
}
|
| 8593 |
} break;
|
| 8594 |
+
case LLM_ARCH_OLMO_1124:
|
| 8595 |
+
{
|
| 8596 |
+
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
| 8597 |
+
|
| 8598 |
+
// output
|
| 8599 |
+
model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
| 8600 |
+
model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
|
| 8601 |
+
|
| 8602 |
+
for (int i = 0; i < n_layer; ++i) {
|
| 8603 |
+
auto & layer = model.layers[i];
|
| 8604 |
+
|
| 8605 |
+
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
|
| 8606 |
+
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
|
| 8607 |
+
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
|
| 8608 |
+
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
|
| 8609 |
+
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
|
| 8610 |
+
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
|
| 8611 |
+
layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
|
| 8612 |
+
|
| 8613 |
+
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
| 8614 |
+
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
| 8615 |
+
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
| 8616 |
+
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
|
| 8617 |
+
}
|
| 8618 |
+
} break;
|
| 8619 |
case LLM_ARCH_OLMOE:
|
| 8620 |
{
|
| 8621 |
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
|
|
| 9188 |
|
| 9189 |
// check if it is possible to use buffer_from_host_ptr with this buffer type
|
| 9190 |
ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
|
| 9191 |
+
if (!dev) {
|
| 9192 |
+
// FIXME: workaround for CPU backend buft having a NULL device
|
| 9193 |
+
dev = ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0);
|
| 9194 |
+
}
|
| 9195 |
ggml_backend_dev_props props;
|
| 9196 |
ggml_backend_dev_get_props(dev, &props);
|
| 9197 |
bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
|
|
|
|
| 9316 |
throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
|
| 9317 |
}
|
| 9318 |
|
| 9319 |
+
llm_load_stats(ml, model);
|
| 9320 |
llm_load_print_meta(ml, model);
|
| 9321 |
|
| 9322 |
if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
|
|
|
|
| 14481 |
return gf;
|
| 14482 |
}
|
| 14483 |
|
| 14484 |
+
struct ggml_cgraph * build_olmo_1124() {
|
| 14485 |
+
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
| 14486 |
+
|
| 14487 |
+
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
| 14488 |
+
int32_t n_tokens = this->n_tokens;
|
| 14489 |
+
|
| 14490 |
+
const int64_t n_embd_head = hparams.n_embd_head_v;
|
| 14491 |
+
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
| 14492 |
+
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
| 14493 |
+
|
| 14494 |
+
struct ggml_tensor * cur;
|
| 14495 |
+
struct ggml_tensor * inpL;
|
| 14496 |
+
|
| 14497 |
+
inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
|
| 14498 |
+
|
| 14499 |
+
// inp_pos - contains the positions
|
| 14500 |
+
struct ggml_tensor * inp_pos = build_inp_pos();
|
| 14501 |
+
|
| 14502 |
+
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
| 14503 |
+
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
| 14504 |
+
|
| 14505 |
+
for (int il = 0; il < n_layer; ++il) {
|
| 14506 |
+
struct ggml_tensor * inpSA = inpL;
|
| 14507 |
+
|
| 14508 |
+
cur = inpL;
|
| 14509 |
+
|
| 14510 |
+
// self_attention
|
| 14511 |
+
{
|
| 14512 |
+
// compute Q and K and RoPE them
|
| 14513 |
+
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
| 14514 |
+
cb(Qcur, "Qcur", il);
|
| 14515 |
+
|
| 14516 |
+
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
| 14517 |
+
cb(Kcur, "Kcur", il);
|
| 14518 |
+
|
| 14519 |
+
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
| 14520 |
+
cb(Vcur, "Vcur", il);
|
| 14521 |
+
|
| 14522 |
+
Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, NULL,
|
| 14523 |
+
LLM_NORM_RMS, cb, il);
|
| 14524 |
+
cb(Qcur, "Qcur_normed", il);
|
| 14525 |
+
|
| 14526 |
+
Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, NULL,
|
| 14527 |
+
LLM_NORM_RMS, cb, il);
|
| 14528 |
+
cb(Kcur, "Kcur_normed", il);
|
| 14529 |
+
|
| 14530 |
+
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
| 14531 |
+
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
| 14532 |
+
|
| 14533 |
+
Qcur = ggml_rope_ext(
|
| 14534 |
+
ctx0, Qcur, inp_pos, nullptr,
|
| 14535 |
+
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
| 14536 |
+
ext_factor, attn_factor, beta_fast, beta_slow
|
| 14537 |
+
);
|
| 14538 |
+
cb(Qcur, "Qcur_rope", il);
|
| 14539 |
+
|
| 14540 |
+
Kcur = ggml_rope_ext(
|
| 14541 |
+
ctx0, Kcur, inp_pos, nullptr,
|
| 14542 |
+
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
| 14543 |
+
ext_factor, attn_factor, beta_fast, beta_slow
|
| 14544 |
+
);
|
| 14545 |
+
cb(Kcur, "Kcur_rope", il);
|
| 14546 |
+
|
| 14547 |
+
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
| 14548 |
+
model.layers[il].wo, NULL,
|
| 14549 |
+
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
| 14550 |
+
}
|
| 14551 |
+
|
| 14552 |
+
cur = llm_build_norm(ctx0, cur, hparams,
|
| 14553 |
+
model.layers[il].attn_post_norm, NULL,
|
| 14554 |
+
LLM_NORM_RMS, cb, il);
|
| 14555 |
+
cb(cur, "attn_post_norm", il);
|
| 14556 |
+
|
| 14557 |
+
if (il == n_layer - 1) {
|
| 14558 |
+
// skip computing output for unused tokens
|
| 14559 |
+
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
| 14560 |
+
n_tokens = n_outputs;
|
| 14561 |
+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
| 14562 |
+
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
| 14563 |
+
}
|
| 14564 |
+
|
| 14565 |
+
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
| 14566 |
+
cb(ffn_inp, "ffn_inp", il);
|
| 14567 |
+
|
| 14568 |
+
// feed-forward network
|
| 14569 |
+
cur = llm_build_ffn(ctx0, lctx, ffn_inp,
|
| 14570 |
+
model.layers[il].ffn_up, NULL, NULL,
|
| 14571 |
+
model.layers[il].ffn_gate, NULL, NULL,
|
| 14572 |
+
model.layers[il].ffn_down, NULL, NULL,
|
| 14573 |
+
NULL,
|
| 14574 |
+
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
| 14575 |
+
cb(cur, "ffn_out", il);
|
| 14576 |
+
|
| 14577 |
+
cur = llm_build_norm(ctx0, cur, hparams,
|
| 14578 |
+
model.layers[il].ffn_post_norm, NULL,
|
| 14579 |
+
LLM_NORM_RMS, cb, -1);
|
| 14580 |
+
cb(cur, "ffn_post_norm", -1);
|
| 14581 |
+
|
| 14582 |
+
cur = ggml_add(ctx0, cur, ffn_inp);
|
| 14583 |
+
cb(cur, "ffn_out", il);
|
| 14584 |
+
|
| 14585 |
+
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
| 14586 |
+
cb(cur, "l_out", il);
|
| 14587 |
+
|
| 14588 |
+
// input for next layer
|
| 14589 |
+
inpL = cur;
|
| 14590 |
+
}
|
| 14591 |
+
|
| 14592 |
+
cur = inpL;
|
| 14593 |
+
|
| 14594 |
+
cur = llm_build_norm(ctx0, cur, hparams,
|
| 14595 |
+
model.output_norm, NULL,
|
| 14596 |
+
LLM_NORM_RMS, cb, -1);
|
| 14597 |
+
cb(cur, "result_norm", -1);
|
| 14598 |
+
|
| 14599 |
+
// lm_head
|
| 14600 |
+
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
| 14601 |
+
cb(cur, "result_output", -1);
|
| 14602 |
+
|
| 14603 |
+
ggml_build_forward_expand(gf, cur);
|
| 14604 |
+
|
| 14605 |
+
return gf;
|
| 14606 |
+
}
|
| 14607 |
+
|
| 14608 |
// based on the build_qwen2moe() function, changes:
|
| 14609 |
// * removed shared experts
|
| 14610 |
// * removed bias
|
|
|
|
| 16797 |
{
|
| 16798 |
result = llm.build_olmo();
|
| 16799 |
} break;
|
| 16800 |
+
case LLM_ARCH_OLMO_1124:
|
| 16801 |
+
{
|
| 16802 |
+
result = llm.build_olmo_1124();
|
| 16803 |
+
} break;
|
| 16804 |
case LLM_ARCH_OLMOE:
|
| 16805 |
{
|
| 16806 |
result = llm.build_olmoe();
|
|
|
|
| 18213 |
|
| 18214 |
// apply K-shift if needed
|
| 18215 |
if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
|
| 18216 |
+
if (!llama_kv_cache_can_shift(&lctx)) {
|
| 18217 |
GGML_ABORT("Deepseek2 does not support K-shift");
|
| 18218 |
}
|
| 18219 |
|
|
|
|
| 18790 |
llama_model model;
|
| 18791 |
llm_load_arch(ml, model);
|
| 18792 |
llm_load_hparams(ml, model);
|
| 18793 |
+
llm_load_stats(ml, model);
|
| 18794 |
|
| 18795 |
struct quantize_state_internal qs(model, params);
|
| 18796 |
|
|
|
|
| 20070 |
case LLM_ARCH_QWEN:
|
| 20071 |
case LLM_ARCH_QWEN2:
|
| 20072 |
case LLM_ARCH_QWEN2MOE:
|
| 20073 |
+
case LLM_ARCH_OLMO_1124:
|
| 20074 |
case LLM_ARCH_OLMOE:
|
| 20075 |
case LLM_ARCH_PHI2:
|
| 20076 |
case LLM_ARCH_PHI3:
|
|
|
|
| 20144 |
}
|
| 20145 |
|
| 20146 |
uint64_t llama_model_size(const struct llama_model * model) {
|
| 20147 |
+
return model->n_bytes;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20148 |
}
|
| 20149 |
|
| 20150 |
uint64_t llama_model_n_params(const struct llama_model * model) {
|
| 20151 |
+
return model->n_elements;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20152 |
}
|
| 20153 |
|
| 20154 |
struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
|
|
|
|
| 20462 |
llama_kv_cache_update_internal(*ctx);
|
| 20463 |
}
|
| 20464 |
|
| 20465 |
+
bool llama_kv_cache_can_shift(struct llama_context * ctx) {
|
| 20466 |
+
return ctx->model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
|
| 20467 |
+
}
|
| 20468 |
+
|
| 20469 |
// deprecated
|
| 20470 |
size_t llama_get_state_size(struct llama_context * ctx) {
|
| 20471 |
return llama_state_get_size(ctx);
|
|
|
|
| 22212 |
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
|
| 22213 |
s += "RISCV_VECT = " + std::to_string(ggml_cpu_has_riscv_v()) + " | ";
|
| 22214 |
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
|
|
|
|
| 22215 |
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
|
| 22216 |
s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
|
| 22217 |
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
|
|
|
|
| 22257 |
ctx->t_p_eval_us = ctx->n_p_eval = 0;
|
| 22258 |
}
|
| 22259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22260 |
// For internal test use
|
| 22261 |
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
|
| 22262 |
struct llama_context * ctx
|
examples/talk-llama/llama.h
CHANGED
|
@@ -667,6 +667,9 @@ extern "C" {
|
|
| 667 |
// Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
|
| 668 |
LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
|
| 669 |
|
|
|
|
|
|
|
|
|
|
| 670 |
//
|
| 671 |
// State / sessions
|
| 672 |
//
|
|
@@ -1244,8 +1247,6 @@ extern "C" {
|
|
| 1244 |
LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
|
| 1245 |
LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
|
| 1246 |
|
| 1247 |
-
LLAMA_API void llama_perf_dump_yaml(FILE * stream, const struct llama_context * ctx);
|
| 1248 |
-
|
| 1249 |
#ifdef __cplusplus
|
| 1250 |
}
|
| 1251 |
#endif
|
|
|
|
| 667 |
// Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
|
| 668 |
LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
|
| 669 |
|
| 670 |
+
// Check if the context supports KV cache shifting
|
| 671 |
+
LLAMA_API bool llama_kv_cache_can_shift(struct llama_context * ctx);
|
| 672 |
+
|
| 673 |
//
|
| 674 |
// State / sessions
|
| 675 |
//
|
|
|
|
| 1247 |
LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
|
| 1248 |
LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
|
| 1249 |
|
|
|
|
|
|
|
| 1250 |
#ifdef __cplusplus
|
| 1251 |
}
|
| 1252 |
#endif
|