ggerganov commited on
Commit
4d3c293
·
unverified ·
1 Parent(s): 5ef0168

examples : add "command" tool (#171)

Browse files
.gitignore CHANGED
@@ -13,6 +13,7 @@ build-sanitize-thread/
13
 
14
  main
15
  stream
 
16
  bench
17
  sync.sh
18
  compile_commands.json
 
13
 
14
  main
15
  stream
16
+ command
17
  bench
18
  sync.sh
19
  compile_commands.json
Makefile CHANGED
@@ -134,7 +134,7 @@ libwhisper.so: ggml.o whisper.o
134
  $(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o whisper.o $(LDFLAGS)
135
 
136
  clean:
137
- rm -f *.o main stream bench libwhisper.a libwhisper.so
138
 
139
  #
140
  # Examples
@@ -149,6 +149,9 @@ main: examples/main/main.cpp ggml.o whisper.o
149
  stream: examples/stream/stream.cpp ggml.o whisper.o
150
  $(CXX) $(CXXFLAGS) examples/stream/stream.cpp ggml.o whisper.o -o stream $(CC_SDL) $(LDFLAGS)
151
 
 
 
 
152
  bench: examples/bench/bench.cpp ggml.o whisper.o
153
  $(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o whisper.o -o bench $(LDFLAGS)
154
 
 
134
  $(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o whisper.o $(LDFLAGS)
135
 
136
  clean:
137
+ rm -f *.o main stream command bench libwhisper.a libwhisper.so
138
 
139
  #
140
  # Examples
 
149
  stream: examples/stream/stream.cpp ggml.o whisper.o
150
  $(CXX) $(CXXFLAGS) examples/stream/stream.cpp ggml.o whisper.o -o stream $(CC_SDL) $(LDFLAGS)
151
 
152
+ command: examples/command/command.cpp ggml.o whisper.o
153
+ $(CXX) $(CXXFLAGS) examples/command/command.cpp ggml.o whisper.o -o command $(CC_SDL) $(LDFLAGS)
154
+
155
  bench: examples/bench/bench.cpp ggml.o whisper.o
156
  $(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o whisper.o -o bench $(LDFLAGS)
157
 
README.md CHANGED
@@ -98,26 +98,27 @@ c++ -I. -I./examples -O3 -std=c++11 -pthread examples/main/main.cpp whisper.o gg
98
  usage: ./main [options] file0.wav file1.wav ...
99
 
100
  options:
101
- -h, --help show this help message and exit
102
- -t N, --threads N number of threads to use during computation (default: 4)
103
- -p N, --processors N number of processors to use during computation (default: 1)
104
- -ot N, --offset-t N time offset in milliseconds (default: 0)
105
- -on N, --offset-n N segment index offset (default: 0)
106
- -mc N, --max-context N maximum number of text context tokens to store (default: max)
107
- -ml N, --max-len N maximum segment length in characters (default: 0)
108
- -wt N, --word-thold N word timestamp probability threshold (default: 0.010000)
109
- -v, --verbose verbose output
110
- --translate translate from source language to english
111
- -otxt, --output-txt output result in a text file
112
- -ovtt, --output-vtt output result in a vtt file
113
- -osrt, --output-srt output result in a srt file
114
- -owts, --output-words output script for generating karaoke video
115
- -ps, --print_special print special tokens
116
- -pc, --print_colors print colors
117
- -nt, --no_timestamps do not print timestamps
118
- -l LANG, --language LANG spoken language (default: en)
119
- -m FNAME, --model FNAME model path (default: models/ggml-base.en.bin)
120
- -f FNAME, --file FNAME input WAV file path
 
121
 
122
  bash ./models/download-ggml-model.sh base.en
123
  Downloading ggml model base.en ...
@@ -149,13 +150,13 @@ whisper_model_load: n_text_layer = 6
149
  whisper_model_load: n_mels = 80
150
  whisper_model_load: f16 = 1
151
  whisper_model_load: type = 2
152
- whisper_model_load: mem_required = 670.00 MB
153
  whisper_model_load: adding 1607 extra tokens
154
- whisper_model_load: ggml ctx size = 140.60 MB
155
- whisper_model_load: memory size = 22.83 MB
156
- whisper_model_load: model size = 140.54 MB
 
157
 
158
- system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
159
 
160
  main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
161
 
 
98
  usage: ./main [options] file0.wav file1.wav ...
99
 
100
  options:
101
+ -h, --help [default] show this help message and exit
102
+ -t N, --threads N [4 ] number of threads to use during computation
103
+ -p N, --processors N [1 ] number of processors to use during computation
104
+ -ot N, --offset-t N [0 ] time offset in milliseconds
105
+ -on N, --offset-n N [0 ] segment index offset
106
+ -d N, --duration N [0 ] duration of audio to process in milliseconds
107
+ -mc N, --max-context N [-1 ] maximum number of text context tokens to store
108
+ -ml N, --max-len N [0 ] maximum segment length in characters
109
+ -wt N, --word-thold N [0.01 ] word timestamp probability threshold
110
+ -su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
111
+ -tr, --translate [false ] translate from source language to english
112
+ -otxt, --output-txt [false ] output result in a text file
113
+ -ovtt, --output-vtt [false ] output result in a vtt file
114
+ -osrt, --output-srt [false ] output result in a srt file
115
+ -owts, --output-words [false ] output script for generating karaoke video
116
+ -ps, --print-special [false ] print special tokens
117
+ -pc, --print-colors [false ] print colors
118
+ -nt, --no-timestamps [true ] do not print timestamps
119
+ -l LANG, --language LANG [en ] spoken language
120
+ -m FNAME, --model FNAME [models/ggml-base.en.bin] model path
121
+ -f FNAME, --file FNAME [ ] input WAV file path
122
 
123
  bash ./models/download-ggml-model.sh base.en
124
  Downloading ggml model base.en ...
 
150
  whisper_model_load: n_mels = 80
151
  whisper_model_load: f16 = 1
152
  whisper_model_load: type = 2
 
153
  whisper_model_load: adding 1607 extra tokens
154
+ whisper_model_load: mem_required = 506.00 MB
155
+ whisper_model_load: ggml ctx size = 140.60 MB
156
+ whisper_model_load: memory size = 22.83 MB
157
+ whisper_model_load: model size = 140.54 MB
158
 
159
+ system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
160
 
161
  main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
162
 
examples/CMakeLists.txt CHANGED
@@ -24,5 +24,6 @@ if (EMSCRIPTEN)
24
  else()
25
  add_subdirectory(main)
26
  add_subdirectory(stream)
 
27
  add_subdirectory(bench)
28
  endif()
 
24
  else()
25
  add_subdirectory(main)
26
  add_subdirectory(stream)
27
+ add_subdirectory(command)
28
  add_subdirectory(bench)
29
  endif()
examples/command/CMakeLists.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ if (WHISPER_SUPPORT_SDL2)
2
+ # command
3
+ set(TARGET command)
4
+ add_executable(${TARGET} command.cpp)
5
+ target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
6
+ target_link_libraries(${TARGET} PRIVATE whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
7
+ endif ()
examples/command/README.md ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # command
2
+
3
+ This is a basic Voice Assistant example that accepts voice commands from the microphone.
4
+ More info is available in [issue #171](https://github.com/ggerganov/whisper.cpp/issues/171).
5
+
6
+ ```java
7
+ # Run with default arguments and small model
8
+ ./command -m ./models/ggml-small.en.bin -t 8
9
+
10
+ # On Raspberry Pi, use tiny or base models + "-ac 768" for better performance
11
+ ./bin/command -m ../models/ggml-tiny.en.bin -ac 768
12
+ ```
13
+
14
+ ## Building
15
+
16
+ The `command` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
17
+
18
+ ```bash
19
+ # Install SDL2 on Linux
20
+ sudo apt-get install libsdl2-dev
21
+
22
+ # Install SDL2 on Mac OS
23
+ brew install sdl2
24
+
25
+ make command
26
+ ```
examples/command/command.cpp ADDED
@@ -0,0 +1,646 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Voice assistant example
2
+ //
3
+ // Speak short text commands to the microphone.
4
+ // This program will detect your voice command and convert them to text.
5
+ //
6
+ // ref: https://github.com/ggerganov/whisper.cpp/issues/171
7
+ //
8
+
9
+ #include "whisper.h"
10
+
11
+ #include <SDL.h>
12
+ #include <SDL_audio.h>
13
+
14
+ #include <cassert>
15
+ #include <cstdio>
16
+ #include <string>
17
+ #include <thread>
18
+ #include <vector>
19
+ #include <fstream>
20
+ #include <regex>
21
+
22
+ // command-line parameters
23
+ struct whisper_params {
24
+ int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
25
+ int32_t prompt_ms = 5000;
26
+ int32_t command_ms = 4000;
27
+ int32_t capture_id = -1;
28
+ int32_t max_tokens = 32;
29
+ int32_t audio_ctx = 0;
30
+
31
+ float vad_thold = 0.6f;
32
+ float freq_thold = 100.0f;
33
+
34
+ bool speed_up = false;
35
+ bool translate = false;
36
+ bool no_context = true;
37
+ bool print_special = false;
38
+ bool print_energy = false;
39
+ bool no_timestamps = true;
40
+
41
+ std::string language = "en";
42
+ std::string model = "models/ggml-base.en.bin";
43
+ std::string fname_out = "";
44
+ };
45
+
46
+ void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
47
+
48
+ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
49
+ for (int i = 1; i < argc; i++) {
50
+ std::string arg = argv[i];
51
+
52
+ if (arg == "-h" || arg == "--help") {
53
+ whisper_print_usage(argc, argv, params);
54
+ exit(0);
55
+ }
56
+ else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
57
+ else if (arg == "-pms" || arg == "--prompt-ms") { params.prompt_ms = std::stoi(argv[++i]); }
58
+ else if (arg == "-cms" || arg == "--command-ms") { params.command_ms = std::stoi(argv[++i]); }
59
+ else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
60
+ else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
61
+ else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
62
+ else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
63
+ else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
64
+ else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
65
+ else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
66
+ else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
67
+ else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
68
+ else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
69
+ else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
70
+ else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
71
+ else {
72
+ fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
73
+ whisper_print_usage(argc, argv, params);
74
+ exit(0);
75
+ }
76
+ }
77
+
78
+ return true;
79
+ }
80
+
81
+ void whisper_print_usage(int argc, char ** argv, const whisper_params & params) {
82
+ fprintf(stderr, "\n");
83
+ fprintf(stderr, "usage: %s [options]\n", argv[0]);
84
+ fprintf(stderr, "\n");
85
+ fprintf(stderr, "options:\n");
86
+ fprintf(stderr, " -h, --help [default] show this help message and exit\n");
87
+ fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
88
+ fprintf(stderr, " -pms N, --prompt-ms N [%-7d] prompt duration in milliseconds\n", params.prompt_ms);
89
+ fprintf(stderr, " -cms N, --command-ms N [%-7d] command duration in milliseconds\n", params.command_ms);
90
+ fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
91
+ fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
92
+ fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
93
+ fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
94
+ fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
95
+ fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
96
+ fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
97
+ fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
98
+ fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
99
+ fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
100
+ fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
101
+ fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
102
+ fprintf(stderr, "\n");
103
+ }
104
+
105
+ //
106
+ // SDL Audio capture
107
+ //
108
+
109
+ class audio_async {
110
+ public:
111
+ audio_async(int len_ms) {
112
+ m_len_ms = len_ms;
113
+ }
114
+
115
+ bool init(int capture_id, int sample_rate);
116
+
117
+ // start capturing audio via the provided SDL callback
118
+ // keep last len_ms seconds of audio in a circular buffer
119
+ bool resume();
120
+ bool pause();
121
+ bool clear();
122
+
123
+ // callback to be called by SDL
124
+ void callback(uint8_t * stream, int len);
125
+
126
+ // get audio data from the circular buffer
127
+ void get(int ms, std::vector<float> & audio);
128
+
129
+ private:
130
+ SDL_AudioDeviceID m_dev_id_in = 0;
131
+
132
+ int m_len_ms = 0;
133
+ int m_sample_rate = 0;
134
+
135
+ bool m_running = false;
136
+ std::mutex m_mutex;
137
+
138
+ std::vector<float> m_audio;
139
+ std::vector<float> m_audio_new;
140
+ size_t m_audio_pos = 0;
141
+ size_t m_audio_len = 0;
142
+ };
143
+
144
+ bool audio_async::init(int capture_id, int sample_rate) {
145
+ SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO);
146
+
147
+ if (SDL_Init(SDL_INIT_AUDIO) < 0) {
148
+ SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError());
149
+ return false;
150
+ }
151
+
152
+ SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE);
153
+
154
+ {
155
+ int nDevices = SDL_GetNumAudioDevices(SDL_TRUE);
156
+ fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices);
157
+ for (int i = 0; i < nDevices; i++) {
158
+ fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE));
159
+ }
160
+ }
161
+
162
+ SDL_AudioSpec capture_spec_requested;
163
+ SDL_AudioSpec capture_spec_obtained;
164
+
165
+ SDL_zero(capture_spec_requested);
166
+ SDL_zero(capture_spec_obtained);
167
+
168
+ capture_spec_requested.freq = sample_rate;
169
+ capture_spec_requested.format = AUDIO_F32;
170
+ capture_spec_requested.channels = 1;
171
+ capture_spec_requested.samples = 1024;
172
+ capture_spec_requested.callback = [](void * userdata, uint8_t * stream, int len) {
173
+ audio_async * audio = (audio_async *) userdata;
174
+ audio->callback(stream, len);
175
+ };
176
+ capture_spec_requested.userdata = this;
177
+
178
+ if (capture_id >= 0) {
179
+ fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE));
180
+ m_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
181
+ } else {
182
+ fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__);
183
+ m_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
184
+ }
185
+
186
+ if (!m_dev_id_in) {
187
+ fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError());
188
+ m_dev_id_in = 0;
189
+
190
+ return false;
191
+ } else {
192
+ fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, m_dev_id_in);
193
+ fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq);
194
+ fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format,
195
+ capture_spec_requested.format);
196
+ fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels,
197
+ capture_spec_requested.channels);
198
+ fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples);
199
+ }
200
+
201
+ m_sample_rate = capture_spec_obtained.freq;
202
+
203
+ m_audio.resize((m_sample_rate*m_len_ms)/1000);
204
+
205
+ return true;
206
+ }
207
+
208
+ bool audio_async::resume() {
209
+ if (!m_dev_id_in) {
210
+ fprintf(stderr, "%s: no audio device to resume!\n", __func__);
211
+ return false;
212
+ }
213
+
214
+ if (m_running) {
215
+ fprintf(stderr, "%s: already running!\n", __func__);
216
+ return false;
217
+ }
218
+
219
+ SDL_PauseAudioDevice(m_dev_id_in, 0);
220
+
221
+ m_running = true;
222
+
223
+ return true;
224
+ }
225
+
226
+ bool audio_async::pause() {
227
+ if (!m_dev_id_in) {
228
+ fprintf(stderr, "%s: no audio device to pause!\n", __func__);
229
+ return false;
230
+ }
231
+
232
+ if (!m_running) {
233
+ fprintf(stderr, "%s: already paused!\n", __func__);
234
+ return false;
235
+ }
236
+
237
+ SDL_PauseAudioDevice(m_dev_id_in, 1);
238
+
239
+ m_running = false;
240
+
241
+ return true;
242
+ }
243
+
244
+ bool audio_async::clear() {
245
+ if (!m_dev_id_in) {
246
+ fprintf(stderr, "%s: no audio device to clear!\n", __func__);
247
+ return false;
248
+ }
249
+
250
+ if (!m_running) {
251
+ fprintf(stderr, "%s: not running!\n", __func__);
252
+ return false;
253
+ }
254
+
255
+ {
256
+ std::lock_guard<std::mutex> lock(m_mutex);
257
+
258
+ m_audio_pos = 0;
259
+ m_audio_len = 0;
260
+ }
261
+
262
+ return true;
263
+ }
264
+
265
+ // callback to be called by SDL
266
+ void audio_async::callback(uint8_t * stream, int len) {
267
+ if (!m_running) {
268
+ return;
269
+ }
270
+
271
+ const size_t n_samples = len / sizeof(float);
272
+
273
+ m_audio_new.resize(n_samples);
274
+ memcpy(m_audio_new.data(), stream, n_samples * sizeof(float));
275
+
276
+ //fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len);
277
+
278
+ {
279
+ std::lock_guard<std::mutex> lock(m_mutex);
280
+
281
+ if (m_audio_pos + n_samples > m_audio.size()) {
282
+ const size_t n0 = m_audio.size() - m_audio_pos;
283
+
284
+ memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float));
285
+ memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float));
286
+
287
+ m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
288
+ m_audio_len = m_audio.size();
289
+ } else {
290
+ memcpy(&m_audio[m_audio_pos], stream, n_samples * sizeof(float));
291
+
292
+ m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
293
+ m_audio_len = std::min(m_audio_len + n_samples, m_audio.size());
294
+ }
295
+ }
296
+ }
297
+
298
+ void audio_async::get(int ms, std::vector<float> & result) {
299
+ if (!m_dev_id_in) {
300
+ fprintf(stderr, "%s: no audio device to get audio from!\n", __func__);
301
+ return;
302
+ }
303
+
304
+ if (!m_running) {
305
+ fprintf(stderr, "%s: not running!\n", __func__);
306
+ return;
307
+ }
308
+
309
+ result.clear();
310
+
311
+ {
312
+ std::lock_guard<std::mutex> lock(m_mutex);
313
+
314
+ if (ms <= 0) {
315
+ ms = m_len_ms;
316
+ }
317
+
318
+ size_t n_samples = (m_sample_rate * ms) / 1000;
319
+ if (n_samples > m_audio_len) {
320
+ n_samples = m_audio_len;
321
+ }
322
+
323
+ result.resize(n_samples);
324
+
325
+ int s0 = m_audio_pos - n_samples;
326
+ if (s0 < 0) {
327
+ s0 += m_audio.size();
328
+ }
329
+
330
+ if (s0 + n_samples > m_audio.size()) {
331
+ const size_t n0 = m_audio.size() - s0;
332
+
333
+ memcpy(result.data(), &m_audio[s0], n0 * sizeof(float));
334
+ memcpy(&result[n0], &m_audio[0], (n_samples - n0) * sizeof(float));
335
+ } else {
336
+ memcpy(result.data(), &m_audio[s0], n_samples * sizeof(float));
337
+ }
338
+ }
339
+ }
340
+
341
+ ///////////////////////////
342
+
343
+ std::string trim(const std::string & s) {
344
+ std::regex e("^\\s+|\\s+$");
345
+ return std::regex_replace(s, e, "");
346
+ }
347
+
348
+ void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
349
+ const float rc = 1.0f / (2.0f * M_PI * cutoff);
350
+ const float dt = 1.0f / sample_rate;
351
+ const float alpha = dt / (rc + dt);
352
+
353
+ float y = data[0];
354
+
355
+ for (size_t i = 1; i < data.size(); i++) {
356
+ y = alpha * (y + data[i] - data[i - 1]);
357
+ data[i] = y;
358
+ }
359
+ }
360
+
361
+ bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
362
+ const int n_samples = pcmf32.size();
363
+ const int n_samples_last = (sample_rate * last_ms) / 1000;
364
+
365
+ if (n_samples_last >= n_samples) {
366
+ // not enough samples - assume no speech
367
+ return false;
368
+ }
369
+
370
+ if (freq_thold > 0.0f) {
371
+ high_pass_filter(pcmf32, freq_thold, sample_rate);
372
+ }
373
+
374
+ float energy_all = 0.0f;
375
+ float energy_last = 0.0f;
376
+
377
+ for (size_t i = 0; i < n_samples; i++) {
378
+ energy_all += fabsf(pcmf32[i]);
379
+
380
+ if (i >= n_samples - n_samples_last) {
381
+ energy_last += fabsf(pcmf32[i]);
382
+ }
383
+ }
384
+
385
+ energy_all /= n_samples;
386
+ energy_last /= n_samples_last;
387
+
388
+ if (verbose) {
389
+ fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
390
+ }
391
+
392
+ if (energy_last > vad_thold*energy_all) {
393
+ return false;
394
+ }
395
+
396
+ return true;
397
+ }
398
+
399
+ std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
400
+ const auto t_start = std::chrono::high_resolution_clock::now();
401
+
402
+ prob = 0.0f;
403
+ t_ms = 0;
404
+
405
+ whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
406
+
407
+ wparams.print_progress = false;
408
+ wparams.print_special = params.print_special;
409
+ wparams.print_realtime = false;
410
+ wparams.print_timestamps = !params.no_timestamps;
411
+ wparams.translate = params.translate;
412
+ wparams.no_context = true;
413
+ wparams.single_segment = true;
414
+ wparams.max_tokens = params.max_tokens;
415
+ wparams.language = params.language.c_str();
416
+ wparams.n_threads = params.n_threads;
417
+
418
+ wparams.audio_ctx = params.audio_ctx;
419
+ wparams.speed_up = params.speed_up;
420
+
421
+ if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
422
+ return "";
423
+ }
424
+
425
+ int prob_n = 0;
426
+ std::string result;
427
+
428
+ const int n_segments = whisper_full_n_segments(ctx);
429
+ for (int i = 0; i < n_segments; ++i) {
430
+ const char * text = whisper_full_get_segment_text(ctx, i);
431
+
432
+ result += text;
433
+
434
+ const int n_tokens = whisper_full_n_tokens(ctx, i);
435
+ for (int j = 0; j < n_tokens; ++j) {
436
+ const auto token = whisper_full_get_token_data(ctx, i, j);
437
+
438
+ prob += token.p;
439
+ ++prob_n;
440
+ }
441
+ }
442
+
443
+ if (prob_n > 0) {
444
+ prob /= prob_n;
445
+ }
446
+
447
+ const auto t_end = std::chrono::high_resolution_clock::now();
448
+ t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
449
+
450
+ return result;
451
+ }
452
+
453
+ // compute similarity between two strings using Levenshtein distance
454
+ float similarity(const std::string & s0, const std::string & s1) {
455
+ const size_t len0 = s0.size() + 1;
456
+ const size_t len1 = s1.size() + 1;
457
+
458
+ std::vector<int> col(len1, 0);
459
+ std::vector<int> prevCol(len1, 0);
460
+
461
+ for (size_t i = 0; i < len1; i++) {
462
+ prevCol[i] = i;
463
+ }
464
+
465
+ for (size_t i = 0; i < len0; i++) {
466
+ col[0] = i;
467
+ for (size_t j = 1; j < len1; j++) {
468
+ col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (s0[i - 1] == s1[j - 1] ? 0 : 1));
469
+ }
470
+ col.swap(prevCol);
471
+ }
472
+
473
+ const float dist = prevCol[len1 - 1];
474
+
475
+ return 1.0f - (dist / std::max(s0.size(), s1.size()));
476
+ }
477
+
478
+ int main(int argc, char ** argv) {
479
+ whisper_params params;
480
+
481
+ if (whisper_params_parse(argc, argv, params) == false) {
482
+ return 1;
483
+ }
484
+
485
+ if (whisper_lang_id(params.language.c_str()) == -1) {
486
+ fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
487
+ whisper_print_usage(argc, argv, params);
488
+ exit(0);
489
+ }
490
+
491
+ // whisper init
492
+
493
+ struct whisper_context * ctx = whisper_init(params.model.c_str());
494
+
495
+ // print some info about the processing
496
+ {
497
+ fprintf(stderr, "\n");
498
+ if (!whisper_is_multilingual(ctx)) {
499
+ if (params.language != "en" || params.translate) {
500
+ params.language = "en";
501
+ params.translate = false;
502
+ fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
503
+ }
504
+ }
505
+ fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n",
506
+ __func__,
507
+ params.n_threads,
508
+ params.language.c_str(),
509
+ params.translate ? "translate" : "transcribe",
510
+ params.no_timestamps ? 0 : 1);
511
+
512
+ fprintf(stderr, "\n");
513
+ }
514
+
515
+
516
+ // init audio
517
+
518
+ audio_async audio(30*1000);
519
+ if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
520
+ fprintf(stderr, "%s: audio.init() failed!\n", __func__);
521
+ return 1;
522
+ }
523
+
524
+ audio.resume();
525
+
526
+ bool is_running = true;
527
+ bool have_prompt = false;
528
+ bool ask_prompt = true;
529
+
530
+ float prob0 = 0.0f;
531
+ float prob = 0.0f;
532
+
533
+ std::vector<float> pcmf32_cur;
534
+ std::vector<float> pcmf32_prompt;
535
+
536
+ const std::string k_prompt = "Ok Whisper, start listening for commands.";
537
+
538
+ // main loop
539
+ while (is_running) {
540
+ // handle Ctrl + C
541
+ {
542
+ SDL_Event event;
543
+ while (SDL_PollEvent(&event)) {
544
+ switch (event.type) {
545
+ case SDL_QUIT:
546
+ {
547
+ is_running = false;
548
+ } break;
549
+ default:
550
+ break;
551
+ }
552
+ }
553
+
554
+ if (!is_running) {
555
+ break;
556
+ }
557
+ }
558
+
559
+ // delay
560
+ std::this_thread::sleep_for(std::chrono::milliseconds(100));
561
+
562
+ if (ask_prompt) {
563
+ fprintf(stdout, "\n");
564
+ fprintf(stdout, "%s: Say the following phrase: '%s'\n", __func__, k_prompt.c_str());
565
+ fprintf(stdout, "\n");
566
+
567
+ ask_prompt = false;
568
+ }
569
+
570
+ int64_t t_ms = 0;
571
+
572
+ {
573
+ audio.get(2000, pcmf32_cur);
574
+
575
+ if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
576
+ fprintf(stdout, "%s: Speech detected!\n", __func__);
577
+
578
+ if (!have_prompt) {
579
+ audio.get(params.prompt_ms, pcmf32_cur);
580
+
581
+ const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob0, t_ms));
582
+
583
+ fprintf(stdout, "%s: Heard '%s', (prob = %6.3f, t = %d ms)\n", __func__, txt.c_str(), prob0, (int) t_ms);
584
+
585
+ const float sim = similarity(txt, k_prompt);
586
+
587
+ if (txt.length() < 0.8*k_prompt.length() || txt.length() > 1.2*k_prompt.length() || sim < 0.8f) {
588
+ fprintf(stdout, "%s: WARNING: prompt not recognized, try again\n", __func__);
589
+ ask_prompt = true;
590
+ } else {
591
+ fprintf(stdout, "\n");
592
+ fprintf(stdout, "%s: The prompt has been recognized!\n", __func__);
593
+ fprintf(stdout, "%s: Waiting for voice commands ...\n", __func__);
594
+ fprintf(stdout, "\n");
595
+
596
+ // save the audio for the prompt
597
+ pcmf32_prompt = pcmf32_cur;
598
+ have_prompt = true;
599
+ }
600
+ } else {
601
+ audio.get(params.command_ms, pcmf32_cur);
602
+
603
+ // prepend the prompt audio
604
+ pcmf32_cur.insert(pcmf32_cur.begin(), pcmf32_prompt.begin(), pcmf32_prompt.end());
605
+
606
+ const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob, t_ms));
607
+
608
+ printf("prob0 = %6.3f, prob = %6.3f, t = %d ms\n", prob0, prob, (int) t_ms);
609
+ prob = 100.0f*(prob - prob0);
610
+
611
+ //fprintf(stdout, "%s: heard '%s'\n", __func__, txt.c_str());
612
+
613
+ // find the prompt in the text
614
+ float best_sim = 0.0f;
615
+ size_t best_len = 0;
616
+ for (int n = 0.8*k_prompt.size(); n <= 1.2*k_prompt.size(); ++n) {
617
+ const auto prompt = txt.substr(0, n);
618
+
619
+ const float sim = similarity(prompt, k_prompt);
620
+
621
+ //fprintf(stderr, "%s: prompt = '%s', sim = %f\n", __func__, prompt.c_str(), sim);
622
+
623
+ if (sim > best_sim) {
624
+ best_sim = sim;
625
+ best_len = n;
626
+ }
627
+ }
628
+
629
+ const std::string command = ::trim(txt.substr(best_len));
630
+
631
+ fprintf(stdout, "%s: Command '%s', (prob = %6.3f, t = %d ms)\n", __func__, command.c_str(), prob, (int) t_ms);
632
+ fprintf(stdout, "\n");
633
+ }
634
+
635
+ audio.clear();
636
+ }
637
+ }
638
+ }
639
+
640
+ audio.pause();
641
+
642
+ whisper_print_timings(ctx);
643
+ whisper_free(ctx);
644
+
645
+ return 0;
646
+ }
examples/main/README.md CHANGED
@@ -6,29 +6,28 @@ It can be used as a reference for using the `whisper.cpp` library in other proje
6
  ```
7
  ./main -h
8
 
9
- usage: ./bin/main [options] file0.wav file1.wav ...
10
-
11
- -h, --help show this help message and exit
12
- -s SEED, --seed SEED RNG seed (default: -1)
13
- -t N, --threads N number of threads to use during computation (default: 4)
14
- -p N, --processors N number of processors to use during computation (default: 1)
15
- -ot N, --offset-t N time offset in milliseconds (default: 0)
16
- -on N, --offset-n N segment index offset (default: 0)
17
- -mc N, --max-context N maximum number of text context tokens to store (default: max)
18
- -ml N, --max-len N maximum segment length in characters (default: 0)
19
- -wt N, --word-thold N word timestamp probability threshold (default: 0.010000)
20
- -v, --verbose verbose output
21
- --translate translate from source language to english
22
- -otxt, --output-txt output result in a text file
23
- -ovtt, --output-vtt output result in a vtt file
24
- -osrt, --output-srt output result in a srt file
25
- -owts, --output-words output script for generating karaoke video
26
- -ps, --print_special print special tokens
27
- -pc, --print_colors print colors
28
- -nt, --no_timestamps do not print timestamps
29
- -l LANG, --language LANG spoken language (default: en)
30
- -m FNAME, --model FNAME model path (default: models/ggml-base.en.bin)
31
- -f FNAME, --file FNAME input WAV file path
32
- -h, --help show this help message and exit
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  ```
 
6
  ```
7
  ./main -h
8
 
9
+ usage: ./main [options] file0.wav file1.wav ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ options:
12
+ -h, --help [default] show this help message and exit
13
+ -t N, --threads N [4 ] number of threads to use during computation
14
+ -p N, --processors N [1 ] number of processors to use during computation
15
+ -ot N, --offset-t N [0 ] time offset in milliseconds
16
+ -on N, --offset-n N [0 ] segment index offset
17
+ -d N, --duration N [0 ] duration of audio to process in milliseconds
18
+ -mc N, --max-context N [-1 ] maximum number of text context tokens to store
19
+ -ml N, --max-len N [0 ] maximum segment length in characters
20
+ -wt N, --word-thold N [0.01 ] word timestamp probability threshold
21
+ -su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
22
+ -tr, --translate [false ] translate from source language to english
23
+ -otxt, --output-txt [false ] output result in a text file
24
+ -ovtt, --output-vtt [false ] output result in a vtt file
25
+ -osrt, --output-srt [false ] output result in a srt file
26
+ -owts, --output-words [false ] output script for generating karaoke video
27
+ -ps, --print-special [false ] print special tokens
28
+ -pc, --print-colors [false ] print colors
29
+ -nt, --no-timestamps [true ] do not print timestamps
30
+ -l LANG, --language LANG [en ] spoken language
31
+ -m FNAME, --model FNAME [models/ggml-base.en.bin] model path
32
+ -f FNAME, --file FNAME [ ] input WAV file path
33
  ```
examples/main/main.cpp CHANGED
@@ -132,7 +132,7 @@ void whisper_print_usage(int argc, char ** argv, const whisper_params & params)
132
  fprintf(stderr, " -d N, --duration N [%-7d] duration of audio to process in milliseconds\n", params.duration_ms);
133
  fprintf(stderr, " -mc N, --max-context N [%-7d] maximum number of text context tokens to store\n", params.max_context);
134
  fprintf(stderr, " -ml N, --max-len N [%-7d] maximum segment length in characters\n", params.max_len);
135
- fprintf(stderr, " -wt N, --word-thold N [%-7f] word timestamp probability threshold\n", params.word_thold);
136
  fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
137
  fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
138
  fprintf(stderr, " -otxt, --output-txt [%-7s] output result in a text file\n", params.output_txt ? "true" : "false");
 
132
  fprintf(stderr, " -d N, --duration N [%-7d] duration of audio to process in milliseconds\n", params.duration_ms);
133
  fprintf(stderr, " -mc N, --max-context N [%-7d] maximum number of text context tokens to store\n", params.max_context);
134
  fprintf(stderr, " -ml N, --max-len N [%-7d] maximum segment length in characters\n", params.max_len);
135
+ fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
136
  fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
137
  fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
138
  fprintf(stderr, " -otxt, --output-txt [%-7s] output result in a text file\n", params.output_txt ? "true" : "false");