Spaces:
Running
Running
models : add ggml_to_pt script (#1042)
Browse files* adding ggml_to_pt
* typo sys too many args
* fixing swap errors dimensions
---------
Co-authored-by: simonMoisselin <[email protected]>
- models/ggml_to_pt.py +109 -0
models/ggml_to_pt.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import struct
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from collections import OrderedDict
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import sys
|
| 7 |
+
|
| 8 |
+
if len(sys.argv) < 3:
|
| 9 |
+
print(
|
| 10 |
+
"Usage: convert-ggml-to-pt.py model.bin dir-output\n")
|
| 11 |
+
sys.exit(1)
|
| 12 |
+
|
| 13 |
+
fname_inp = Path(sys.argv[1])
|
| 14 |
+
dir_out = Path(sys.argv[2])
|
| 15 |
+
fname_out = dir_out / "torch-model.pt"
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# Open the ggml file
|
| 20 |
+
with open(fname_inp, "rb") as f:
|
| 21 |
+
# Read magic number and hyperparameters
|
| 22 |
+
magic_number, n_vocab, n_audio_ctx, n_audio_state, n_audio_head, n_audio_layer, n_text_ctx, n_text_state, n_text_head, n_text_layer, n_mels, use_f16 = struct.unpack("12i", f.read(48))
|
| 23 |
+
print(f"Magic number: {magic_number}")
|
| 24 |
+
print(f"Vocab size: {n_vocab}")
|
| 25 |
+
print(f"Audio context size: {n_audio_ctx}")
|
| 26 |
+
print(f"Audio state size: {n_audio_state}")
|
| 27 |
+
print(f"Audio head size: {n_audio_head}")
|
| 28 |
+
print(f"Audio layer size: {n_audio_layer}")
|
| 29 |
+
print(f"Text context size: {n_text_ctx}")
|
| 30 |
+
print(f"Text head size: {n_text_head}")
|
| 31 |
+
print(f"Mel size: {n_mels}")
|
| 32 |
+
# Read mel filters
|
| 33 |
+
# mel_filters = np.fromfile(f, dtype=np.float32, count=n_mels * 2).reshape(n_mels, 2)
|
| 34 |
+
# print(f"Mel filters: {mel_filters}")
|
| 35 |
+
filters_shape_0 = struct.unpack("i", f.read(4))[0]
|
| 36 |
+
print(f"Filters shape 0: {filters_shape_0}")
|
| 37 |
+
filters_shape_1 = struct.unpack("i", f.read(4))[0]
|
| 38 |
+
print(f"Filters shape 1: {filters_shape_1}")
|
| 39 |
+
|
| 40 |
+
# Read tokenizer tokens
|
| 41 |
+
# bytes = f.read(4)
|
| 42 |
+
# print(bytes)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# for i in range(filters.shape[0]):
|
| 46 |
+
# for j in range(filters.shape[1]):
|
| 47 |
+
# fout.write(struct.pack("f", filters[i][j]))
|
| 48 |
+
mel_filters = np.zeros((filters_shape_0, filters_shape_1))
|
| 49 |
+
|
| 50 |
+
for i in range(filters_shape_0):
|
| 51 |
+
for j in range(filters_shape_1):
|
| 52 |
+
mel_filters[i][j] = struct.unpack("f", f.read(4))[0]
|
| 53 |
+
|
| 54 |
+
bytes_data = f.read(4)
|
| 55 |
+
num_tokens = struct.unpack("i", bytes_data)[0]
|
| 56 |
+
tokens = {}
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
for _ in range(num_tokens):
|
| 60 |
+
token_len = struct.unpack("i", f.read(4))[0]
|
| 61 |
+
token = f.read(token_len)
|
| 62 |
+
tokens[token] = {}
|
| 63 |
+
|
| 64 |
+
# Read model variables
|
| 65 |
+
model_state_dict = OrderedDict()
|
| 66 |
+
while True:
|
| 67 |
+
try:
|
| 68 |
+
n_dims, name_length, ftype = struct.unpack("iii", f.read(12))
|
| 69 |
+
except struct.error:
|
| 70 |
+
break # End of file
|
| 71 |
+
dims = [struct.unpack("i", f.read(4))[0] for _ in range(n_dims)]
|
| 72 |
+
dims = dims[::-1]
|
| 73 |
+
name = f.read(name_length).decode("utf-8")
|
| 74 |
+
if ftype == 1: # f16
|
| 75 |
+
data = np.fromfile(f, dtype=np.float16, count=np.prod(dims)).reshape(dims)
|
| 76 |
+
else: # f32
|
| 77 |
+
data = np.fromfile(f, dtype=np.float32, count=np.prod(dims)).reshape(dims)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
if name in ["encoder.conv1.bias", "encoder.conv2.bias"]:
|
| 81 |
+
|
| 82 |
+
data = data[:, 0]
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
model_state_dict[name] = torch.from_numpy(data)
|
| 86 |
+
|
| 87 |
+
# Now you have the model's state_dict stored in model_state_dict
|
| 88 |
+
# You can load this state_dict into a model with the same architecture
|
| 89 |
+
|
| 90 |
+
# dims = ModelDimensions(**checkpoint["dims"])
|
| 91 |
+
# model = Whisper(dims)
|
| 92 |
+
from whisper import Whisper, ModelDimensions
|
| 93 |
+
dims = ModelDimensions(
|
| 94 |
+
n_mels=n_mels,
|
| 95 |
+
n_audio_ctx=n_audio_ctx,
|
| 96 |
+
n_audio_state=n_audio_state,
|
| 97 |
+
n_audio_head=n_audio_head,
|
| 98 |
+
n_audio_layer=n_audio_layer,
|
| 99 |
+
n_text_ctx=n_text_ctx,
|
| 100 |
+
n_text_state=n_text_state,
|
| 101 |
+
n_text_head=n_text_head,
|
| 102 |
+
n_text_layer=n_text_layer,
|
| 103 |
+
n_vocab=n_vocab,
|
| 104 |
+
)
|
| 105 |
+
model = Whisper(dims) # Replace with your model's class
|
| 106 |
+
model.load_state_dict(model_state_dict)
|
| 107 |
+
|
| 108 |
+
# Save the model in PyTorch format
|
| 109 |
+
torch.save(model.state_dict(), fname_out)
|