Spaces:
Running
Running
talk-llama : sync llama.cpp
Browse files- Makefile +10 -2
- examples/talk-llama/CMakeLists.txt +7 -1
- examples/talk-llama/llama-grammar.cpp +539 -0
- examples/talk-llama/llama-grammar.h +39 -0
- examples/talk-llama/llama-impl.h +26 -0
- examples/talk-llama/llama-sampling.cpp +635 -0
- examples/talk-llama/llama-sampling.h +56 -0
- examples/talk-llama/llama-vocab.cpp +1729 -0
- examples/talk-llama/llama-vocab.h +132 -0
- examples/talk-llama/llama.cpp +0 -0
- examples/talk-llama/llama.h +96 -54
- examples/talk-llama/unicode.cpp +10 -0
- examples/talk-llama/unicode.h +3 -0
- scripts/sync-llama.sh +2 -1
Makefile
CHANGED
|
@@ -785,7 +785,8 @@ OBJ_GGML += \
|
|
| 785 |
ggml/src/ggml.o \
|
| 786 |
ggml/src/ggml-alloc.o \
|
| 787 |
ggml/src/ggml-backend.o \
|
| 788 |
-
ggml/src/ggml-quants.o
|
|
|
|
| 789 |
|
| 790 |
OBJ_WHISPER += \
|
| 791 |
src/whisper.o
|
|
@@ -916,6 +917,13 @@ ggml/src/ggml-quants.o: \
|
|
| 916 |
ggml/src/ggml-common.h
|
| 917 |
$(CC) $(CFLAGS) -c $< -o $@
|
| 918 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 919 |
ggml/src/ggml-blas.o: \
|
| 920 |
ggml/src/ggml-blas.cpp \
|
| 921 |
ggml/include/ggml-blas.h
|
|
@@ -1076,7 +1084,7 @@ talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp \
|
|
| 1076 |
$(CXX) $(CXXFLAGS) $(CFLAGS_SDL) -c $< -o $(call GET_OBJ_FILE, $<)
|
| 1077 |
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LDFLAGS_SDL)
|
| 1078 |
|
| 1079 |
-
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/unicode.cpp examples/talk-llama/unicode-data.cpp \
|
| 1080 |
$(OBJ_GGML) $(OBJ_WHISPER) $(OBJ_COMMON) $(OBJ_SDL)
|
| 1081 |
$(CXX) $(CXXFLAGS) $(CFLAGS_SDL) -c $< -o $(call GET_OBJ_FILE, $<)
|
| 1082 |
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LDFLAGS_SDL)
|
|
|
|
| 785 |
ggml/src/ggml.o \
|
| 786 |
ggml/src/ggml-alloc.o \
|
| 787 |
ggml/src/ggml-backend.o \
|
| 788 |
+
ggml/src/ggml-quants.o \
|
| 789 |
+
ggml/src/ggml-aarch64.o
|
| 790 |
|
| 791 |
OBJ_WHISPER += \
|
| 792 |
src/whisper.o
|
|
|
|
| 917 |
ggml/src/ggml-common.h
|
| 918 |
$(CC) $(CFLAGS) -c $< -o $@
|
| 919 |
|
| 920 |
+
ggml/src/ggml-aarch64.o: \
|
| 921 |
+
ggml/src/ggml-aarch64.c \
|
| 922 |
+
ggml/include/ggml.h \
|
| 923 |
+
ggml/src/ggml-aarch64.h \
|
| 924 |
+
ggml/src/ggml-common.h
|
| 925 |
+
$(CC) $(CFLAGS) -c $< -o $@
|
| 926 |
+
|
| 927 |
ggml/src/ggml-blas.o: \
|
| 928 |
ggml/src/ggml-blas.cpp \
|
| 929 |
ggml/include/ggml-blas.h
|
|
|
|
| 1084 |
$(CXX) $(CXXFLAGS) $(CFLAGS_SDL) -c $< -o $(call GET_OBJ_FILE, $<)
|
| 1085 |
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LDFLAGS_SDL)
|
| 1086 |
|
| 1087 |
+
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp examples/talk-llama/llama-vocab.cpp examples/talk-llama/llama-grammar.cpp examples/talk-llama/llama-sampling.cpp examples/talk-llama/unicode.cpp examples/talk-llama/unicode-data.cpp \
|
| 1088 |
$(OBJ_GGML) $(OBJ_WHISPER) $(OBJ_COMMON) $(OBJ_SDL)
|
| 1089 |
$(CXX) $(CXXFLAGS) $(CFLAGS_SDL) -c $< -o $(call GET_OBJ_FILE, $<)
|
| 1090 |
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LDFLAGS_SDL)
|
examples/talk-llama/CMakeLists.txt
CHANGED
|
@@ -1,7 +1,13 @@
|
|
| 1 |
if (WHISPER_SDL2)
|
| 2 |
# talk-llama
|
| 3 |
set(TARGET talk-llama)
|
| 4 |
-
add_executable(${TARGET} talk-llama.cpp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
| 6 |
|
| 7 |
if (WHISPER_CLBLAST)
|
|
|
|
| 1 |
if (WHISPER_SDL2)
|
| 2 |
# talk-llama
|
| 3 |
set(TARGET talk-llama)
|
| 4 |
+
add_executable(${TARGET} talk-llama.cpp
|
| 5 |
+
llama.cpp
|
| 6 |
+
llama-vocab.cpp
|
| 7 |
+
llama-grammar.cpp
|
| 8 |
+
llama-sampling.cpp
|
| 9 |
+
unicode.cpp
|
| 10 |
+
unicode-data.cpp)
|
| 11 |
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
| 12 |
|
| 13 |
if (WHISPER_CLBLAST)
|
examples/talk-llama/llama-grammar.cpp
ADDED
|
@@ -0,0 +1,539 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "llama-grammar.h"
|
| 2 |
+
|
| 3 |
+
#include "llama-vocab.h"
|
| 4 |
+
#include "llama-sampling.h"
|
| 5 |
+
|
| 6 |
+
#include <algorithm>
|
| 7 |
+
|
| 8 |
+
// Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
|
| 9 |
+
// pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
|
| 10 |
+
std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
|
| 11 |
+
const std::string & src,
|
| 12 |
+
llama_partial_utf8 partial_start) {
|
| 13 |
+
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
|
| 14 |
+
const char * pos = src.c_str();
|
| 15 |
+
std::vector<uint32_t> code_points;
|
| 16 |
+
|
| 17 |
+
// common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
|
| 18 |
+
code_points.reserve(src.size() + 1);
|
| 19 |
+
uint32_t value = partial_start.value;
|
| 20 |
+
int n_remain = partial_start.n_remain;
|
| 21 |
+
|
| 22 |
+
// continue previous decode, if applicable
|
| 23 |
+
while (*pos != 0 && n_remain > 0) {
|
| 24 |
+
uint8_t next_byte = static_cast<uint8_t>(*pos);
|
| 25 |
+
if ((next_byte >> 6) != 2) {
|
| 26 |
+
// invalid sequence, abort
|
| 27 |
+
code_points.push_back(0);
|
| 28 |
+
return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
|
| 29 |
+
}
|
| 30 |
+
value = (value << 6) + (next_byte & 0x3F);
|
| 31 |
+
++pos;
|
| 32 |
+
--n_remain;
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
if (partial_start.n_remain > 0 && n_remain == 0) {
|
| 36 |
+
code_points.push_back(value);
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
// decode any subsequent utf-8 sequences, which may end in an incomplete one
|
| 40 |
+
while (*pos != 0) {
|
| 41 |
+
uint8_t first_byte = static_cast<uint8_t>(*pos);
|
| 42 |
+
uint8_t highbits = first_byte >> 4;
|
| 43 |
+
n_remain = lookup[highbits] - 1;
|
| 44 |
+
|
| 45 |
+
if (n_remain < 0) {
|
| 46 |
+
// invalid sequence, abort
|
| 47 |
+
code_points.clear();
|
| 48 |
+
code_points.push_back(0);
|
| 49 |
+
return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
uint8_t mask = (1 << (7 - n_remain)) - 1;
|
| 53 |
+
value = first_byte & mask;
|
| 54 |
+
|
| 55 |
+
++pos;
|
| 56 |
+
while (*pos != 0 && n_remain > 0) {
|
| 57 |
+
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
|
| 58 |
+
++pos;
|
| 59 |
+
--n_remain;
|
| 60 |
+
}
|
| 61 |
+
if (n_remain == 0) {
|
| 62 |
+
code_points.push_back(value);
|
| 63 |
+
}
|
| 64 |
+
}
|
| 65 |
+
code_points.push_back(0);
|
| 66 |
+
|
| 67 |
+
return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
const llama_grammar_rules & llama_grammar_get_rules(const struct llama_grammar * grammar) {
|
| 71 |
+
return grammar->rules;
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
llama_grammar_stacks & llama_grammar_get_stacks(struct llama_grammar * grammar) {
|
| 75 |
+
return grammar->stacks;
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
// returns true iff pos points to the end of one of the definitions of a rule
|
| 79 |
+
static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
|
| 80 |
+
switch (pos->type) {
|
| 81 |
+
case LLAMA_GRETYPE_END: return true; // NOLINT
|
| 82 |
+
case LLAMA_GRETYPE_ALT: return true; // NOLINT
|
| 83 |
+
default: return false;
|
| 84 |
+
}
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
// returns true iff chr satisfies the char range at pos (regular or inverse range)
|
| 88 |
+
// asserts that pos is pointing to a char range element
|
| 89 |
+
static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
|
| 90 |
+
const llama_grammar_element * pos,
|
| 91 |
+
const uint32_t chr) {
|
| 92 |
+
|
| 93 |
+
bool found = false;
|
| 94 |
+
bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
|
| 95 |
+
|
| 96 |
+
GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
|
| 97 |
+
|
| 98 |
+
do {
|
| 99 |
+
if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
|
| 100 |
+
// inclusive range, e.g. [a-z]
|
| 101 |
+
found = found || (pos->value <= chr && chr <= pos[1].value);
|
| 102 |
+
pos += 2;
|
| 103 |
+
} else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
|
| 104 |
+
// Any character matches "."
|
| 105 |
+
found = true;
|
| 106 |
+
pos += 1;
|
| 107 |
+
} else {
|
| 108 |
+
// exact char match, e.g. [a] or "a"
|
| 109 |
+
found = found || pos->value == chr;
|
| 110 |
+
pos += 1;
|
| 111 |
+
}
|
| 112 |
+
} while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
|
| 113 |
+
|
| 114 |
+
return std::make_pair(found == is_positive_char, pos);
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
// returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
|
| 118 |
+
// range at pos (regular or inverse range)
|
| 119 |
+
// asserts that pos is pointing to a char range element
|
| 120 |
+
static bool llama_grammar_match_partial_char(
|
| 121 |
+
const llama_grammar_element * pos,
|
| 122 |
+
const llama_partial_utf8 partial_utf8) {
|
| 123 |
+
bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
|
| 124 |
+
GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
|
| 125 |
+
|
| 126 |
+
uint32_t partial_value = partial_utf8.value;
|
| 127 |
+
int n_remain = partial_utf8.n_remain;
|
| 128 |
+
|
| 129 |
+
// invalid sequence or 7-bit char split across 2 bytes (overlong)
|
| 130 |
+
if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
|
| 131 |
+
return false;
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
// range of possible code points this partial UTF-8 sequence could complete to
|
| 135 |
+
uint32_t low = partial_value << (n_remain * 6);
|
| 136 |
+
uint32_t high = low | ((1 << (n_remain * 6)) - 1);
|
| 137 |
+
|
| 138 |
+
if (low == 0) {
|
| 139 |
+
if (n_remain == 2) {
|
| 140 |
+
low = 1 << 11;
|
| 141 |
+
} else if (n_remain == 3) {
|
| 142 |
+
low = 1 << 16;
|
| 143 |
+
}
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
do {
|
| 147 |
+
if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
|
| 148 |
+
// inclusive range, e.g. [a-z]
|
| 149 |
+
if (pos->value <= high && low <= pos[1].value) {
|
| 150 |
+
return is_positive_char;
|
| 151 |
+
}
|
| 152 |
+
pos += 2;
|
| 153 |
+
} else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
|
| 154 |
+
// Any character matches "."
|
| 155 |
+
return true;
|
| 156 |
+
} else {
|
| 157 |
+
// exact char match, e.g. [a] or "a"
|
| 158 |
+
if (low <= pos->value && pos->value <= high) {
|
| 159 |
+
return is_positive_char;
|
| 160 |
+
}
|
| 161 |
+
pos += 1;
|
| 162 |
+
}
|
| 163 |
+
} while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
|
| 164 |
+
|
| 165 |
+
return !is_positive_char;
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
// transforms a grammar pushdown stack into N possible stacks, all ending
|
| 169 |
+
// at a character range (terminal element)
|
| 170 |
+
static void llama_grammar_advance_stack(
|
| 171 |
+
const llama_grammar_rules & rules,
|
| 172 |
+
const llama_grammar_stack & stack,
|
| 173 |
+
llama_grammar_stacks & new_stacks) {
|
| 174 |
+
if (stack.empty()) {
|
| 175 |
+
if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
|
| 176 |
+
new_stacks.emplace_back(stack);
|
| 177 |
+
}
|
| 178 |
+
return;
|
| 179 |
+
}
|
| 180 |
+
|
| 181 |
+
const llama_grammar_element * pos = stack.back();
|
| 182 |
+
|
| 183 |
+
switch (pos->type) {
|
| 184 |
+
case LLAMA_GRETYPE_RULE_REF: {
|
| 185 |
+
const size_t rule_id = static_cast<size_t>(pos->value);
|
| 186 |
+
const llama_grammar_element * subpos = rules[rule_id].data();
|
| 187 |
+
do {
|
| 188 |
+
// init new stack without the top (pos)
|
| 189 |
+
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
|
| 190 |
+
if (!llama_grammar_is_end_of_sequence(pos + 1)) {
|
| 191 |
+
// if this rule ref is followed by another element, add that to stack
|
| 192 |
+
new_stack.push_back(pos + 1);
|
| 193 |
+
}
|
| 194 |
+
if (!llama_grammar_is_end_of_sequence(subpos)) {
|
| 195 |
+
// if alternate is nonempty, add to stack
|
| 196 |
+
new_stack.push_back(subpos);
|
| 197 |
+
}
|
| 198 |
+
llama_grammar_advance_stack(rules, new_stack, new_stacks);
|
| 199 |
+
while (!llama_grammar_is_end_of_sequence(subpos)) {
|
| 200 |
+
// scan to end of alternate def
|
| 201 |
+
subpos++;
|
| 202 |
+
}
|
| 203 |
+
if (subpos->type == LLAMA_GRETYPE_ALT) {
|
| 204 |
+
// there's another alternate def of this rule to process
|
| 205 |
+
subpos++;
|
| 206 |
+
} else {
|
| 207 |
+
break;
|
| 208 |
+
}
|
| 209 |
+
} while (true);
|
| 210 |
+
break;
|
| 211 |
+
}
|
| 212 |
+
case LLAMA_GRETYPE_CHAR:
|
| 213 |
+
case LLAMA_GRETYPE_CHAR_NOT:
|
| 214 |
+
case LLAMA_GRETYPE_CHAR_ANY:
|
| 215 |
+
if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
|
| 216 |
+
// only add the stack if it's not a duplicate of one we already have
|
| 217 |
+
new_stacks.emplace_back(stack);
|
| 218 |
+
}
|
| 219 |
+
break;
|
| 220 |
+
default:
|
| 221 |
+
// end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
|
| 222 |
+
// (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
|
| 223 |
+
// those
|
| 224 |
+
GGML_ABORT("fatal error");
|
| 225 |
+
}
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
// takes a set of possible pushdown stacks on a grammar, which are required to
|
| 229 |
+
// be positioned at a character range (see `llama_grammar_advance_stack`), and
|
| 230 |
+
// produces the N possible stacks if the given char is accepted at those
|
| 231 |
+
// positions
|
| 232 |
+
void llama_grammar_accept(
|
| 233 |
+
const llama_grammar_rules & rules,
|
| 234 |
+
const llama_grammar_stacks & stacks,
|
| 235 |
+
const uint32_t chr,
|
| 236 |
+
llama_grammar_stacks & new_stacks) {
|
| 237 |
+
new_stacks.clear();
|
| 238 |
+
|
| 239 |
+
for (const auto & stack : stacks) {
|
| 240 |
+
if (stack.empty()) {
|
| 241 |
+
continue;
|
| 242 |
+
}
|
| 243 |
+
|
| 244 |
+
auto match = llama_grammar_match_char(stack.back(), chr);
|
| 245 |
+
if (match.first) {
|
| 246 |
+
const llama_grammar_element * pos = match.second;
|
| 247 |
+
|
| 248 |
+
// update top of stack to next element, if any
|
| 249 |
+
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
|
| 250 |
+
if (!llama_grammar_is_end_of_sequence(pos)) {
|
| 251 |
+
new_stack.push_back(pos);
|
| 252 |
+
}
|
| 253 |
+
llama_grammar_advance_stack(rules, new_stack, new_stacks);
|
| 254 |
+
}
|
| 255 |
+
}
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
static llama_grammar_candidates llama_grammar_reject_candidates(
|
| 259 |
+
const llama_grammar_rules & rules,
|
| 260 |
+
const llama_grammar_stacks & stacks,
|
| 261 |
+
const llama_grammar_candidates & candidates) {
|
| 262 |
+
GGML_ASSERT(!stacks.empty()); // REVIEW
|
| 263 |
+
|
| 264 |
+
if (candidates.empty()) {
|
| 265 |
+
return {};
|
| 266 |
+
}
|
| 267 |
+
|
| 268 |
+
auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
|
| 269 |
+
|
| 270 |
+
for (size_t i = 1, size = stacks.size(); i < size; ++i) {
|
| 271 |
+
rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
|
| 272 |
+
}
|
| 273 |
+
return rejects;
|
| 274 |
+
}
|
| 275 |
+
|
| 276 |
+
llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
|
| 277 |
+
const llama_grammar_rules & rules,
|
| 278 |
+
const llama_grammar_stack & stack,
|
| 279 |
+
const llama_grammar_candidates & candidates) {
|
| 280 |
+
|
| 281 |
+
llama_grammar_candidates rejects;
|
| 282 |
+
rejects.reserve(candidates.size());
|
| 283 |
+
|
| 284 |
+
if (stack.empty()) {
|
| 285 |
+
for (const auto & tok : candidates) {
|
| 286 |
+
if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
|
| 287 |
+
rejects.push_back(tok);
|
| 288 |
+
}
|
| 289 |
+
}
|
| 290 |
+
return rejects;
|
| 291 |
+
}
|
| 292 |
+
|
| 293 |
+
const llama_grammar_element * stack_pos = stack.back();
|
| 294 |
+
|
| 295 |
+
llama_grammar_candidates next_candidates;
|
| 296 |
+
next_candidates.reserve(candidates.size());
|
| 297 |
+
|
| 298 |
+
for (const auto & tok : candidates) {
|
| 299 |
+
if (*tok.code_points == 0) {
|
| 300 |
+
// reached end of full codepoints in token, reject iff it ended in a partial sequence
|
| 301 |
+
// that cannot satisfy this position in grammar
|
| 302 |
+
if (tok.partial_utf8.n_remain != 0 &&
|
| 303 |
+
!llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
|
| 304 |
+
rejects.push_back(tok);
|
| 305 |
+
}
|
| 306 |
+
} else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
|
| 307 |
+
next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
|
| 308 |
+
} else {
|
| 309 |
+
rejects.push_back(tok);
|
| 310 |
+
}
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
|
| 314 |
+
|
| 315 |
+
// update top of stack to next element, if any
|
| 316 |
+
llama_grammar_stack stack_after(stack.begin(), stack.end() - 1);
|
| 317 |
+
if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
|
| 318 |
+
stack_after.push_back(stack_pos_after);
|
| 319 |
+
}
|
| 320 |
+
llama_grammar_stacks next_stacks;
|
| 321 |
+
llama_grammar_advance_stack(rules, stack_after, next_stacks);
|
| 322 |
+
|
| 323 |
+
auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
|
| 324 |
+
for (const auto & tok : next_rejects) {
|
| 325 |
+
rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
|
| 326 |
+
}
|
| 327 |
+
|
| 328 |
+
return rejects;
|
| 329 |
+
}
|
| 330 |
+
|
| 331 |
+
static bool llama_grammar_detect_left_recursion(
|
| 332 |
+
const llama_grammar_rules & rules,
|
| 333 |
+
size_t rule_index,
|
| 334 |
+
std::vector<bool> * rules_visited,
|
| 335 |
+
std::vector<bool> * rules_in_progress,
|
| 336 |
+
std::vector<bool> * rules_may_be_empty) {
|
| 337 |
+
if ((*rules_in_progress)[rule_index]) {
|
| 338 |
+
return true;
|
| 339 |
+
}
|
| 340 |
+
|
| 341 |
+
(*rules_in_progress)[rule_index] = true;
|
| 342 |
+
|
| 343 |
+
const llama_grammar_rule & rule = rules[rule_index];
|
| 344 |
+
|
| 345 |
+
// First check if the rule might produce the empty string. This could be done combined with the second
|
| 346 |
+
// step but it's more readable as two steps.
|
| 347 |
+
bool at_rule_start = true;
|
| 348 |
+
for (size_t i = 0; i < rule.size(); i++) {
|
| 349 |
+
if (llama_grammar_is_end_of_sequence(&rule[i])) {
|
| 350 |
+
if (at_rule_start) {
|
| 351 |
+
(*rules_may_be_empty)[rule_index] = true;
|
| 352 |
+
break;
|
| 353 |
+
}
|
| 354 |
+
at_rule_start = true;
|
| 355 |
+
} else {
|
| 356 |
+
at_rule_start = false;
|
| 357 |
+
}
|
| 358 |
+
}
|
| 359 |
+
|
| 360 |
+
// Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
|
| 361 |
+
// be empty)
|
| 362 |
+
bool recurse_into_nonterminal = true;
|
| 363 |
+
for (size_t i = 0; i < rule.size(); i++) {
|
| 364 |
+
if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
|
| 365 |
+
if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
|
| 366 |
+
return true;
|
| 367 |
+
}
|
| 368 |
+
if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
|
| 369 |
+
recurse_into_nonterminal = false;
|
| 370 |
+
}
|
| 371 |
+
} else if (llama_grammar_is_end_of_sequence(&rule[i])) {
|
| 372 |
+
recurse_into_nonterminal = true;
|
| 373 |
+
} else {
|
| 374 |
+
recurse_into_nonterminal = false;
|
| 375 |
+
}
|
| 376 |
+
}
|
| 377 |
+
|
| 378 |
+
(*rules_in_progress)[rule_index] = false;
|
| 379 |
+
(*rules_visited)[rule_index] = true;
|
| 380 |
+
return false;
|
| 381 |
+
}
|
| 382 |
+
|
| 383 |
+
//
|
| 384 |
+
// grammar - external
|
| 385 |
+
//
|
| 386 |
+
|
| 387 |
+
struct llama_grammar * llama_grammar_init_impl(
|
| 388 |
+
const llama_grammar_element ** rules,
|
| 389 |
+
size_t n_rules,
|
| 390 |
+
size_t start_rule_index) {
|
| 391 |
+
const llama_grammar_element * pos;
|
| 392 |
+
|
| 393 |
+
// copy rule definitions into vectors
|
| 394 |
+
llama_grammar_rules vec_rules(n_rules);
|
| 395 |
+
for (size_t i = 0; i < n_rules; i++) {
|
| 396 |
+
for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
|
| 397 |
+
vec_rules[i].push_back(*pos);
|
| 398 |
+
}
|
| 399 |
+
vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
|
| 400 |
+
}
|
| 401 |
+
|
| 402 |
+
// Check for left recursion
|
| 403 |
+
std::vector<bool> rules_visited(n_rules);
|
| 404 |
+
std::vector<bool> rules_in_progress(n_rules);
|
| 405 |
+
std::vector<bool> rules_may_be_empty(n_rules);
|
| 406 |
+
for (size_t i = 0; i < n_rules; i++) {
|
| 407 |
+
if (rules_visited[i]) {
|
| 408 |
+
continue;
|
| 409 |
+
}
|
| 410 |
+
if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
|
| 411 |
+
LLAMA_LOG_ERROR("unsupported grammar, left recursion detected for nonterminal at index %zu", i);
|
| 412 |
+
return nullptr;
|
| 413 |
+
}
|
| 414 |
+
}
|
| 415 |
+
|
| 416 |
+
// loop over alternates of start rule to build initial stacks
|
| 417 |
+
llama_grammar_stacks stacks;
|
| 418 |
+
pos = vec_rules[start_rule_index].data();
|
| 419 |
+
do {
|
| 420 |
+
llama_grammar_stack stack;
|
| 421 |
+
if (!llama_grammar_is_end_of_sequence(pos)) {
|
| 422 |
+
// if alternate is nonempty, add to stack
|
| 423 |
+
stack.push_back(pos);
|
| 424 |
+
}
|
| 425 |
+
llama_grammar_advance_stack(vec_rules, stack, stacks);
|
| 426 |
+
while (!llama_grammar_is_end_of_sequence(pos)) {
|
| 427 |
+
// scan to end of alternate def
|
| 428 |
+
pos++;
|
| 429 |
+
}
|
| 430 |
+
if (pos->type == LLAMA_GRETYPE_ALT) {
|
| 431 |
+
// there's another alternate def of this rule to process
|
| 432 |
+
pos++;
|
| 433 |
+
} else {
|
| 434 |
+
break;
|
| 435 |
+
}
|
| 436 |
+
} while (true);
|
| 437 |
+
|
| 438 |
+
// Important: vec_rules has to be moved here, not copied, because stacks contains
|
| 439 |
+
// pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
|
| 440 |
+
// then the pointers would be invalidated when the local vec_rules goes out of scope.
|
| 441 |
+
return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
|
| 442 |
+
}
|
| 443 |
+
|
| 444 |
+
void llama_grammar_free_impl(struct llama_grammar * grammar) {
|
| 445 |
+
delete grammar;
|
| 446 |
+
}
|
| 447 |
+
|
| 448 |
+
struct llama_grammar * llama_grammar_copy_impl(const struct llama_grammar * grammar) {
|
| 449 |
+
llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
|
| 450 |
+
|
| 451 |
+
// redirect elements in stacks to point to new rules
|
| 452 |
+
for (size_t is = 0; is < result->stacks.size(); is++) {
|
| 453 |
+
for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
|
| 454 |
+
for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
|
| 455 |
+
for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
|
| 456 |
+
if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
|
| 457 |
+
result->stacks[is][ie] = &result->rules[ir0][ir1];
|
| 458 |
+
}
|
| 459 |
+
}
|
| 460 |
+
}
|
| 461 |
+
}
|
| 462 |
+
}
|
| 463 |
+
|
| 464 |
+
return result;
|
| 465 |
+
}
|
| 466 |
+
|
| 467 |
+
void llama_grammar_sample_impl(const struct llama_grammar * grammar, const struct llama_vocab * vocab, const struct llama_sampling * smpl, llama_token_data_array * candidates) {
|
| 468 |
+
GGML_ASSERT(grammar);
|
| 469 |
+
GGML_ASSERT(vocab);
|
| 470 |
+
|
| 471 |
+
int64_t t_start_sample_us = ggml_time_us();
|
| 472 |
+
|
| 473 |
+
bool allow_eog = false;
|
| 474 |
+
for (const auto & stack : grammar->stacks) {
|
| 475 |
+
if (stack.empty()) {
|
| 476 |
+
allow_eog = true;
|
| 477 |
+
break;
|
| 478 |
+
}
|
| 479 |
+
}
|
| 480 |
+
|
| 481 |
+
std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
|
| 482 |
+
candidates_decoded.reserve(candidates->size);
|
| 483 |
+
|
| 484 |
+
llama_grammar_candidates candidates_grammar;
|
| 485 |
+
candidates_grammar.reserve(candidates->size);
|
| 486 |
+
|
| 487 |
+
for (size_t i = 0; i < candidates->size; ++i) {
|
| 488 |
+
const llama_token id = candidates->data[i].id;
|
| 489 |
+
const std::string & piece = vocab->cache_token_to_piece.at(id);
|
| 490 |
+
|
| 491 |
+
if (llama_token_is_eog_impl(*vocab, id)) {
|
| 492 |
+
if (!allow_eog) {
|
| 493 |
+
candidates->data[i].logit = -INFINITY;
|
| 494 |
+
}
|
| 495 |
+
} else if (piece.empty() || piece[0] == 0) {
|
| 496 |
+
candidates->data[i].logit = -INFINITY;
|
| 497 |
+
} else {
|
| 498 |
+
candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
|
| 499 |
+
candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
|
| 500 |
+
}
|
| 501 |
+
}
|
| 502 |
+
|
| 503 |
+
const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
|
| 504 |
+
for (const auto & reject : rejects) {
|
| 505 |
+
candidates->data[reject.index].logit = -INFINITY;
|
| 506 |
+
}
|
| 507 |
+
|
| 508 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 509 |
+
}
|
| 510 |
+
|
| 511 |
+
void llama_grammar_accept_token_impl(struct llama_grammar * grammar, const struct llama_vocab * vocab, const struct llama_sampling * smpl, llama_token token) {
|
| 512 |
+
const int64_t t_start_sample_us = ggml_time_us();
|
| 513 |
+
|
| 514 |
+
if (llama_token_is_eog_impl(*vocab, token)) {
|
| 515 |
+
for (const auto & stack : grammar->stacks) {
|
| 516 |
+
if (stack.empty()) {
|
| 517 |
+
return;
|
| 518 |
+
}
|
| 519 |
+
}
|
| 520 |
+
GGML_ABORT("fatal error");
|
| 521 |
+
}
|
| 522 |
+
|
| 523 |
+
const std::string & piece = vocab->cache_token_to_piece.at(token);
|
| 524 |
+
|
| 525 |
+
// Note terminating 0 in decoded string
|
| 526 |
+
const auto decoded = decode_utf8(piece, grammar->partial_utf8);
|
| 527 |
+
const auto & code_points = decoded.first;
|
| 528 |
+
|
| 529 |
+
llama_grammar_stacks tmp_new_stacks;
|
| 530 |
+
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
|
| 531 |
+
llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
|
| 532 |
+
grammar->stacks = tmp_new_stacks;
|
| 533 |
+
}
|
| 534 |
+
|
| 535 |
+
grammar->partial_utf8 = decoded.second;
|
| 536 |
+
GGML_ASSERT(!grammar->stacks.empty());
|
| 537 |
+
|
| 538 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 539 |
+
}
|
examples/talk-llama/llama-grammar.h
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
#include "llama-impl.h"
|
| 4 |
+
|
| 5 |
+
struct llama_vocab;
|
| 6 |
+
struct llama_sampling;
|
| 7 |
+
|
| 8 |
+
struct llama_grammar {
|
| 9 |
+
const llama_grammar_rules rules;
|
| 10 |
+
llama_grammar_stacks stacks;
|
| 11 |
+
|
| 12 |
+
// buffer for partially generated UTF-8 sequence from accepted tokens
|
| 13 |
+
llama_partial_utf8 partial_utf8;
|
| 14 |
+
};
|
| 15 |
+
|
| 16 |
+
//
|
| 17 |
+
// internal API
|
| 18 |
+
//
|
| 19 |
+
|
| 20 |
+
struct llama_grammar * llama_grammar_init_impl(
|
| 21 |
+
const llama_grammar_element ** rules,
|
| 22 |
+
size_t n_rules,
|
| 23 |
+
size_t start_rule_index);
|
| 24 |
+
|
| 25 |
+
void llama_grammar_free_impl(struct llama_grammar * grammar);
|
| 26 |
+
|
| 27 |
+
struct llama_grammar * llama_grammar_copy_impl(const struct llama_grammar * grammar);
|
| 28 |
+
|
| 29 |
+
void llama_grammar_sample_impl(
|
| 30 |
+
const struct llama_grammar * grammar,
|
| 31 |
+
const struct llama_vocab * vocab,
|
| 32 |
+
const struct llama_sampling * smpl,
|
| 33 |
+
llama_token_data_array * candidates);
|
| 34 |
+
|
| 35 |
+
void llama_grammar_accept_token_impl(
|
| 36 |
+
struct llama_grammar * grammar,
|
| 37 |
+
const struct llama_vocab * vocab,
|
| 38 |
+
const struct llama_sampling * smpl,
|
| 39 |
+
llama_token token);
|
examples/talk-llama/llama-impl.h
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
#define LLAMA_API_INTERNAL
|
| 4 |
+
#include "llama.h"
|
| 5 |
+
|
| 6 |
+
#ifdef __GNUC__
|
| 7 |
+
#ifdef __MINGW32__
|
| 8 |
+
#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
| 9 |
+
#else
|
| 10 |
+
#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
| 11 |
+
#endif
|
| 12 |
+
#else
|
| 13 |
+
#define LLAMA_ATTRIBUTE_FORMAT(...)
|
| 14 |
+
#endif
|
| 15 |
+
|
| 16 |
+
//
|
| 17 |
+
// logging
|
| 18 |
+
//
|
| 19 |
+
|
| 20 |
+
LLAMA_ATTRIBUTE_FORMAT(2, 3)
|
| 21 |
+
void llama_log_internal (ggml_log_level level, const char * format, ...);
|
| 22 |
+
void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
|
| 23 |
+
|
| 24 |
+
#define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
|
| 25 |
+
#define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
|
| 26 |
+
#define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
|
examples/talk-llama/llama-sampling.cpp
ADDED
|
@@ -0,0 +1,635 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "llama-sampling.h"
|
| 2 |
+
|
| 3 |
+
#include <algorithm>
|
| 4 |
+
#include <cstring>
|
| 5 |
+
#include <ctime>
|
| 6 |
+
#include <cfloat>
|
| 7 |
+
#include <numeric>
|
| 8 |
+
#include <unordered_map>
|
| 9 |
+
|
| 10 |
+
static void llama_log_softmax(float * array, size_t size) {
|
| 11 |
+
float max_l = *std::max_element(array, array + size);
|
| 12 |
+
float sum = 0.f;
|
| 13 |
+
for (size_t i = 0; i < size; ++i) {
|
| 14 |
+
float p = expf(array[i] - max_l);
|
| 15 |
+
sum += p;
|
| 16 |
+
array[i] = p;
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
for (size_t i = 0; i < size; ++i) {
|
| 20 |
+
array[i] = logf(array[i] / sum);
|
| 21 |
+
}
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
void llama_set_rng_seed_impl(struct llama_sampling * smpl, uint32_t seed) {
|
| 25 |
+
if (seed == LLAMA_DEFAULT_SEED) {
|
| 26 |
+
seed = time(NULL);
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
smpl->rng.seed(seed);
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
void llama_sample_softmax_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) {
|
| 33 |
+
GGML_ASSERT(candidates->size > 0);
|
| 34 |
+
|
| 35 |
+
const int64_t t_start_sample_us = ggml_time_us();
|
| 36 |
+
|
| 37 |
+
// Sort the logits in descending order
|
| 38 |
+
if (!candidates->sorted) {
|
| 39 |
+
std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
|
| 40 |
+
return a.logit > b.logit;
|
| 41 |
+
});
|
| 42 |
+
candidates->sorted = true;
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
float max_l = candidates->data[0].logit;
|
| 46 |
+
float cum_sum = 0.0f;
|
| 47 |
+
for (size_t i = 0; i < candidates->size; ++i) {
|
| 48 |
+
float p = expf(candidates->data[i].logit - max_l);
|
| 49 |
+
candidates->data[i].p = p;
|
| 50 |
+
cum_sum += p;
|
| 51 |
+
}
|
| 52 |
+
for (size_t i = 0; i < candidates->size; ++i) {
|
| 53 |
+
candidates->data[i].p /= cum_sum;
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
if (smpl) {
|
| 57 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 58 |
+
}
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
void llama_sample_top_k_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
|
| 62 |
+
// TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
|
| 63 |
+
// if (k >= (int32_t)candidates->size) {
|
| 64 |
+
// return;
|
| 65 |
+
// }
|
| 66 |
+
|
| 67 |
+
const int64_t t_start_sample_us = ggml_time_us();
|
| 68 |
+
|
| 69 |
+
if (k <= 0) {
|
| 70 |
+
k = candidates->size;
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
k = std::max(k, (int) min_keep);
|
| 74 |
+
k = std::min(k, (int) candidates->size);
|
| 75 |
+
|
| 76 |
+
// Sort scores in descending order
|
| 77 |
+
if (!candidates->sorted) {
|
| 78 |
+
auto comp = [](const llama_token_data & a, const llama_token_data & b) {
|
| 79 |
+
return a.logit > b.logit;
|
| 80 |
+
};
|
| 81 |
+
if (k <= 128) {
|
| 82 |
+
std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
|
| 83 |
+
} else {
|
| 84 |
+
constexpr int nbuckets = 128;
|
| 85 |
+
constexpr float bucket_low = -10.0f;
|
| 86 |
+
constexpr float bucket_high = 10.0f;
|
| 87 |
+
constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
|
| 88 |
+
constexpr float bucker_inter = -bucket_low * bucket_scale;
|
| 89 |
+
|
| 90 |
+
std::vector<int> bucket_idx(candidates->size);
|
| 91 |
+
std::vector<int> histo(nbuckets, 0);
|
| 92 |
+
|
| 93 |
+
for (int i = 0; i < (int)candidates->size; ++i) {
|
| 94 |
+
const float val = candidates->data[i].logit;
|
| 95 |
+
int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
|
| 96 |
+
ib = std::max(0, std::min(nbuckets-1, ib));
|
| 97 |
+
bucket_idx[i] = ib;
|
| 98 |
+
++histo[ib];
|
| 99 |
+
}
|
| 100 |
+
int nhave = 0;
|
| 101 |
+
int ib = nbuckets - 1;
|
| 102 |
+
for ( ; ib >= 0; --ib) {
|
| 103 |
+
nhave += histo[ib];
|
| 104 |
+
if (nhave >= k) break;
|
| 105 |
+
}
|
| 106 |
+
std::vector<llama_token_data> tmp_tokens(nhave);
|
| 107 |
+
auto ptr = tmp_tokens.data();
|
| 108 |
+
std::vector<llama_token_data*> bucket_ptrs;
|
| 109 |
+
bucket_ptrs.reserve(nbuckets - ib);
|
| 110 |
+
for (int j = nbuckets - 1; j >= ib; --j) {
|
| 111 |
+
bucket_ptrs.push_back(ptr);
|
| 112 |
+
ptr += histo[j];
|
| 113 |
+
}
|
| 114 |
+
for (int i = 0; i < (int)candidates->size; ++i) {
|
| 115 |
+
int j = bucket_idx[i];
|
| 116 |
+
if (j >= ib) {
|
| 117 |
+
*bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
|
| 118 |
+
}
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
ptr = tmp_tokens.data();
|
| 122 |
+
int ndone = 0;
|
| 123 |
+
for (int j = nbuckets-1; j > ib; --j) {
|
| 124 |
+
std::sort(ptr, ptr + histo[j], comp);
|
| 125 |
+
ptr += histo[j];
|
| 126 |
+
ndone += histo[j];
|
| 127 |
+
}
|
| 128 |
+
std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
|
| 129 |
+
|
| 130 |
+
std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
|
| 131 |
+
|
| 132 |
+
}
|
| 133 |
+
candidates->sorted = true;
|
| 134 |
+
}
|
| 135 |
+
candidates->size = k;
|
| 136 |
+
|
| 137 |
+
if (smpl) {
|
| 138 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 139 |
+
}
|
| 140 |
+
}
|
| 141 |
+
|
| 142 |
+
void llama_sample_top_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) {
|
| 143 |
+
if (p >= 1.0f) {
|
| 144 |
+
return;
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
llama_sample_softmax_impl(smpl, candidates);
|
| 148 |
+
|
| 149 |
+
const int64_t t_start_sample_us = ggml_time_us();
|
| 150 |
+
|
| 151 |
+
// Compute the cumulative probabilities
|
| 152 |
+
float cum_sum = 0.0f;
|
| 153 |
+
size_t last_idx = candidates->size;
|
| 154 |
+
|
| 155 |
+
for (size_t i = 0; i < candidates->size; ++i) {
|
| 156 |
+
cum_sum += candidates->data[i].p;
|
| 157 |
+
|
| 158 |
+
// Check if the running sum is at least p or if we have kept at least min_keep tokens
|
| 159 |
+
// we set the last index to i+1 to indicate that the current iterate should be included in the set
|
| 160 |
+
if (cum_sum >= p && i + 1 >= min_keep) {
|
| 161 |
+
last_idx = i + 1;
|
| 162 |
+
break;
|
| 163 |
+
}
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
// Resize the output vector to keep only the top-p tokens
|
| 167 |
+
candidates->size = last_idx;
|
| 168 |
+
|
| 169 |
+
if (smpl) {
|
| 170 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 171 |
+
}
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
void llama_sample_min_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) {
|
| 175 |
+
if (p <= 0.0f || !candidates->size) {
|
| 176 |
+
return;
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
const int64_t t_start_sample_us = ggml_time_us();
|
| 180 |
+
|
| 181 |
+
bool min_p_applied = false;
|
| 182 |
+
|
| 183 |
+
// if the candidates aren't sorted, try the unsorted implementation first
|
| 184 |
+
if (!candidates->sorted) {
|
| 185 |
+
std::vector<llama_token_data> filtered_tokens;
|
| 186 |
+
|
| 187 |
+
float max_logit = -FLT_MAX;
|
| 188 |
+
for (size_t i = 0; i < candidates->size; ++i) {
|
| 189 |
+
max_logit = std::max(max_logit, candidates->data[i].logit);
|
| 190 |
+
}
|
| 191 |
+
const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
|
| 192 |
+
|
| 193 |
+
for (size_t i = 0; i < candidates->size; ++i) {
|
| 194 |
+
if (candidates->data[i].logit >= min_logit) {
|
| 195 |
+
filtered_tokens.push_back(candidates->data[i]);
|
| 196 |
+
}
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
// if we have enough values the operation was a success
|
| 200 |
+
if (filtered_tokens.size() >= min_keep) {
|
| 201 |
+
memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
|
| 202 |
+
candidates->size = filtered_tokens.size();
|
| 203 |
+
min_p_applied = true;
|
| 204 |
+
}
|
| 205 |
+
}
|
| 206 |
+
|
| 207 |
+
// if the candidates are sorted or the unsorted implementation failed, use this implementation
|
| 208 |
+
if (!min_p_applied) {
|
| 209 |
+
// Sort the logits in descending order
|
| 210 |
+
if (!candidates->sorted) {
|
| 211 |
+
std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
|
| 212 |
+
return a.logit > b.logit;
|
| 213 |
+
});
|
| 214 |
+
candidates->sorted = true;
|
| 215 |
+
}
|
| 216 |
+
|
| 217 |
+
const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
|
| 218 |
+
size_t i = 1; // first token always matches
|
| 219 |
+
|
| 220 |
+
for (; i < candidates->size; ++i) {
|
| 221 |
+
if (candidates->data[i].logit < min_logit && i >= min_keep) {
|
| 222 |
+
break; // prob too small
|
| 223 |
+
}
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
// Resize the output vector to keep only the matching tokens
|
| 227 |
+
candidates->size = i;
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
if (smpl) {
|
| 231 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 232 |
+
}
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
void llama_sample_tail_free_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float z, size_t min_keep) {
|
| 236 |
+
if (z >= 1.0f || candidates->size <= 2) {
|
| 237 |
+
return;
|
| 238 |
+
}
|
| 239 |
+
|
| 240 |
+
llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
|
| 241 |
+
const int64_t t_start_sample_us = ggml_time_us();
|
| 242 |
+
|
| 243 |
+
// Compute the first and second derivatives
|
| 244 |
+
std::vector<float> first_derivatives(candidates->size - 1);
|
| 245 |
+
std::vector<float> second_derivatives(candidates->size - 2);
|
| 246 |
+
|
| 247 |
+
for (size_t i = 0; i < first_derivatives.size(); ++i) {
|
| 248 |
+
first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
|
| 249 |
+
}
|
| 250 |
+
for (size_t i = 0; i < second_derivatives.size(); ++i) {
|
| 251 |
+
second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
|
| 252 |
+
}
|
| 253 |
+
|
| 254 |
+
// Calculate absolute value of second derivatives
|
| 255 |
+
for (size_t i = 0; i < second_derivatives.size(); ++i) {
|
| 256 |
+
second_derivatives[i] = std::abs(second_derivatives[i]);
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
// Normalize the second derivatives
|
| 260 |
+
{
|
| 261 |
+
const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
|
| 262 |
+
|
| 263 |
+
if (second_derivatives_sum > 1e-6f) {
|
| 264 |
+
for (float & value : second_derivatives) {
|
| 265 |
+
value /= second_derivatives_sum;
|
| 266 |
+
}
|
| 267 |
+
} else {
|
| 268 |
+
for (float & value : second_derivatives) {
|
| 269 |
+
value = 1.0f / second_derivatives.size();
|
| 270 |
+
}
|
| 271 |
+
}
|
| 272 |
+
}
|
| 273 |
+
|
| 274 |
+
float cum_sum = 0.0f;
|
| 275 |
+
size_t last_idx = candidates->size;
|
| 276 |
+
for (size_t i = 0; i < second_derivatives.size(); ++i) {
|
| 277 |
+
cum_sum += second_derivatives[i];
|
| 278 |
+
|
| 279 |
+
// Check if the running sum is greater than z or if we have kept at least min_keep tokens
|
| 280 |
+
if (cum_sum > z && i >= min_keep) {
|
| 281 |
+
last_idx = i;
|
| 282 |
+
break;
|
| 283 |
+
}
|
| 284 |
+
}
|
| 285 |
+
|
| 286 |
+
// Resize the output vector to keep only the tokens above the tail location
|
| 287 |
+
candidates->size = last_idx;
|
| 288 |
+
|
| 289 |
+
if (smpl) {
|
| 290 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 291 |
+
}
|
| 292 |
+
}
|
| 293 |
+
|
| 294 |
+
void llama_sample_typical_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) {
|
| 295 |
+
// Reference implementation:
|
| 296 |
+
// https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
|
| 297 |
+
if (p >= 1.0f) {
|
| 298 |
+
return;
|
| 299 |
+
}
|
| 300 |
+
|
| 301 |
+
// Compute the softmax of logits and calculate entropy
|
| 302 |
+
llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
|
| 303 |
+
|
| 304 |
+
const int64_t t_start_sample_us = ggml_time_us();
|
| 305 |
+
|
| 306 |
+
float entropy = 0.0f;
|
| 307 |
+
for (size_t i = 0; i < candidates->size; ++i) {
|
| 308 |
+
entropy += -candidates->data[i].p * logf(candidates->data[i].p);
|
| 309 |
+
}
|
| 310 |
+
|
| 311 |
+
// Compute the absolute difference between negative log probability and entropy for each candidate
|
| 312 |
+
std::vector<float> shifted_scores;
|
| 313 |
+
for (size_t i = 0; i < candidates->size; ++i) {
|
| 314 |
+
float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
|
| 315 |
+
shifted_scores.push_back(shifted_score);
|
| 316 |
+
}
|
| 317 |
+
|
| 318 |
+
// Sort tokens based on the shifted_scores and their corresponding indices
|
| 319 |
+
std::vector<size_t> indices(candidates->size);
|
| 320 |
+
std::iota(indices.begin(), indices.end(), 0);
|
| 321 |
+
|
| 322 |
+
std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
|
| 323 |
+
return shifted_scores[a] < shifted_scores[b];
|
| 324 |
+
});
|
| 325 |
+
|
| 326 |
+
// Compute the cumulative probabilities
|
| 327 |
+
float cum_sum = 0.0f;
|
| 328 |
+
size_t last_idx = indices.size();
|
| 329 |
+
|
| 330 |
+
for (size_t i = 0; i < indices.size(); ++i) {
|
| 331 |
+
size_t idx = indices[i];
|
| 332 |
+
cum_sum += candidates->data[idx].p;
|
| 333 |
+
|
| 334 |
+
// Check if the running sum is greater than typical or if we have kept at least min_keep tokens
|
| 335 |
+
if (cum_sum > p && i >= min_keep - 1) {
|
| 336 |
+
last_idx = i + 1;
|
| 337 |
+
break;
|
| 338 |
+
}
|
| 339 |
+
}
|
| 340 |
+
|
| 341 |
+
// Resize the output vector to keep only the locally typical tokens
|
| 342 |
+
std::vector<llama_token_data> new_candidates;
|
| 343 |
+
for (size_t i = 0; i < last_idx; ++i) {
|
| 344 |
+
size_t idx = indices[i];
|
| 345 |
+
new_candidates.push_back(candidates->data[idx]);
|
| 346 |
+
}
|
| 347 |
+
|
| 348 |
+
// Replace the data in candidates with the new_candidates data
|
| 349 |
+
std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
|
| 350 |
+
candidates->size = new_candidates.size();
|
| 351 |
+
candidates->sorted = false;
|
| 352 |
+
|
| 353 |
+
if (smpl) {
|
| 354 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 355 |
+
}
|
| 356 |
+
}
|
| 357 |
+
|
| 358 |
+
void llama_sample_entropy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float min_temp, float max_temp, float exponent_val) {
|
| 359 |
+
const int64_t t_start_sample_us = ggml_time_us();
|
| 360 |
+
|
| 361 |
+
// no need to do anything if there is only one (or zero) candidates
|
| 362 |
+
if(candidates->size <= 1) {
|
| 363 |
+
return;
|
| 364 |
+
}
|
| 365 |
+
|
| 366 |
+
// Calculate maximum possible entropy
|
| 367 |
+
float max_entropy = -logf(1.0f / candidates->size);
|
| 368 |
+
|
| 369 |
+
llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
|
| 370 |
+
|
| 371 |
+
// Calculate entropy of the softmax probabilities
|
| 372 |
+
float entropy = 0.0f;
|
| 373 |
+
for (size_t i = 0; i < candidates->size; ++i) {
|
| 374 |
+
float prob = candidates->data[i].p;
|
| 375 |
+
if (prob > 0.0f) { // Ensure no log(0)
|
| 376 |
+
entropy -= prob * logf(prob);
|
| 377 |
+
}
|
| 378 |
+
}
|
| 379 |
+
|
| 380 |
+
// Normalize the entropy (max_entropy cannot be 0 here because we checked candidates->size != 1 above)
|
| 381 |
+
float normalized_entropy = entropy / max_entropy;
|
| 382 |
+
|
| 383 |
+
// Map the normalized entropy to the desired temperature range using the power function
|
| 384 |
+
float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
|
| 385 |
+
|
| 386 |
+
#ifdef DEBUG
|
| 387 |
+
LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
|
| 388 |
+
LLAMA_LOG_INFO("Entropy: %f\n", entropy);
|
| 389 |
+
LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
|
| 390 |
+
LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
|
| 391 |
+
LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
|
| 392 |
+
LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
|
| 393 |
+
#endif
|
| 394 |
+
|
| 395 |
+
// Apply the dynamically calculated temperature scaling
|
| 396 |
+
for (size_t i = 0; i < candidates->size; ++i) {
|
| 397 |
+
candidates->data[i].logit /= dyn_temp;
|
| 398 |
+
}
|
| 399 |
+
|
| 400 |
+
// Re-compute softmax probabilities after scaling logits with dynamic temperature
|
| 401 |
+
double max_l_double = candidates->data[0].logit;
|
| 402 |
+
double cum_sum_double = 0.0;
|
| 403 |
+
for (size_t i = 0; i < candidates->size; ++i) {
|
| 404 |
+
double p = exp(candidates->data[i].logit - max_l_double);
|
| 405 |
+
candidates->data[i].p = p; // Store the scaled probability
|
| 406 |
+
cum_sum_double += p;
|
| 407 |
+
}
|
| 408 |
+
for (size_t i = 0; i < candidates->size; ++i) {
|
| 409 |
+
candidates->data[i].p /= cum_sum_double; // Re-normalize the probabilities
|
| 410 |
+
}
|
| 411 |
+
|
| 412 |
+
#ifdef DEBUG
|
| 413 |
+
// Print the updated top 25 probabilities after temperature scaling
|
| 414 |
+
LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
|
| 415 |
+
for (size_t i = 0; i < 25 && i < candidates->size; ++i) {
|
| 416 |
+
LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates->data[i].p * 100.0f);
|
| 417 |
+
}
|
| 418 |
+
#endif
|
| 419 |
+
|
| 420 |
+
if (smpl) {
|
| 421 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 422 |
+
}
|
| 423 |
+
}
|
| 424 |
+
|
| 425 |
+
void llama_sample_temp_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float temp) {
|
| 426 |
+
const int64_t t_start_sample_us = ggml_time_us();
|
| 427 |
+
|
| 428 |
+
for (size_t i = 0; i < candidates->size; ++i) {
|
| 429 |
+
candidates->data[i].logit /= temp;
|
| 430 |
+
}
|
| 431 |
+
|
| 432 |
+
if (smpl) {
|
| 433 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 434 |
+
}
|
| 435 |
+
}
|
| 436 |
+
|
| 437 |
+
void llama_sample_repetition_penalties_impl(
|
| 438 |
+
struct llama_sampling * smpl,
|
| 439 |
+
llama_token_data_array * candidates,
|
| 440 |
+
const llama_token * last_tokens,
|
| 441 |
+
size_t penalty_last_n,
|
| 442 |
+
float penalty_repeat,
|
| 443 |
+
float penalty_freq,
|
| 444 |
+
float penalty_present) {
|
| 445 |
+
if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
|
| 446 |
+
return;
|
| 447 |
+
}
|
| 448 |
+
|
| 449 |
+
const int64_t t_start_sample_us = ggml_time_us();
|
| 450 |
+
|
| 451 |
+
// Create a frequency map to count occurrences of each token in last_tokens
|
| 452 |
+
std::unordered_map<llama_token, int> token_count;
|
| 453 |
+
for (size_t i = 0; i < penalty_last_n; ++i) {
|
| 454 |
+
token_count[last_tokens[i]]++;
|
| 455 |
+
}
|
| 456 |
+
|
| 457 |
+
// Apply frequency and presence penalties to the candidates
|
| 458 |
+
for (size_t i = 0; i < candidates->size; ++i) {
|
| 459 |
+
const auto token_iter = token_count.find(candidates->data[i].id);
|
| 460 |
+
if (token_iter == token_count.end()) {
|
| 461 |
+
continue;
|
| 462 |
+
}
|
| 463 |
+
|
| 464 |
+
const int count = token_iter->second;
|
| 465 |
+
|
| 466 |
+
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
|
| 467 |
+
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
|
| 468 |
+
if (candidates->data[i].logit <= 0) {
|
| 469 |
+
candidates->data[i].logit *= penalty_repeat;
|
| 470 |
+
} else {
|
| 471 |
+
candidates->data[i].logit /= penalty_repeat;
|
| 472 |
+
}
|
| 473 |
+
|
| 474 |
+
candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
|
| 475 |
+
}
|
| 476 |
+
|
| 477 |
+
candidates->sorted = false;
|
| 478 |
+
|
| 479 |
+
if (smpl) {
|
| 480 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 481 |
+
}
|
| 482 |
+
}
|
| 483 |
+
|
| 484 |
+
void llama_sample_apply_guidance_impl(
|
| 485 |
+
struct llama_sampling * smpl,
|
| 486 |
+
float * logits,
|
| 487 |
+
float * logits_guidance,
|
| 488 |
+
float scale) {
|
| 489 |
+
GGML_ASSERT(smpl);
|
| 490 |
+
|
| 491 |
+
const auto t_start_sample_us = ggml_time_us();
|
| 492 |
+
const auto n_vocab = smpl->n_vocab;
|
| 493 |
+
|
| 494 |
+
llama_log_softmax(logits, n_vocab);
|
| 495 |
+
llama_log_softmax(logits_guidance, n_vocab);
|
| 496 |
+
|
| 497 |
+
for (int i = 0; i < n_vocab; ++i) {
|
| 498 |
+
auto & l = logits[i];
|
| 499 |
+
const auto & g = logits_guidance[i];
|
| 500 |
+
|
| 501 |
+
l = scale * (l - g) + g;
|
| 502 |
+
}
|
| 503 |
+
|
| 504 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 505 |
+
}
|
| 506 |
+
|
| 507 |
+
llama_token llama_sample_token_mirostat_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
|
| 508 |
+
GGML_ASSERT(smpl);
|
| 509 |
+
|
| 510 |
+
const int32_t n_vocab = float(smpl->n_vocab);
|
| 511 |
+
|
| 512 |
+
int64_t t_start_sample_us = ggml_time_us();
|
| 513 |
+
|
| 514 |
+
llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
|
| 515 |
+
|
| 516 |
+
// Estimate s_hat using the most probable m tokens
|
| 517 |
+
float s_hat = 0.0;
|
| 518 |
+
float sum_ti_bi = 0.0;
|
| 519 |
+
float sum_ti_sq = 0.0;
|
| 520 |
+
for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
|
| 521 |
+
float t_i = logf(float(i + 2) / float(i + 1));
|
| 522 |
+
float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
|
| 523 |
+
sum_ti_bi += t_i * b_i;
|
| 524 |
+
sum_ti_sq += t_i * t_i;
|
| 525 |
+
}
|
| 526 |
+
s_hat = sum_ti_bi / sum_ti_sq;
|
| 527 |
+
|
| 528 |
+
// Compute k from the estimated s_hat and target surprise value
|
| 529 |
+
float epsilon_hat = s_hat - 1;
|
| 530 |
+
float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(n_vocab, -epsilon_hat)), 1 / s_hat);
|
| 531 |
+
|
| 532 |
+
// Sample the next word X using top-k sampling
|
| 533 |
+
llama_sample_top_k_impl((struct llama_sampling *) nullptr, candidates, int(k), 1);
|
| 534 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 535 |
+
llama_token X = llama_sample_token_impl(smpl, candidates);
|
| 536 |
+
t_start_sample_us = ggml_time_us();
|
| 537 |
+
|
| 538 |
+
// Compute error as the difference between observed surprise and target surprise value
|
| 539 |
+
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
|
| 540 |
+
return candidate.id == X;
|
| 541 |
+
}));
|
| 542 |
+
float observed_surprise = -log2f(candidates->data[X_idx].p);
|
| 543 |
+
float e = observed_surprise - tau;
|
| 544 |
+
|
| 545 |
+
// Update mu using the learning rate and error
|
| 546 |
+
*mu = *mu - eta * e;
|
| 547 |
+
|
| 548 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 549 |
+
return X;
|
| 550 |
+
}
|
| 551 |
+
|
| 552 |
+
llama_token llama_sample_token_mirostat_v2_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, float * mu) {
|
| 553 |
+
int64_t t_start_sample_us;
|
| 554 |
+
t_start_sample_us = ggml_time_us();
|
| 555 |
+
|
| 556 |
+
llama_sample_softmax_impl(smpl, candidates);
|
| 557 |
+
|
| 558 |
+
// Truncate the words with surprise values greater than mu
|
| 559 |
+
candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
|
| 560 |
+
return -log2f(candidate.p) > *mu;
|
| 561 |
+
}));
|
| 562 |
+
|
| 563 |
+
if (candidates->size == 0) {
|
| 564 |
+
candidates->size = 1;
|
| 565 |
+
}
|
| 566 |
+
|
| 567 |
+
if (smpl) {
|
| 568 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 569 |
+
}
|
| 570 |
+
|
| 571 |
+
// Normalize the probabilities of the remaining words
|
| 572 |
+
llama_sample_softmax_impl(smpl, candidates);
|
| 573 |
+
|
| 574 |
+
// Sample the next word X from the remaining words
|
| 575 |
+
llama_token X = llama_sample_token_impl(smpl, candidates);
|
| 576 |
+
t_start_sample_us = ggml_time_us();
|
| 577 |
+
|
| 578 |
+
// Compute error as the difference between observed surprise and target surprise value
|
| 579 |
+
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
|
| 580 |
+
return candidate.id == X;
|
| 581 |
+
}));
|
| 582 |
+
float observed_surprise = -log2f(candidates->data[X_idx].p);
|
| 583 |
+
float e = observed_surprise - tau;
|
| 584 |
+
|
| 585 |
+
// Update mu using the learning rate and error
|
| 586 |
+
*mu = *mu - eta * e;
|
| 587 |
+
|
| 588 |
+
if (smpl) {
|
| 589 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 590 |
+
}
|
| 591 |
+
return X;
|
| 592 |
+
}
|
| 593 |
+
|
| 594 |
+
llama_token llama_sample_token_greedy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) {
|
| 595 |
+
const int64_t t_start_sample_us = ggml_time_us();
|
| 596 |
+
|
| 597 |
+
// Find max element
|
| 598 |
+
auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
|
| 599 |
+
return a.logit < b.logit;
|
| 600 |
+
});
|
| 601 |
+
|
| 602 |
+
llama_token result = max_iter->id;
|
| 603 |
+
if (smpl) {
|
| 604 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 605 |
+
smpl->n_sample++;
|
| 606 |
+
}
|
| 607 |
+
return result;
|
| 608 |
+
}
|
| 609 |
+
|
| 610 |
+
llama_token llama_sample_token_with_rng_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, std::mt19937 & rng) {
|
| 611 |
+
GGML_ASSERT(smpl);
|
| 612 |
+
|
| 613 |
+
const int64_t t_start_sample_us = ggml_time_us();
|
| 614 |
+
llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
|
| 615 |
+
|
| 616 |
+
std::vector<float> probs;
|
| 617 |
+
probs.reserve(candidates->size);
|
| 618 |
+
for (size_t i = 0; i < candidates->size; ++i) {
|
| 619 |
+
probs.push_back(candidates->data[i].p);
|
| 620 |
+
}
|
| 621 |
+
|
| 622 |
+
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
| 623 |
+
int idx = dist(rng);
|
| 624 |
+
|
| 625 |
+
llama_token result = candidates->data[idx].id;
|
| 626 |
+
|
| 627 |
+
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 628 |
+
smpl->n_sample++;
|
| 629 |
+
|
| 630 |
+
return result;
|
| 631 |
+
}
|
| 632 |
+
|
| 633 |
+
llama_token llama_sample_token_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) {
|
| 634 |
+
return llama_sample_token_with_rng_impl(smpl, candidates, smpl->rng);
|
| 635 |
+
}
|
examples/talk-llama/llama-sampling.h
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
#include "llama-impl.h"
|
| 4 |
+
|
| 5 |
+
struct llama_sampling {
|
| 6 |
+
llama_sampling(int32_t n_vocab) : n_vocab(n_vocab) {}
|
| 7 |
+
|
| 8 |
+
std::mt19937 rng;
|
| 9 |
+
|
| 10 |
+
int32_t n_vocab = 0;
|
| 11 |
+
|
| 12 |
+
mutable int64_t t_sample_us = 0;
|
| 13 |
+
mutable int32_t n_sample = 0;
|
| 14 |
+
|
| 15 |
+
void reset_timings() const {
|
| 16 |
+
t_sample_us = 0;
|
| 17 |
+
n_sample = 0;
|
| 18 |
+
}
|
| 19 |
+
};
|
| 20 |
+
|
| 21 |
+
//
|
| 22 |
+
// internal API
|
| 23 |
+
//
|
| 24 |
+
|
| 25 |
+
void llama_set_rng_seed_impl(struct llama_sampling * smpl, uint32_t seed);
|
| 26 |
+
|
| 27 |
+
void llama_sample_softmax_impl (struct llama_sampling * smpl, llama_token_data_array * candidates);
|
| 28 |
+
void llama_sample_top_k_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, int32_t k, size_t min_keep);
|
| 29 |
+
void llama_sample_top_p_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep);
|
| 30 |
+
void llama_sample_min_p_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep);
|
| 31 |
+
void llama_sample_tail_free_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float z, size_t min_keep);
|
| 32 |
+
void llama_sample_typical_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep);
|
| 33 |
+
void llama_sample_entropy_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float min_temp, float max_temp, float exponent_val);
|
| 34 |
+
void llama_sample_temp_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float temp);
|
| 35 |
+
|
| 36 |
+
void llama_sample_repetition_penalties_impl(
|
| 37 |
+
struct llama_sampling * smpl,
|
| 38 |
+
llama_token_data_array * candidates,
|
| 39 |
+
const llama_token * last_tokens,
|
| 40 |
+
size_t penalty_last_n,
|
| 41 |
+
float penalty_repeat,
|
| 42 |
+
float penalty_freq,
|
| 43 |
+
float penalty_present);
|
| 44 |
+
|
| 45 |
+
void llama_sample_apply_guidance_impl(
|
| 46 |
+
struct llama_sampling * smpl,
|
| 47 |
+
float * logits,
|
| 48 |
+
float * logits_guidance,
|
| 49 |
+
float scale);
|
| 50 |
+
|
| 51 |
+
llama_token llama_sample_token_mirostat_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu);
|
| 52 |
+
llama_token llama_sample_token_mirostat_v2_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, float * mu);
|
| 53 |
+
llama_token llama_sample_token_greedy_impl (struct llama_sampling * smpl, llama_token_data_array * candidates);
|
| 54 |
+
llama_token llama_sample_token_with_rng_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, std::mt19937 & rng);
|
| 55 |
+
llama_token llama_sample_token_impl (struct llama_sampling * smpl, llama_token_data_array * candidates);
|
| 56 |
+
|
examples/talk-llama/llama-vocab.cpp
ADDED
|
@@ -0,0 +1,1729 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "llama-vocab.h"
|
| 2 |
+
|
| 3 |
+
#include "unicode.h"
|
| 4 |
+
|
| 5 |
+
#include <algorithm>
|
| 6 |
+
#include <cassert>
|
| 7 |
+
#include <cfloat>
|
| 8 |
+
#include <climits>
|
| 9 |
+
#include <cstdarg>
|
| 10 |
+
#include <cstring>
|
| 11 |
+
#include <forward_list>
|
| 12 |
+
#include <queue>
|
| 13 |
+
#include <sstream>
|
| 14 |
+
|
| 15 |
+
//
|
| 16 |
+
// helpers
|
| 17 |
+
//
|
| 18 |
+
|
| 19 |
+
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
| 20 |
+
std::string result;
|
| 21 |
+
for (size_t pos = 0; ; pos += search.length()) {
|
| 22 |
+
auto new_pos = s.find(search, pos);
|
| 23 |
+
if (new_pos == std::string::npos) {
|
| 24 |
+
result += s.substr(pos, s.size() - pos);
|
| 25 |
+
break;
|
| 26 |
+
}
|
| 27 |
+
result += s.substr(pos, new_pos - pos) + replace;
|
| 28 |
+
pos = new_pos;
|
| 29 |
+
}
|
| 30 |
+
s = std::move(result);
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
LLAMA_ATTRIBUTE_FORMAT(1, 2)
|
| 34 |
+
static std::string format(const char * fmt, ...) {
|
| 35 |
+
va_list ap;
|
| 36 |
+
va_list ap2;
|
| 37 |
+
va_start(ap, fmt);
|
| 38 |
+
va_copy(ap2, ap);
|
| 39 |
+
int size = vsnprintf(NULL, 0, fmt, ap);
|
| 40 |
+
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
|
| 41 |
+
std::vector<char> buf(size + 1);
|
| 42 |
+
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
| 43 |
+
GGML_ASSERT(size2 == size);
|
| 44 |
+
va_end(ap2);
|
| 45 |
+
va_end(ap);
|
| 46 |
+
return std::string(buf.data(), size);
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
struct naive_trie {
|
| 50 |
+
naive_trie() : has_value(false), value(0) {
|
| 51 |
+
}
|
| 52 |
+
void insert(const char * key, size_t len, int32_t value = 0) {
|
| 53 |
+
if (len == 0) {
|
| 54 |
+
this->has_value = true;
|
| 55 |
+
this->value = value;
|
| 56 |
+
return;
|
| 57 |
+
}
|
| 58 |
+
char c = key[0];
|
| 59 |
+
auto res = children.find(c);
|
| 60 |
+
if (res != children.end()) {
|
| 61 |
+
res->second.insert(key + 1, len - 1, value);
|
| 62 |
+
} else {
|
| 63 |
+
auto res = children.insert(std::make_pair(c, naive_trie()));
|
| 64 |
+
res.first->second.insert(key + 1, len - 1, value);
|
| 65 |
+
}
|
| 66 |
+
}
|
| 67 |
+
std::pair<const char *, size_t> get_longest_prefix(const char * key, size_t len, size_t offset = 0) {
|
| 68 |
+
if (len == 0 || offset == len) {
|
| 69 |
+
return std::make_pair(key, offset);
|
| 70 |
+
}
|
| 71 |
+
char c = key[offset];
|
| 72 |
+
auto res = children.find(c);
|
| 73 |
+
if (res != children.end()) {
|
| 74 |
+
return res->second.get_longest_prefix(key, len, offset + 1);
|
| 75 |
+
} else {
|
| 76 |
+
return std::make_pair(key, offset);
|
| 77 |
+
}
|
| 78 |
+
}
|
| 79 |
+
struct naive_trie * traverse(const char c) {
|
| 80 |
+
auto res = children.find(c);
|
| 81 |
+
if (res != children.end()) {
|
| 82 |
+
return &res->second;
|
| 83 |
+
} else {
|
| 84 |
+
return NULL;
|
| 85 |
+
}
|
| 86 |
+
}
|
| 87 |
+
std::map<char, struct naive_trie> children;
|
| 88 |
+
bool has_value;
|
| 89 |
+
llama_token value;
|
| 90 |
+
};
|
| 91 |
+
|
| 92 |
+
//
|
| 93 |
+
// impl
|
| 94 |
+
//
|
| 95 |
+
|
| 96 |
+
int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
|
| 97 |
+
GGML_ASSERT(token_left.find(' ') == std::string::npos);
|
| 98 |
+
GGML_ASSERT(token_left.find('\n') == std::string::npos);
|
| 99 |
+
GGML_ASSERT(token_right.find(' ') == std::string::npos);
|
| 100 |
+
GGML_ASSERT(token_right.find('\n') == std::string::npos);
|
| 101 |
+
|
| 102 |
+
auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
|
| 103 |
+
if (it == bpe_ranks.end()) {
|
| 104 |
+
return -1;
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
return it->second;
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
|
| 111 |
+
return vocab.type;
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
|
| 115 |
+
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
| 116 |
+
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
|
| 120 |
+
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
| 121 |
+
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
|
| 125 |
+
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
| 126 |
+
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
|
| 130 |
+
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
| 131 |
+
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
static bool llama_is_user_defined_token(const llama_vocab & vocab, llama_token id) {
|
| 135 |
+
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
| 136 |
+
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
static bool llama_is_unused_token(const llama_vocab & vocab, llama_token id) {
|
| 140 |
+
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
| 141 |
+
return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED;
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) {
|
| 145 |
+
GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
|
| 146 |
+
GGML_ASSERT(llama_is_byte_token(vocab, id));
|
| 147 |
+
const auto & token_data = vocab.id_to_token.at(id);
|
| 148 |
+
switch (llama_vocab_get_type(vocab)) {
|
| 149 |
+
case LLAMA_VOCAB_TYPE_SPM:
|
| 150 |
+
case LLAMA_VOCAB_TYPE_UGM: {
|
| 151 |
+
auto buf = token_data.text.substr(3, 2);
|
| 152 |
+
return strtol(buf.c_str(), NULL, 16);
|
| 153 |
+
}
|
| 154 |
+
case LLAMA_VOCAB_TYPE_BPE: {
|
| 155 |
+
GGML_ABORT("fatal error");
|
| 156 |
+
//return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
|
| 157 |
+
}
|
| 158 |
+
case LLAMA_VOCAB_TYPE_WPM: {
|
| 159 |
+
GGML_ABORT("fatal error");
|
| 160 |
+
}
|
| 161 |
+
default:
|
| 162 |
+
GGML_ABORT("fatal error");
|
| 163 |
+
}
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
static void llama_escape_whitespace(std::string & text) {
|
| 167 |
+
replace_all(text, " ", "\xe2\x96\x81");
|
| 168 |
+
}
|
| 169 |
+
|
| 170 |
+
static void llama_unescape_whitespace(std::string & word) {
|
| 171 |
+
replace_all(word, "\xe2\x96\x81", " ");
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
struct llm_symbol {
|
| 175 |
+
using index = int;
|
| 176 |
+
index prev;
|
| 177 |
+
index next;
|
| 178 |
+
const char * text;
|
| 179 |
+
size_t n;
|
| 180 |
+
};
|
| 181 |
+
|
| 182 |
+
static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
|
| 183 |
+
|
| 184 |
+
//
|
| 185 |
+
// SPM tokenizer
|
| 186 |
+
// original implementation:
|
| 187 |
+
// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
|
| 188 |
+
//
|
| 189 |
+
|
| 190 |
+
struct llm_bigram_spm {
|
| 191 |
+
struct comparator {
|
| 192 |
+
bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
|
| 193 |
+
return (l.score < r.score) || (l.score == r.score && l.left > r.left);
|
| 194 |
+
}
|
| 195 |
+
};
|
| 196 |
+
using queue_storage = std::vector<llm_bigram_spm>;
|
| 197 |
+
using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
|
| 198 |
+
llm_symbol::index left;
|
| 199 |
+
llm_symbol::index right;
|
| 200 |
+
float score;
|
| 201 |
+
size_t size;
|
| 202 |
+
};
|
| 203 |
+
|
| 204 |
+
struct llm_tokenizer_spm {
|
| 205 |
+
llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
|
| 206 |
+
|
| 207 |
+
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
| 208 |
+
// split string into utf8 chars
|
| 209 |
+
int index = 0;
|
| 210 |
+
size_t offs = 0;
|
| 211 |
+
while (offs < text.size()) {
|
| 212 |
+
llm_symbol sym;
|
| 213 |
+
size_t len = unicode_len_utf8(text[offs]);
|
| 214 |
+
sym.text = text.c_str() + offs;
|
| 215 |
+
sym.n = std::min(len, text.size() - offs);
|
| 216 |
+
offs += sym.n;
|
| 217 |
+
sym.prev = index - 1;
|
| 218 |
+
sym.next = offs == text.size() ? -1 : index + 1;
|
| 219 |
+
index++;
|
| 220 |
+
symbols.emplace_back(sym);
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
// seed the work queue with all possible 2-character tokens.
|
| 224 |
+
for (size_t i = 1; i < symbols.size(); ++i) {
|
| 225 |
+
try_add_bigram(i - 1, i);
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
// keep substituting the highest frequency pairs for as long as we can.
|
| 229 |
+
while (!work_queue.empty()) {
|
| 230 |
+
auto bigram = work_queue.top();
|
| 231 |
+
work_queue.pop();
|
| 232 |
+
|
| 233 |
+
auto & left_sym = symbols[bigram.left];
|
| 234 |
+
auto & right_sym = symbols[bigram.right];
|
| 235 |
+
|
| 236 |
+
// if one of the symbols already got merged, skip it.
|
| 237 |
+
if (left_sym.n == 0 || right_sym.n == 0 ||
|
| 238 |
+
left_sym.n + right_sym.n != bigram.size) {
|
| 239 |
+
continue;
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
// merge the right sym into the left one
|
| 243 |
+
left_sym.n += right_sym.n;
|
| 244 |
+
right_sym.n = 0;
|
| 245 |
+
|
| 246 |
+
//LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
|
| 247 |
+
|
| 248 |
+
// remove the right sym from the chain
|
| 249 |
+
left_sym.next = right_sym.next;
|
| 250 |
+
if (right_sym.next >= 0) {
|
| 251 |
+
symbols[right_sym.next].prev = bigram.left;
|
| 252 |
+
}
|
| 253 |
+
|
| 254 |
+
// find more substitutions
|
| 255 |
+
try_add_bigram(left_sym.prev, bigram.left);
|
| 256 |
+
try_add_bigram(bigram.left, left_sym.next);
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
for (int i = 0; i != -1; i = symbols[i].next) {
|
| 260 |
+
auto & symbol = symbols[i];
|
| 261 |
+
resegment(symbol, output);
|
| 262 |
+
}
|
| 263 |
+
}
|
| 264 |
+
|
| 265 |
+
private:
|
| 266 |
+
void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
|
| 267 |
+
auto text = std::string(symbol.text, symbol.n);
|
| 268 |
+
auto token = vocab.token_to_id.find(text);
|
| 269 |
+
|
| 270 |
+
// Do we need to support is_unused?
|
| 271 |
+
if (token != vocab.token_to_id.end()) {
|
| 272 |
+
output.push_back((*token).second);
|
| 273 |
+
return;
|
| 274 |
+
}
|
| 275 |
+
|
| 276 |
+
const auto p = rev_merge.find(text);
|
| 277 |
+
|
| 278 |
+
if (p == rev_merge.end()) {
|
| 279 |
+
// output any symbols that did not form tokens as bytes.
|
| 280 |
+
output.reserve(output.size() + symbol.n);
|
| 281 |
+
for (int j = 0; j < (int)symbol.n; ++j) {
|
| 282 |
+
llama_vocab::id token_id = llama_byte_to_token_impl(vocab, symbol.text[j]);
|
| 283 |
+
output.push_back(token_id);
|
| 284 |
+
}
|
| 285 |
+
return;
|
| 286 |
+
}
|
| 287 |
+
|
| 288 |
+
resegment(symbols[p->second.first], output);
|
| 289 |
+
resegment(symbols[p->second.second], output);
|
| 290 |
+
}
|
| 291 |
+
|
| 292 |
+
void try_add_bigram(int left, int right) {
|
| 293 |
+
if (left == -1 || right == -1) {
|
| 294 |
+
return;
|
| 295 |
+
}
|
| 296 |
+
|
| 297 |
+
const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
|
| 298 |
+
auto token = vocab.token_to_id.find(text);
|
| 299 |
+
|
| 300 |
+
if (token == vocab.token_to_id.end()) {
|
| 301 |
+
return;
|
| 302 |
+
}
|
| 303 |
+
|
| 304 |
+
if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
|
| 305 |
+
return;
|
| 306 |
+
}
|
| 307 |
+
|
| 308 |
+
const auto & tok_data = vocab.id_to_token[(*token).second];
|
| 309 |
+
|
| 310 |
+
llm_bigram_spm bigram;
|
| 311 |
+
bigram.left = left;
|
| 312 |
+
bigram.right = right;
|
| 313 |
+
bigram.score = tok_data.score;
|
| 314 |
+
bigram.size = text.size();
|
| 315 |
+
|
| 316 |
+
work_queue.push(bigram);
|
| 317 |
+
|
| 318 |
+
// Do we need to support is_unused?
|
| 319 |
+
rev_merge[text] = std::make_pair(left, right);
|
| 320 |
+
}
|
| 321 |
+
|
| 322 |
+
const llama_vocab & vocab;
|
| 323 |
+
|
| 324 |
+
std::vector<llm_symbol> symbols;
|
| 325 |
+
llm_bigram_spm::queue work_queue;
|
| 326 |
+
|
| 327 |
+
std::map<std::string, std::pair<int, int>> rev_merge;
|
| 328 |
+
};
|
| 329 |
+
|
| 330 |
+
//
|
| 331 |
+
// BPE tokenizer
|
| 332 |
+
// adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
|
| 333 |
+
// tried to simplify unicode stuff, so most likely does not work 100% correctly!
|
| 334 |
+
//
|
| 335 |
+
|
| 336 |
+
// TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
|
| 337 |
+
|
| 338 |
+
struct llm_bigram_bpe {
|
| 339 |
+
struct comparator {
|
| 340 |
+
bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
|
| 341 |
+
return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
|
| 342 |
+
}
|
| 343 |
+
};
|
| 344 |
+
|
| 345 |
+
using queue_storage = std::vector<llm_bigram_bpe>;
|
| 346 |
+
using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
|
| 347 |
+
llm_symbol::index left;
|
| 348 |
+
llm_symbol::index right;
|
| 349 |
+
std::string text;
|
| 350 |
+
int rank;
|
| 351 |
+
size_t size;
|
| 352 |
+
};
|
| 353 |
+
|
| 354 |
+
struct llm_tokenizer_bpe {
|
| 355 |
+
llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {
|
| 356 |
+
GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE);
|
| 357 |
+
switch (vocab.type_pre) {
|
| 358 |
+
case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
|
| 359 |
+
regex_exprs = {
|
| 360 |
+
// original regex from tokenizer.json
|
| 361 |
+
//"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
| 362 |
+
|
| 363 |
+
// adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
|
| 364 |
+
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
| 365 |
+
};
|
| 366 |
+
break;
|
| 367 |
+
case LLAMA_VOCAB_PRE_TYPE_DBRX:
|
| 368 |
+
case LLAMA_VOCAB_PRE_TYPE_SMAUG:
|
| 369 |
+
regex_exprs = {
|
| 370 |
+
// same as llama3
|
| 371 |
+
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
| 372 |
+
};
|
| 373 |
+
break;
|
| 374 |
+
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
|
| 375 |
+
regex_exprs = {
|
| 376 |
+
"[\r\n]",
|
| 377 |
+
"\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
|
| 378 |
+
"\\s?[!-/:-~!-/:-~‘-‟ -。]+",
|
| 379 |
+
"\\s+$",
|
| 380 |
+
"[一-龥ࠀ-一가-]+",
|
| 381 |
+
"\\p{N}+",
|
| 382 |
+
};
|
| 383 |
+
break;
|
| 384 |
+
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
|
| 385 |
+
regex_exprs = {
|
| 386 |
+
"[\r\n]",
|
| 387 |
+
"\\s?\\p{L}+",
|
| 388 |
+
"\\s?\\p{P}+",
|
| 389 |
+
"[一-龥ࠀ-一가-]+",
|
| 390 |
+
"\\p{N}",
|
| 391 |
+
};
|
| 392 |
+
break;
|
| 393 |
+
case LLAMA_VOCAB_PRE_TYPE_FALCON:
|
| 394 |
+
regex_exprs = {
|
| 395 |
+
"[\\p{P}\\$\\+<=>\\^~\\|`]+",
|
| 396 |
+
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
| 397 |
+
"[0-9][0-9][0-9]",
|
| 398 |
+
};
|
| 399 |
+
break;
|
| 400 |
+
case LLAMA_VOCAB_PRE_TYPE_STARCODER:
|
| 401 |
+
case LLAMA_VOCAB_PRE_TYPE_REFACT:
|
| 402 |
+
case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
|
| 403 |
+
case LLAMA_VOCAB_PRE_TYPE_SMOLLM:
|
| 404 |
+
case LLAMA_VOCAB_PRE_TYPE_CODESHELL:
|
| 405 |
+
regex_exprs = {
|
| 406 |
+
"\\p{N}",
|
| 407 |
+
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
| 408 |
+
};
|
| 409 |
+
break;
|
| 410 |
+
case LLAMA_VOCAB_PRE_TYPE_GPT2:
|
| 411 |
+
case LLAMA_VOCAB_PRE_TYPE_MPT:
|
| 412 |
+
case LLAMA_VOCAB_PRE_TYPE_OLMO:
|
| 413 |
+
case LLAMA_VOCAB_PRE_TYPE_JAIS:
|
| 414 |
+
regex_exprs = {
|
| 415 |
+
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
| 416 |
+
};
|
| 417 |
+
break;
|
| 418 |
+
case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
|
| 419 |
+
case LLAMA_VOCAB_PRE_TYPE_QWEN2:
|
| 420 |
+
regex_exprs = {
|
| 421 |
+
// original regex from tokenizer.json
|
| 422 |
+
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
| 423 |
+
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
| 424 |
+
};
|
| 425 |
+
break;
|
| 426 |
+
case LLAMA_VOCAB_PRE_TYPE_PORO:
|
| 427 |
+
regex_exprs = {
|
| 428 |
+
" ?[^(\\s|.,!?…。,、।۔،)]+",
|
| 429 |
+
};
|
| 430 |
+
break;
|
| 431 |
+
case LLAMA_VOCAB_PRE_TYPE_CHATGLM4:
|
| 432 |
+
regex_exprs = {
|
| 433 |
+
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
| 434 |
+
};
|
| 435 |
+
break;
|
| 436 |
+
case LLAMA_VOCAB_PRE_TYPE_VIKING:
|
| 437 |
+
regex_exprs = {
|
| 438 |
+
" ?[^(\\s|.,!?…。,、।۔،)]+",
|
| 439 |
+
"\\p{N}",
|
| 440 |
+
};
|
| 441 |
+
break;
|
| 442 |
+
case LLAMA_VOCAB_PRE_TYPE_TEKKEN:
|
| 443 |
+
// original regex from tokenizer.json
|
| 444 |
+
// "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
| 445 |
+
regex_exprs = {
|
| 446 |
+
"[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
| 447 |
+
};
|
| 448 |
+
break;
|
| 449 |
+
default:
|
| 450 |
+
// default regex for BPE tokenization pre-processing
|
| 451 |
+
regex_exprs = {
|
| 452 |
+
"[\\p{P}\\$\\+<=>\\^~\\|]+",
|
| 453 |
+
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
| 454 |
+
"\\p{N}+",
|
| 455 |
+
"[0-9][0-9][0-9]",
|
| 456 |
+
};
|
| 457 |
+
break;
|
| 458 |
+
}
|
| 459 |
+
}
|
| 460 |
+
|
| 461 |
+
void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output) const {
|
| 462 |
+
output.push_back(token_id);
|
| 463 |
+
}
|
| 464 |
+
|
| 465 |
+
bool append_bos(std::vector<llama_vocab::id> & output) const {
|
| 466 |
+
if (vocab.tokenizer_add_bos) {
|
| 467 |
+
GGML_ASSERT(vocab.special_bos_id != -1);
|
| 468 |
+
output.push_back(vocab.special_bos_id);
|
| 469 |
+
return true;
|
| 470 |
+
}
|
| 471 |
+
return false;
|
| 472 |
+
}
|
| 473 |
+
|
| 474 |
+
bool append_eos(std::vector<llama_vocab::id> & output) const {
|
| 475 |
+
if (vocab.tokenizer_add_eos) {
|
| 476 |
+
GGML_ASSERT(vocab.special_eos_id != -1);
|
| 477 |
+
output.push_back(vocab.special_eos_id);
|
| 478 |
+
return true;
|
| 479 |
+
}
|
| 480 |
+
return false;
|
| 481 |
+
}
|
| 482 |
+
|
| 483 |
+
void check_double_bos_eos(const std::vector<llama_vocab::id> & output) const {
|
| 484 |
+
if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
|
| 485 |
+
LLAMA_LOG_WARN(
|
| 486 |
+
"%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
| 487 |
+
"also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
| 488 |
+
"Are you sure this is what you want?\n", __FUNCTION__);
|
| 489 |
+
}
|
| 490 |
+
if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) {
|
| 491 |
+
LLAMA_LOG_WARN(
|
| 492 |
+
"%s: Added a EOS token to the prompt as specified by the model but the prompt "
|
| 493 |
+
"also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
|
| 494 |
+
"Are you sure this is what you want?\n", __FUNCTION__);
|
| 495 |
+
}
|
| 496 |
+
}
|
| 497 |
+
|
| 498 |
+
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
| 499 |
+
int final_prev_index = -1;
|
| 500 |
+
|
| 501 |
+
const auto word_collection = unicode_regex_split(text, regex_exprs);
|
| 502 |
+
|
| 503 |
+
symbols_final.clear();
|
| 504 |
+
|
| 505 |
+
for (auto & word : word_collection) {
|
| 506 |
+
work_queue = llm_bigram_bpe::queue();
|
| 507 |
+
symbols.clear();
|
| 508 |
+
|
| 509 |
+
int index = 0;
|
| 510 |
+
size_t offset = 0;
|
| 511 |
+
|
| 512 |
+
if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
|
| 513 |
+
symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
|
| 514 |
+
offset = word.size();
|
| 515 |
+
}
|
| 516 |
+
|
| 517 |
+
while (offset < word.size()) {
|
| 518 |
+
llm_symbol sym;
|
| 519 |
+
size_t char_len = std::min(word.size() - offset, (size_t) unicode_len_utf8(word[offset]));
|
| 520 |
+
sym.text = word.c_str() + offset;
|
| 521 |
+
sym.n = char_len;
|
| 522 |
+
offset += sym.n;
|
| 523 |
+
sym.prev = index - 1;
|
| 524 |
+
sym.next = offset == word.size() ? -1 : index + 1;
|
| 525 |
+
index++;
|
| 526 |
+
symbols.emplace_back(sym);
|
| 527 |
+
}
|
| 528 |
+
for (size_t i = 1; i < symbols.size(); ++i) {
|
| 529 |
+
add_new_bigram(i - 1, i);
|
| 530 |
+
}
|
| 531 |
+
|
| 532 |
+
// build token(s)
|
| 533 |
+
while (!work_queue.empty()) {
|
| 534 |
+
auto bigram = work_queue.top();
|
| 535 |
+
work_queue.pop();
|
| 536 |
+
|
| 537 |
+
auto & left_symbol = symbols[bigram.left];
|
| 538 |
+
auto & right_symbol = symbols[bigram.right];
|
| 539 |
+
|
| 540 |
+
if (left_symbol.n == 0 || right_symbol.n == 0) {
|
| 541 |
+
continue;
|
| 542 |
+
}
|
| 543 |
+
std::string left_token = std::string(left_symbol.text, left_symbol.n);
|
| 544 |
+
std::string right_token = std::string(right_symbol.text, right_symbol.n);
|
| 545 |
+
if (left_token + right_token != bigram.text) {
|
| 546 |
+
continue; // Skip this bigram if it's outdated
|
| 547 |
+
}
|
| 548 |
+
|
| 549 |
+
// merge the right sym into the left one
|
| 550 |
+
left_symbol.n += right_symbol.n;
|
| 551 |
+
right_symbol.n = 0;
|
| 552 |
+
|
| 553 |
+
// remove the right sym from the chain
|
| 554 |
+
left_symbol.next = right_symbol.next;
|
| 555 |
+
if (right_symbol.next >= 0) {
|
| 556 |
+
symbols[right_symbol.next].prev = bigram.left;
|
| 557 |
+
}
|
| 558 |
+
|
| 559 |
+
add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
|
| 560 |
+
add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
|
| 561 |
+
}
|
| 562 |
+
|
| 563 |
+
// add the finished tokens to the final list keeping correct order for next and prev
|
| 564 |
+
for (auto & sym : symbols) {
|
| 565 |
+
if (sym.n > 0) {
|
| 566 |
+
sym.prev = final_prev_index;
|
| 567 |
+
sym.next = -1;
|
| 568 |
+
if (final_prev_index != -1) {
|
| 569 |
+
symbols_final[final_prev_index].next = symbols_final.size();
|
| 570 |
+
}
|
| 571 |
+
symbols_final.emplace_back(sym);
|
| 572 |
+
final_prev_index = symbols_final.size() - 1;
|
| 573 |
+
}
|
| 574 |
+
}
|
| 575 |
+
}
|
| 576 |
+
|
| 577 |
+
symbols = symbols_final;
|
| 578 |
+
|
| 579 |
+
if (!symbols.empty()) {
|
| 580 |
+
for (int i = 0; i != -1; i = symbols[i].next) {
|
| 581 |
+
auto & symbol = symbols[i];
|
| 582 |
+
if (symbol.n == 0) {
|
| 583 |
+
continue;
|
| 584 |
+
}
|
| 585 |
+
|
| 586 |
+
const std::string str = std::string(symbol.text, symbol.n);
|
| 587 |
+
const auto token = vocab.token_to_id.find(str);
|
| 588 |
+
|
| 589 |
+
if (token == vocab.token_to_id.end()) {
|
| 590 |
+
for (auto j = str.begin(); j != str.end(); ++j) {
|
| 591 |
+
std::string byte_str(1, *j);
|
| 592 |
+
auto token_multibyte = vocab.token_to_id.find(byte_str);
|
| 593 |
+
if (token_multibyte != vocab.token_to_id.end()) {
|
| 594 |
+
output.push_back(token_multibyte->second);
|
| 595 |
+
}
|
| 596 |
+
}
|
| 597 |
+
} else {
|
| 598 |
+
output.push_back((*token).second);
|
| 599 |
+
}
|
| 600 |
+
}
|
| 601 |
+
}
|
| 602 |
+
}
|
| 603 |
+
|
| 604 |
+
private:
|
| 605 |
+
void add_new_bigram(int left, int right) {
|
| 606 |
+
if (left == -1 || right == -1) {
|
| 607 |
+
return;
|
| 608 |
+
}
|
| 609 |
+
|
| 610 |
+
std::string left_token = std::string(symbols[left].text, symbols[left].n);
|
| 611 |
+
std::string right_token = std::string(symbols[right].text, symbols[right].n);
|
| 612 |
+
|
| 613 |
+
int rank_found = -1;
|
| 614 |
+
|
| 615 |
+
rank_found = vocab.find_bpe_rank(left_token, right_token);
|
| 616 |
+
|
| 617 |
+
if (rank_found < 0) {
|
| 618 |
+
return;
|
| 619 |
+
}
|
| 620 |
+
|
| 621 |
+
llm_bigram_bpe bigram;
|
| 622 |
+
|
| 623 |
+
bigram.left = left;
|
| 624 |
+
bigram.right = right;
|
| 625 |
+
bigram.text = left_token + right_token;
|
| 626 |
+
bigram.size = left_token.size() + right_token.size();
|
| 627 |
+
bigram.rank = rank_found;
|
| 628 |
+
|
| 629 |
+
work_queue.push(bigram);
|
| 630 |
+
}
|
| 631 |
+
|
| 632 |
+
const llama_vocab & vocab;
|
| 633 |
+
|
| 634 |
+
std::vector<std::string> regex_exprs;
|
| 635 |
+
|
| 636 |
+
std::vector<llm_symbol> symbols;
|
| 637 |
+
std::vector<llm_symbol> symbols_final;
|
| 638 |
+
|
| 639 |
+
llm_bigram_bpe::queue work_queue;
|
| 640 |
+
};
|
| 641 |
+
|
| 642 |
+
//
|
| 643 |
+
// WPM tokenizer
|
| 644 |
+
//
|
| 645 |
+
|
| 646 |
+
struct llm_tokenizer_wpm {
|
| 647 |
+
llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
|
| 648 |
+
|
| 649 |
+
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) const {
|
| 650 |
+
const auto & token_map = vocab.token_to_id;
|
| 651 |
+
|
| 652 |
+
// normalize and split by whitespace
|
| 653 |
+
std::vector<std::string> words = preprocess(text);
|
| 654 |
+
|
| 655 |
+
// bos token prepended already
|
| 656 |
+
|
| 657 |
+
// find the longest tokens that form the words
|
| 658 |
+
for (const std::string & word : words) {
|
| 659 |
+
// skip empty words
|
| 660 |
+
if (word.size() == 0) {
|
| 661 |
+
continue;
|
| 662 |
+
}
|
| 663 |
+
|
| 664 |
+
// prepend phantom space
|
| 665 |
+
const std::string word1 = "\xe2\x96\x81" + word;
|
| 666 |
+
const int n = word1.size();
|
| 667 |
+
|
| 668 |
+
const size_t current_tokens = output.size();
|
| 669 |
+
|
| 670 |
+
// we're at the start of a new word
|
| 671 |
+
// move through character position in word
|
| 672 |
+
for (int i = 0; i < n; ++i) {
|
| 673 |
+
// loop through possible match length
|
| 674 |
+
bool match = false;
|
| 675 |
+
for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) {
|
| 676 |
+
auto it = token_map.find(word1.substr(i, j - i));
|
| 677 |
+
if (it != token_map.end()) {
|
| 678 |
+
output.push_back(it->second);
|
| 679 |
+
match = true;
|
| 680 |
+
i = j - 1;
|
| 681 |
+
break;
|
| 682 |
+
}
|
| 683 |
+
}
|
| 684 |
+
|
| 685 |
+
if (!match) { // discard all
|
| 686 |
+
output.resize(current_tokens);
|
| 687 |
+
break; // and discard next tokens
|
| 688 |
+
}
|
| 689 |
+
}
|
| 690 |
+
|
| 691 |
+
// we didn't find any matches for this word
|
| 692 |
+
if (current_tokens == output.size()) {
|
| 693 |
+
output.push_back(vocab.special_unk_id);
|
| 694 |
+
}
|
| 695 |
+
}
|
| 696 |
+
}
|
| 697 |
+
|
| 698 |
+
// TODO: reduce string copies by using cpts_offs array
|
| 699 |
+
std::vector<std::string> preprocess(const std::string & text) const {
|
| 700 |
+
const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
|
| 701 |
+
std::vector<std::string> words(1, "");
|
| 702 |
+
|
| 703 |
+
for (const uint32_t cpt : cpts_nfd) {
|
| 704 |
+
const auto flags = unicode_cpt_flags(cpt);
|
| 705 |
+
|
| 706 |
+
if (flags.is_whitespace) {
|
| 707 |
+
if (words.back().size()) { // finish previous word if any
|
| 708 |
+
words.emplace_back();
|
| 709 |
+
}
|
| 710 |
+
continue;
|
| 711 |
+
}
|
| 712 |
+
|
| 713 |
+
assert (!flags.is_separator);
|
| 714 |
+
if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
|
| 715 |
+
continue;
|
| 716 |
+
}
|
| 717 |
+
|
| 718 |
+
const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
|
| 719 |
+
if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
|
| 720 |
+
if (words.back().size()) { // finish previous word if any
|
| 721 |
+
words.emplace_back();
|
| 722 |
+
}
|
| 723 |
+
words.back() = s; // single char word
|
| 724 |
+
words.emplace_back(); // start a new word
|
| 725 |
+
} else {
|
| 726 |
+
words.back() += s; // append char to word
|
| 727 |
+
}
|
| 728 |
+
}
|
| 729 |
+
|
| 730 |
+
if (!words.back().size()) {
|
| 731 |
+
words.pop_back();
|
| 732 |
+
}
|
| 733 |
+
|
| 734 |
+
return words;
|
| 735 |
+
}
|
| 736 |
+
|
| 737 |
+
static bool is_chinese_char(uint32_t cpt) {
|
| 738 |
+
return
|
| 739 |
+
(cpt >= 0x04E00 && cpt <= 0x09FFF) ||
|
| 740 |
+
(cpt >= 0x03400 && cpt <= 0x04DBF) ||
|
| 741 |
+
(cpt >= 0x20000 && cpt <= 0x2A6DF) ||
|
| 742 |
+
(cpt >= 0x2A700 && cpt <= 0x2B73F) ||
|
| 743 |
+
(cpt >= 0x2B740 && cpt <= 0x2B81F) ||
|
| 744 |
+
(cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
|
| 745 |
+
(cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
|
| 746 |
+
(cpt >= 0x2F800 && cpt <= 0x2FA1F);
|
| 747 |
+
//(cpt >= 0x3000 && cpt <= 0x303F) ||
|
| 748 |
+
//(cpt >= 0xFF00 && cpt <= 0xFFEF);
|
| 749 |
+
}
|
| 750 |
+
|
| 751 |
+
const llama_vocab & vocab;
|
| 752 |
+
};
|
| 753 |
+
|
| 754 |
+
//
|
| 755 |
+
// UGM tokenizer
|
| 756 |
+
//
|
| 757 |
+
|
| 758 |
+
struct llm_tokenizer_ugm {
|
| 759 |
+
llm_tokenizer_ugm(const llama_vocab & vocab) : vocab(vocab) {
|
| 760 |
+
if (vocab.precompiled_charsmap.size() > 0) {
|
| 761 |
+
size_t charsmap_offset = 0;
|
| 762 |
+
|
| 763 |
+
// First four bytes of precompiled_charsmap contains length of binary
|
| 764 |
+
// blob containing XOR-compressed compact double array (XCDA) entries
|
| 765 |
+
uint32_t xcda_blob_size = *(const uint32_t *) &vocab.precompiled_charsmap[0];
|
| 766 |
+
charsmap_offset += sizeof(xcda_blob_size);
|
| 767 |
+
if (xcda_blob_size + charsmap_offset >= vocab.precompiled_charsmap.size()) {
|
| 768 |
+
throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
|
| 769 |
+
}
|
| 770 |
+
|
| 771 |
+
// Next xcda_blob_size bytes contain entries of XOR-compressed compact
|
| 772 |
+
// double array (XCDA). Each entry is bit-packed into a 32-bit integer.
|
| 773 |
+
xcda_array = (const uint32_t *) &vocab.precompiled_charsmap[charsmap_offset];
|
| 774 |
+
xcda_array_size = xcda_blob_size / sizeof(uint32_t);
|
| 775 |
+
charsmap_offset += xcda_blob_size;
|
| 776 |
+
|
| 777 |
+
// Remaining bytes of precompiled charsmap contain null-terminated
|
| 778 |
+
// replacement strings for prefixes matched by the XCDA.
|
| 779 |
+
prefix_replacements = &vocab.precompiled_charsmap[charsmap_offset];
|
| 780 |
+
prefix_replacements_size = vocab.precompiled_charsmap.size() - charsmap_offset;
|
| 781 |
+
}
|
| 782 |
+
|
| 783 |
+
for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) {
|
| 784 |
+
const auto &token_data = vocab.id_to_token[id];
|
| 785 |
+
|
| 786 |
+
if (llama_is_normal_token(vocab, id)) {
|
| 787 |
+
min_score = std::min<float>(min_score, token_data.score);
|
| 788 |
+
max_score = std::max<float>(max_score, token_data.score);
|
| 789 |
+
}
|
| 790 |
+
|
| 791 |
+
if (llama_is_normal_token(vocab, id) ||
|
| 792 |
+
llama_is_user_defined_token(vocab, id) ||
|
| 793 |
+
llama_is_unused_token(vocab, id)) {
|
| 794 |
+
token_matcher.insert(token_data.text.data(), token_data.text.size(), id);
|
| 795 |
+
}
|
| 796 |
+
|
| 797 |
+
if (llama_is_user_defined_token(vocab, id)) {
|
| 798 |
+
user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size());
|
| 799 |
+
}
|
| 800 |
+
}
|
| 801 |
+
|
| 802 |
+
unknown_token_score = min_score - unknown_token_score_penalty;
|
| 803 |
+
}
|
| 804 |
+
|
| 805 |
+
/* This implementation is based on SentencePiece optimized Viterbi algorithm for
|
| 806 |
+
* unigram language models. The general idea is to:
|
| 807 |
+
* - move along the input sequence in steps of one UTF code point,
|
| 808 |
+
* - at each step find all possible tokenizations of the prefix by
|
| 809 |
+
* traversing the tokens trie,
|
| 810 |
+
* - for each tokenization store the best one so far (by higher score)
|
| 811 |
+
* - use the position in sequence after given token as an index to store
|
| 812 |
+
* results
|
| 813 |
+
* - if there was no valid tokenization of the current UTF code point
|
| 814 |
+
* then use unknown token with additional score penalty
|
| 815 |
+
* After processing the whole sequence we backtrack from the end to get
|
| 816 |
+
* the best tokenization.
|
| 817 |
+
*/
|
| 818 |
+
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
| 819 |
+
// get current size of output (for reversal later)
|
| 820 |
+
size_t output_size = output.size();
|
| 821 |
+
|
| 822 |
+
// normalize the input first
|
| 823 |
+
std::string normalized;
|
| 824 |
+
normalize(text, &normalized);
|
| 825 |
+
size_t input_len = normalized.size();
|
| 826 |
+
if (input_len == 0) {
|
| 827 |
+
return;
|
| 828 |
+
}
|
| 829 |
+
|
| 830 |
+
// initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores
|
| 831 |
+
std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.special_unk_id, 0, -FLT_MAX});
|
| 832 |
+
// at the beginning tokenization score is zero
|
| 833 |
+
tokenization_results[0] = { vocab.special_unk_id, 0, 0 };
|
| 834 |
+
|
| 835 |
+
for (size_t input_offset = 0; input_offset < input_len;) {
|
| 836 |
+
size_t prefix_offset = input_offset;
|
| 837 |
+
// calculate how many code units are in the currently processed UTF code point
|
| 838 |
+
size_t n_utf8_code_units = std::min<size_t>(unicode_len_utf8(normalized[input_offset]), input_len - input_offset);
|
| 839 |
+
|
| 840 |
+
// traverse the token matcher trie to find a matching token
|
| 841 |
+
bool single_codepoint_token_found = false;
|
| 842 |
+
const struct best_tokenization & current_best = tokenization_results[input_offset];
|
| 843 |
+
struct naive_trie * node = token_matcher.traverse(normalized[prefix_offset++]);
|
| 844 |
+
|
| 845 |
+
while (prefix_offset <= input_len && node != NULL) {
|
| 846 |
+
// check if we found valid token in prefix
|
| 847 |
+
if (node->has_value) {
|
| 848 |
+
// check if it corresponds to the whole UTF code point
|
| 849 |
+
if (prefix_offset - input_offset == n_utf8_code_units) {
|
| 850 |
+
single_codepoint_token_found = true;
|
| 851 |
+
}
|
| 852 |
+
llama_token token_id = node->value;
|
| 853 |
+
const auto & token_data = vocab.id_to_token[token_id];
|
| 854 |
+
|
| 855 |
+
// we set the user-defined token scores to 0 to make them more likely to be selected
|
| 856 |
+
// (normal token scores are log probabilities, so they are negative)
|
| 857 |
+
// score type is double here to make tokenization results exactly
|
| 858 |
+
// the same as in the HF tokenizer using SentencePiece
|
| 859 |
+
const double token_score = llama_is_user_defined_token(vocab, token_id) ? 0.0 : token_data.score;
|
| 860 |
+
const double challenger_score = current_best.score_sum + token_score;
|
| 861 |
+
struct best_tokenization & current_champ = tokenization_results[prefix_offset];
|
| 862 |
+
if (challenger_score > current_champ.score_sum) {
|
| 863 |
+
struct best_tokenization challenger = { token_id, input_offset, (float) challenger_score };
|
| 864 |
+
current_champ = challenger;
|
| 865 |
+
}
|
| 866 |
+
}
|
| 867 |
+
node = node->traverse(normalized[prefix_offset++]);
|
| 868 |
+
}
|
| 869 |
+
|
| 870 |
+
// if we didn't find a valid token corresponding to the whole UTF code point
|
| 871 |
+
// then use unknown token as the tokenization of this UTF code point
|
| 872 |
+
if (!single_codepoint_token_found) {
|
| 873 |
+
const double challenger_score = current_best.score_sum + unknown_token_score;
|
| 874 |
+
prefix_offset = input_offset + n_utf8_code_units;
|
| 875 |
+
struct best_tokenization & current_champ = tokenization_results[prefix_offset];
|
| 876 |
+
if (challenger_score > current_champ.score_sum) {
|
| 877 |
+
struct best_tokenization challenger = { vocab.special_unk_id, input_offset, (float) challenger_score };
|
| 878 |
+
current_champ = challenger;
|
| 879 |
+
}
|
| 880 |
+
}
|
| 881 |
+
|
| 882 |
+
// move to the next UTF code point
|
| 883 |
+
input_offset += n_utf8_code_units;
|
| 884 |
+
}
|
| 885 |
+
|
| 886 |
+
// now backtrack from the end to gather token ids of the best tokenization
|
| 887 |
+
// merge sequences of consecutive unknown tokens into single unknown tokens
|
| 888 |
+
bool is_prev_unknown = false;
|
| 889 |
+
for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) {
|
| 890 |
+
bool is_unknown = tokenization.token_id == vocab.special_unk_id;
|
| 891 |
+
if (!(is_prev_unknown && is_unknown)) {
|
| 892 |
+
output.push_back(tokenization.token_id);
|
| 893 |
+
}
|
| 894 |
+
if (tokenization.input_offset == 0) {
|
| 895 |
+
break;
|
| 896 |
+
}
|
| 897 |
+
is_prev_unknown = is_unknown;
|
| 898 |
+
}
|
| 899 |
+
|
| 900 |
+
// reverse the output since we added tokens starting from the end of the input
|
| 901 |
+
std::reverse(output.begin() + output_size, output.end());
|
| 902 |
+
}
|
| 903 |
+
|
| 904 |
+
private:
|
| 905 |
+
const llama_vocab & vocab;
|
| 906 |
+
|
| 907 |
+
// helper structure for returning normalization results
|
| 908 |
+
struct normalization_result {
|
| 909 |
+
const char * normalized;
|
| 910 |
+
size_t normalized_len;
|
| 911 |
+
size_t consumed_input;
|
| 912 |
+
};
|
| 913 |
+
|
| 914 |
+
void normalize(const std::string& input, std::string * normalized) {
|
| 915 |
+
normalized->clear();
|
| 916 |
+
normalized->reserve(input.size() * 3);
|
| 917 |
+
|
| 918 |
+
const std::string space = vocab.tokenizer_escape_whitespaces ? escaped_space : " ";
|
| 919 |
+
|
| 920 |
+
bool shall_prepend_space = !vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
|
| 921 |
+
bool shall_append_space = vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
|
| 922 |
+
bool shall_merge_spaces = vocab.tokenizer_remove_extra_whitespaces;
|
| 923 |
+
|
| 924 |
+
bool is_space_prepended = false;
|
| 925 |
+
bool processing_non_ws = false;
|
| 926 |
+
|
| 927 |
+
size_t input_len = input.size();
|
| 928 |
+
|
| 929 |
+
for (size_t input_offset = 0; input_offset < input_len; ) {
|
| 930 |
+
auto norm_res = normalize_prefix(input, input_offset);
|
| 931 |
+
for (size_t i = 0; i < norm_res.normalized_len; i++) {
|
| 932 |
+
char c = norm_res.normalized[i];
|
| 933 |
+
if (c != ' ') {
|
| 934 |
+
if (!processing_non_ws) {
|
| 935 |
+
processing_non_ws = true;
|
| 936 |
+
if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) {
|
| 937 |
+
normalized->append(space);
|
| 938 |
+
is_space_prepended = true;
|
| 939 |
+
}
|
| 940 |
+
}
|
| 941 |
+
normalized->push_back(c);
|
| 942 |
+
} else {
|
| 943 |
+
if (processing_non_ws) {
|
| 944 |
+
processing_non_ws = false;
|
| 945 |
+
}
|
| 946 |
+
if (!shall_merge_spaces) {
|
| 947 |
+
normalized->append(space);
|
| 948 |
+
}
|
| 949 |
+
}
|
| 950 |
+
}
|
| 951 |
+
|
| 952 |
+
input_offset += norm_res.consumed_input;
|
| 953 |
+
}
|
| 954 |
+
|
| 955 |
+
if (shall_append_space) {
|
| 956 |
+
normalized->append(space);
|
| 957 |
+
}
|
| 958 |
+
}
|
| 959 |
+
|
| 960 |
+
/*
|
| 961 |
+
* This structure is a view wrapper for XOR-compressed double array (XCDA)
|
| 962 |
+
* See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries.
|
| 963 |
+
* Eeach bit-packed entry contains:
|
| 964 |
+
* - BASE array value in bits 10-30
|
| 965 |
+
* - LCHECK array value in bits 0-7
|
| 966 |
+
* - LEAF array value in bit 9
|
| 967 |
+
* Entries containing indexes of replacement sequences have set bit 31
|
| 968 |
+
*/
|
| 969 |
+
struct xcda_array_view {
|
| 970 |
+
public:
|
| 971 |
+
xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) {
|
| 972 |
+
}
|
| 973 |
+
uint32_t get_base(size_t index) {
|
| 974 |
+
uint32_t packed_node = get_node(index);
|
| 975 |
+
return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6);
|
| 976 |
+
}
|
| 977 |
+
uint32_t get_lcheck(size_t index) {
|
| 978 |
+
uint32_t packed_node = get_node(index);
|
| 979 |
+
return packed_node & ((1U << 31) | 0xff);
|
| 980 |
+
}
|
| 981 |
+
bool get_leaf(size_t index) {
|
| 982 |
+
uint32_t packed_node = get_node(index);
|
| 983 |
+
return (packed_node >> 8) & 1;
|
| 984 |
+
}
|
| 985 |
+
uint32_t get_value(size_t index) {
|
| 986 |
+
uint32_t packed_node = get_node(index);
|
| 987 |
+
return packed_node & ((1U << 31) - 1);
|
| 988 |
+
}
|
| 989 |
+
private:
|
| 990 |
+
uint32_t get_node(size_t index) {
|
| 991 |
+
if (index > xcda_array_size) {
|
| 992 |
+
throw std::runtime_error("Index out of array bounds in XCDA array!");
|
| 993 |
+
}
|
| 994 |
+
return xcda_array[index];
|
| 995 |
+
}
|
| 996 |
+
const uint32_t * xcda_array;
|
| 997 |
+
size_t xcda_array_size;
|
| 998 |
+
};
|
| 999 |
+
|
| 1000 |
+
struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) {
|
| 1001 |
+
if (input_offset == input.size()) {
|
| 1002 |
+
return { &input[input_offset], 0, 0 };
|
| 1003 |
+
}
|
| 1004 |
+
|
| 1005 |
+
// if input prefix matches some user-defined token return this token as normalization result
|
| 1006 |
+
auto user_defined_token_match = user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset);
|
| 1007 |
+
if (user_defined_token_match.second > 0) {
|
| 1008 |
+
return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second };
|
| 1009 |
+
}
|
| 1010 |
+
|
| 1011 |
+
size_t longest_prefix_length = 0;
|
| 1012 |
+
size_t longest_prefix_offset = 0;
|
| 1013 |
+
|
| 1014 |
+
if (xcda_array_size > 0) {
|
| 1015 |
+
struct xcda_array_view xcda_view(xcda_array, xcda_array_size);
|
| 1016 |
+
|
| 1017 |
+
// Find the longest normalized sequence matching the input prefix by walking
|
| 1018 |
+
// the XOR-compressed compact double array (XCDA) starting from the root node
|
| 1019 |
+
// We find the index of the next node by calculating BASE[s] ^ c where s is
|
| 1020 |
+
// the index of the previous node and c is a numerical character value
|
| 1021 |
+
uint32_t node_index = 0;
|
| 1022 |
+
// get BASE of the root node
|
| 1023 |
+
node_index = xcda_view.get_base(node_index);
|
| 1024 |
+
for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) {
|
| 1025 |
+
unsigned char c = input[prefix_offset];
|
| 1026 |
+
if (c == 0) {
|
| 1027 |
+
break;
|
| 1028 |
+
}
|
| 1029 |
+
node_index ^= c;
|
| 1030 |
+
// if value of LCHECK is not c it means that this is not a child of
|
| 1031 |
+
// the previous node, so we stop matching
|
| 1032 |
+
if (xcda_view.get_lcheck(node_index) != c) {
|
| 1033 |
+
break;
|
| 1034 |
+
}
|
| 1035 |
+
bool is_leaf = xcda_view.get_leaf(node_index);
|
| 1036 |
+
// get BASE of the current node
|
| 1037 |
+
node_index ^= xcda_view.get_base(node_index);
|
| 1038 |
+
// if LEAF of the current node is true, it means that its BASE points to the node
|
| 1039 |
+
// containing index of replacement sequence for currently matched input prefix
|
| 1040 |
+
if (is_leaf)
|
| 1041 |
+
{
|
| 1042 |
+
longest_prefix_length = prefix_offset - input_offset + 1;
|
| 1043 |
+
// get index of replacement sequence for currently matched input prefix
|
| 1044 |
+
longest_prefix_offset = xcda_view.get_value(node_index);
|
| 1045 |
+
}
|
| 1046 |
+
}
|
| 1047 |
+
}
|
| 1048 |
+
|
| 1049 |
+
if (longest_prefix_length > 0) {
|
| 1050 |
+
// we have a match, so return the replacement sequence
|
| 1051 |
+
if (longest_prefix_offset >= prefix_replacements_size) {
|
| 1052 |
+
throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
|
| 1053 |
+
}
|
| 1054 |
+
const char * prefix_replacement = &prefix_replacements[longest_prefix_offset];
|
| 1055 |
+
return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length };
|
| 1056 |
+
} else {
|
| 1057 |
+
// check if the input prefix contains a valid sequence of UTF-8 code units
|
| 1058 |
+
try {
|
| 1059 |
+
// if yes, return this sequence unmodified
|
| 1060 |
+
size_t prefix_offset = input_offset;
|
| 1061 |
+
unicode_cpt_from_utf8(input, prefix_offset);
|
| 1062 |
+
return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset };
|
| 1063 |
+
} catch (std::invalid_argument & /*ex*/) {
|
| 1064 |
+
// if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER
|
| 1065 |
+
return { "\xEF\xBF\xBD", 3, 1 };
|
| 1066 |
+
}
|
| 1067 |
+
}
|
| 1068 |
+
}
|
| 1069 |
+
|
| 1070 |
+
// escaped space symbol - U+2581 (Lower One Eighth Block)
|
| 1071 |
+
const std::string escaped_space = "\xE2\x96\x81";
|
| 1072 |
+
|
| 1073 |
+
const char * prefix_replacements = NULL;
|
| 1074 |
+
size_t prefix_replacements_size = 0;
|
| 1075 |
+
|
| 1076 |
+
const uint32_t * xcda_array = NULL;
|
| 1077 |
+
size_t xcda_array_size = 0;
|
| 1078 |
+
|
| 1079 |
+
struct naive_trie user_defined_token_matcher;
|
| 1080 |
+
|
| 1081 |
+
// this structure stores the best tokenization so far at input_offset
|
| 1082 |
+
struct best_tokenization {
|
| 1083 |
+
llama_token token_id;
|
| 1084 |
+
size_t input_offset;
|
| 1085 |
+
float score_sum;
|
| 1086 |
+
};
|
| 1087 |
+
|
| 1088 |
+
float min_score = FLT_MAX;
|
| 1089 |
+
float max_score = -FLT_MAX;
|
| 1090 |
+
|
| 1091 |
+
float unknown_token_score_penalty = 10.0;
|
| 1092 |
+
float unknown_token_score;
|
| 1093 |
+
|
| 1094 |
+
struct naive_trie token_matcher;
|
| 1095 |
+
};
|
| 1096 |
+
|
| 1097 |
+
//
|
| 1098 |
+
// (de-) tokenize
|
| 1099 |
+
//
|
| 1100 |
+
|
| 1101 |
+
typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
|
| 1102 |
+
FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
|
| 1103 |
+
FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
|
| 1104 |
+
} FRAGMENT_BUFFER_VARIANT_TYPE;
|
| 1105 |
+
|
| 1106 |
+
struct fragment_buffer_variant {
|
| 1107 |
+
fragment_buffer_variant(llama_vocab::id _token)
|
| 1108 |
+
:
|
| 1109 |
+
type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
|
| 1110 |
+
token(_token),
|
| 1111 |
+
raw_text(_dummy),
|
| 1112 |
+
offset(0),
|
| 1113 |
+
length(0) {}
|
| 1114 |
+
|
| 1115 |
+
fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
|
| 1116 |
+
:
|
| 1117 |
+
type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
|
| 1118 |
+
token((llama_vocab::id) - 1),
|
| 1119 |
+
raw_text(_raw_text),
|
| 1120 |
+
offset(_offset),
|
| 1121 |
+
length(_length){
|
| 1122 |
+
GGML_ASSERT(_offset >= 0);
|
| 1123 |
+
GGML_ASSERT(_length >= 1);
|
| 1124 |
+
GGML_ASSERT(offset + length <= raw_text.length());
|
| 1125 |
+
}
|
| 1126 |
+
|
| 1127 |
+
const FRAGMENT_BUFFER_VARIANT_TYPE type;
|
| 1128 |
+
const llama_vocab::id token;
|
| 1129 |
+
const std::string _dummy;
|
| 1130 |
+
const std::string & raw_text;
|
| 1131 |
+
const uint64_t offset;
|
| 1132 |
+
const uint64_t length;
|
| 1133 |
+
};
|
| 1134 |
+
|
| 1135 |
+
// #define PRETOKENIZERDEBUG
|
| 1136 |
+
|
| 1137 |
+
static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) {
|
| 1138 |
+
// for each special token
|
| 1139 |
+
for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
|
| 1140 |
+
const auto & data = vocab.id_to_token[special_id];
|
| 1141 |
+
const auto & special_token = data.text;
|
| 1142 |
+
|
| 1143 |
+
if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) {
|
| 1144 |
+
// Ignore control and unknown tokens when parse_special == false
|
| 1145 |
+
continue;
|
| 1146 |
+
// User-defined tokens are still pre-tokenized before everything else
|
| 1147 |
+
// ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726
|
| 1148 |
+
// This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.)
|
| 1149 |
+
}
|
| 1150 |
+
|
| 1151 |
+
// for each text fragment
|
| 1152 |
+
std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
|
| 1153 |
+
while (it != buffer.end()) {
|
| 1154 |
+
auto & fragment = (*it);
|
| 1155 |
+
|
| 1156 |
+
// if a fragment is text ( not yet processed )
|
| 1157 |
+
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
| 1158 |
+
auto & raw_text = fragment.raw_text;
|
| 1159 |
+
|
| 1160 |
+
auto raw_text_base_offset = fragment.offset;
|
| 1161 |
+
auto raw_text_base_length = fragment.length;
|
| 1162 |
+
|
| 1163 |
+
// loop over the text
|
| 1164 |
+
while (true) {
|
| 1165 |
+
// find the first occurrence of a given special token in this fragment
|
| 1166 |
+
// passing offset argument only limit the "search area" but match coordinates
|
| 1167 |
+
// are still relative to the source full raw_text
|
| 1168 |
+
auto match = raw_text.find(special_token, raw_text_base_offset);
|
| 1169 |
+
|
| 1170 |
+
// no occurrences found, stop processing this fragment for a given special token
|
| 1171 |
+
if (match == std::string::npos) break;
|
| 1172 |
+
|
| 1173 |
+
// check if match is within bounds of offset <-> length
|
| 1174 |
+
if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
|
| 1175 |
+
|
| 1176 |
+
#ifdef PRETOKENIZERDEBUG
|
| 1177 |
+
LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
|
| 1178 |
+
#endif
|
| 1179 |
+
auto source = std::distance(buffer.begin(), it);
|
| 1180 |
+
|
| 1181 |
+
// if match is further than base offset
|
| 1182 |
+
// then we have some text to the left of it
|
| 1183 |
+
if (match > raw_text_base_offset) {
|
| 1184 |
+
// left
|
| 1185 |
+
const int64_t left_reminder_offset = raw_text_base_offset + 0;
|
| 1186 |
+
int64_t left_reminder_length = match - raw_text_base_offset;
|
| 1187 |
+
|
| 1188 |
+
if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
|
| 1189 |
+
while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
|
| 1190 |
+
left_reminder_length--;
|
| 1191 |
+
}
|
| 1192 |
+
}
|
| 1193 |
+
|
| 1194 |
+
if (left_reminder_length > 0) {
|
| 1195 |
+
buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
|
| 1196 |
+
it++;
|
| 1197 |
+
}
|
| 1198 |
+
|
| 1199 |
+
#ifdef PRETOKENIZERDEBUG
|
| 1200 |
+
LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
|
| 1201 |
+
#endif
|
| 1202 |
+
}
|
| 1203 |
+
|
| 1204 |
+
// special token
|
| 1205 |
+
buffer.emplace_after(it, special_id);
|
| 1206 |
+
it++;
|
| 1207 |
+
|
| 1208 |
+
// right
|
| 1209 |
+
if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
|
| 1210 |
+
int64_t right_reminder_offset = match + special_token.length();
|
| 1211 |
+
int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
|
| 1212 |
+
|
| 1213 |
+
if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
|
| 1214 |
+
while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
|
| 1215 |
+
right_reminder_offset++;
|
| 1216 |
+
right_reminder_length--;
|
| 1217 |
+
}
|
| 1218 |
+
}
|
| 1219 |
+
|
| 1220 |
+
if (right_reminder_length > 0) {
|
| 1221 |
+
buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
|
| 1222 |
+
it++;
|
| 1223 |
+
}
|
| 1224 |
+
|
| 1225 |
+
#ifdef PRETOKENIZERDEBUG
|
| 1226 |
+
LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
|
| 1227 |
+
#endif
|
| 1228 |
+
|
| 1229 |
+
if (source == 0) {
|
| 1230 |
+
buffer.erase_after(buffer.before_begin());
|
| 1231 |
+
} else {
|
| 1232 |
+
buffer.erase_after(std::next(buffer.begin(), (source-1)));
|
| 1233 |
+
}
|
| 1234 |
+
|
| 1235 |
+
// repeat for the right side
|
| 1236 |
+
raw_text_base_offset = right_reminder_offset;
|
| 1237 |
+
raw_text_base_length = right_reminder_length;
|
| 1238 |
+
|
| 1239 |
+
#ifdef PRETOKENIZERDEBUG
|
| 1240 |
+
LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
|
| 1241 |
+
#endif
|
| 1242 |
+
} else {
|
| 1243 |
+
if (source == 0) {
|
| 1244 |
+
buffer.erase_after(buffer.before_begin());
|
| 1245 |
+
} else {
|
| 1246 |
+
buffer.erase_after(std::next(buffer.begin(), (source-1)));
|
| 1247 |
+
}
|
| 1248 |
+
break;
|
| 1249 |
+
}
|
| 1250 |
+
}
|
| 1251 |
+
}
|
| 1252 |
+
it++;
|
| 1253 |
+
}
|
| 1254 |
+
}
|
| 1255 |
+
}
|
| 1256 |
+
|
| 1257 |
+
std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
|
| 1258 |
+
std::vector<llama_vocab::id> output;
|
| 1259 |
+
std::forward_list<fragment_buffer_variant> fragment_buffer;
|
| 1260 |
+
|
| 1261 |
+
if (!raw_text.empty()) {
|
| 1262 |
+
fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
|
| 1263 |
+
tokenizer_st_partition(vocab, fragment_buffer, parse_special);
|
| 1264 |
+
}
|
| 1265 |
+
|
| 1266 |
+
switch (vocab.type) {
|
| 1267 |
+
case LLAMA_VOCAB_TYPE_SPM:
|
| 1268 |
+
{
|
| 1269 |
+
// OG tokenizer behavior:
|
| 1270 |
+
//
|
| 1271 |
+
// tokenizer.encode('', add_special_tokens=True) returns [1]
|
| 1272 |
+
// tokenizer.encode('', add_special_tokens=False) returns []
|
| 1273 |
+
|
| 1274 |
+
bool is_prev_special = true; // prefix with space if first token
|
| 1275 |
+
|
| 1276 |
+
if (add_special && vocab.tokenizer_add_bos) {
|
| 1277 |
+
GGML_ASSERT(vocab.special_bos_id != -1);
|
| 1278 |
+
output.push_back(vocab.special_bos_id);
|
| 1279 |
+
is_prev_special = true;
|
| 1280 |
+
}
|
| 1281 |
+
|
| 1282 |
+
for (const auto & fragment : fragment_buffer) {
|
| 1283 |
+
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
| 1284 |
+
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
| 1285 |
+
|
| 1286 |
+
// prefix with space if previous is special
|
| 1287 |
+
if (vocab.tokenizer_add_space_prefix && is_prev_special) {
|
| 1288 |
+
raw_text = " " + raw_text;
|
| 1289 |
+
}
|
| 1290 |
+
|
| 1291 |
+
#ifdef PRETOKENIZERDEBUG
|
| 1292 |
+
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
| 1293 |
+
#endif
|
| 1294 |
+
llm_tokenizer_spm tokenizer(vocab);
|
| 1295 |
+
llama_escape_whitespace(raw_text);
|
| 1296 |
+
tokenizer.tokenize(raw_text, output);
|
| 1297 |
+
is_prev_special = false;
|
| 1298 |
+
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
| 1299 |
+
output.push_back(fragment.token);
|
| 1300 |
+
is_prev_special = true;
|
| 1301 |
+
}
|
| 1302 |
+
}
|
| 1303 |
+
|
| 1304 |
+
if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
|
| 1305 |
+
LLAMA_LOG_WARN(
|
| 1306 |
+
"%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
| 1307 |
+
"also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
| 1308 |
+
"Are you sure this is what you want?\n", __FUNCTION__);
|
| 1309 |
+
}
|
| 1310 |
+
|
| 1311 |
+
if (add_special && vocab.tokenizer_add_eos) {
|
| 1312 |
+
GGML_ASSERT(vocab.special_eos_id != -1);
|
| 1313 |
+
output.push_back(vocab.special_eos_id);
|
| 1314 |
+
}
|
| 1315 |
+
} break;
|
| 1316 |
+
case LLAMA_VOCAB_TYPE_BPE:
|
| 1317 |
+
{
|
| 1318 |
+
llm_tokenizer_bpe tokenizer(vocab);
|
| 1319 |
+
|
| 1320 |
+
if (add_special) {
|
| 1321 |
+
tokenizer.append_bos(output);
|
| 1322 |
+
}
|
| 1323 |
+
for (const auto & fragment : fragment_buffer) {
|
| 1324 |
+
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
| 1325 |
+
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
| 1326 |
+
|
| 1327 |
+
#ifdef PRETOKENIZERDEBUG
|
| 1328 |
+
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
| 1329 |
+
#endif
|
| 1330 |
+
tokenizer.tokenize(raw_text, output);
|
| 1331 |
+
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
| 1332 |
+
tokenizer.append(fragment.token, output);
|
| 1333 |
+
}
|
| 1334 |
+
}
|
| 1335 |
+
|
| 1336 |
+
if (add_special) {
|
| 1337 |
+
tokenizer.append_eos(output);
|
| 1338 |
+
tokenizer.check_double_bos_eos(output);
|
| 1339 |
+
}
|
| 1340 |
+
} break;
|
| 1341 |
+
case LLAMA_VOCAB_TYPE_WPM:
|
| 1342 |
+
{
|
| 1343 |
+
if (add_special) {
|
| 1344 |
+
GGML_ASSERT(vocab.special_cls_id != -1);
|
| 1345 |
+
output.push_back(vocab.special_cls_id);
|
| 1346 |
+
}
|
| 1347 |
+
|
| 1348 |
+
llm_tokenizer_wpm tokenizer(vocab);
|
| 1349 |
+
|
| 1350 |
+
for (const auto & fragment : fragment_buffer) {
|
| 1351 |
+
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
| 1352 |
+
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
| 1353 |
+
|
| 1354 |
+
#ifdef PRETOKENIZERDEBUG
|
| 1355 |
+
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
| 1356 |
+
#endif
|
| 1357 |
+
tokenizer.tokenize(raw_text, output);
|
| 1358 |
+
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
| 1359 |
+
output.push_back(fragment.token);
|
| 1360 |
+
}
|
| 1361 |
+
}
|
| 1362 |
+
|
| 1363 |
+
if (add_special) {
|
| 1364 |
+
GGML_ASSERT(vocab.special_sep_id != -1);
|
| 1365 |
+
output.push_back(vocab.special_sep_id);
|
| 1366 |
+
}
|
| 1367 |
+
} break;
|
| 1368 |
+
case LLAMA_VOCAB_TYPE_UGM:
|
| 1369 |
+
{
|
| 1370 |
+
llm_tokenizer_ugm tokenizer(vocab);
|
| 1371 |
+
|
| 1372 |
+
if (add_special && vocab.tokenizer_add_bos != 0) {
|
| 1373 |
+
GGML_ASSERT(vocab.special_bos_id != -1);
|
| 1374 |
+
output.push_back(vocab.special_bos_id);
|
| 1375 |
+
}
|
| 1376 |
+
|
| 1377 |
+
for (const auto & fragment : fragment_buffer) {
|
| 1378 |
+
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
| 1379 |
+
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
| 1380 |
+
#ifdef PRETOKENIZERDEBUG
|
| 1381 |
+
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
| 1382 |
+
#endif
|
| 1383 |
+
tokenizer.tokenize(raw_text, output);
|
| 1384 |
+
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
| 1385 |
+
output.push_back(fragment.token);
|
| 1386 |
+
}
|
| 1387 |
+
}
|
| 1388 |
+
|
| 1389 |
+
if (add_special && vocab.tokenizer_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
|
| 1390 |
+
LLAMA_LOG_WARN(
|
| 1391 |
+
"%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
| 1392 |
+
"also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
| 1393 |
+
"Are you sure this is what you want?\n", __FUNCTION__);
|
| 1394 |
+
}
|
| 1395 |
+
|
| 1396 |
+
if (add_special && vocab.tokenizer_add_eos == 1) {
|
| 1397 |
+
GGML_ASSERT(vocab.special_eos_id != -1);
|
| 1398 |
+
output.push_back(vocab.special_eos_id);
|
| 1399 |
+
}
|
| 1400 |
+
} break;
|
| 1401 |
+
case LLAMA_VOCAB_TYPE_NONE:
|
| 1402 |
+
GGML_ABORT("fatal error");
|
| 1403 |
+
}
|
| 1404 |
+
|
| 1405 |
+
return output;
|
| 1406 |
+
}
|
| 1407 |
+
|
| 1408 |
+
llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch) {
|
| 1409 |
+
GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
|
| 1410 |
+
static const char * hex = "0123456789ABCDEF";
|
| 1411 |
+
switch (llama_vocab_get_type(vocab)) {
|
| 1412 |
+
case LLAMA_VOCAB_TYPE_SPM:
|
| 1413 |
+
case LLAMA_VOCAB_TYPE_UGM: {
|
| 1414 |
+
const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
|
| 1415 |
+
auto token = vocab.token_to_id.find(buf);
|
| 1416 |
+
if (token != vocab.token_to_id.end()) {
|
| 1417 |
+
return (*token).second;
|
| 1418 |
+
}
|
| 1419 |
+
// Try to fall back to just the byte as a string
|
| 1420 |
+
const char buf2[2] = { (char)ch, 0 };
|
| 1421 |
+
return vocab.token_to_id.at(buf2);
|
| 1422 |
+
}
|
| 1423 |
+
case LLAMA_VOCAB_TYPE_WPM:
|
| 1424 |
+
case LLAMA_VOCAB_TYPE_BPE: {
|
| 1425 |
+
return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
|
| 1426 |
+
}
|
| 1427 |
+
default:
|
| 1428 |
+
GGML_ABORT("fatal error");
|
| 1429 |
+
}
|
| 1430 |
+
}
|
| 1431 |
+
|
| 1432 |
+
const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token) {
|
| 1433 |
+
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
| 1434 |
+
return vocab.id_to_token[token].text.c_str();
|
| 1435 |
+
}
|
| 1436 |
+
|
| 1437 |
+
float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token) {
|
| 1438 |
+
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
| 1439 |
+
return vocab.id_to_token[token].score;
|
| 1440 |
+
}
|
| 1441 |
+
|
| 1442 |
+
llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token) {
|
| 1443 |
+
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
|
| 1444 |
+
return vocab.id_to_token[token].attr;
|
| 1445 |
+
}
|
| 1446 |
+
|
| 1447 |
+
bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token) {
|
| 1448 |
+
return token != -1 && (
|
| 1449 |
+
token == llama_token_eos_impl(vocab) ||
|
| 1450 |
+
token == llama_token_eot_impl(vocab) ||
|
| 1451 |
+
token == llama_token_eom_impl(vocab)
|
| 1452 |
+
);
|
| 1453 |
+
}
|
| 1454 |
+
|
| 1455 |
+
bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token) {
|
| 1456 |
+
return llama_is_control_token(vocab, token);
|
| 1457 |
+
}
|
| 1458 |
+
|
| 1459 |
+
llama_token llama_token_bos_impl(const struct llama_vocab & vocab) {
|
| 1460 |
+
return vocab.special_bos_id;
|
| 1461 |
+
}
|
| 1462 |
+
|
| 1463 |
+
llama_token llama_token_eos_impl(const struct llama_vocab & vocab) {
|
| 1464 |
+
return vocab.special_eos_id;
|
| 1465 |
+
}
|
| 1466 |
+
|
| 1467 |
+
llama_token llama_token_cls_impl(const struct llama_vocab & vocab) {
|
| 1468 |
+
return vocab.special_cls_id;
|
| 1469 |
+
}
|
| 1470 |
+
|
| 1471 |
+
llama_token llama_token_sep_impl(const struct llama_vocab & vocab) {
|
| 1472 |
+
return vocab.special_sep_id;
|
| 1473 |
+
}
|
| 1474 |
+
|
| 1475 |
+
llama_token llama_token_nl_impl(const struct llama_vocab & vocab) {
|
| 1476 |
+
return vocab.linefeed_id;
|
| 1477 |
+
}
|
| 1478 |
+
|
| 1479 |
+
llama_token llama_token_pad_impl(const struct llama_vocab & vocab) {
|
| 1480 |
+
return vocab.special_pad_id;
|
| 1481 |
+
}
|
| 1482 |
+
|
| 1483 |
+
int32_t llama_add_bos_token_impl(const struct llama_vocab & vocab) {
|
| 1484 |
+
return vocab.tokenizer_add_bos;
|
| 1485 |
+
}
|
| 1486 |
+
|
| 1487 |
+
int32_t llama_add_eos_token_impl(const struct llama_vocab & vocab) {
|
| 1488 |
+
return vocab.tokenizer_add_eos;
|
| 1489 |
+
}
|
| 1490 |
+
|
| 1491 |
+
llama_token llama_token_prefix_impl(const struct llama_vocab & vocab) {
|
| 1492 |
+
return vocab.special_prefix_id;
|
| 1493 |
+
}
|
| 1494 |
+
|
| 1495 |
+
llama_token llama_token_middle_impl(const struct llama_vocab & vocab) {
|
| 1496 |
+
return vocab.special_middle_id;
|
| 1497 |
+
}
|
| 1498 |
+
|
| 1499 |
+
llama_token llama_token_suffix_impl(const struct llama_vocab & vocab) {
|
| 1500 |
+
return vocab.special_suffix_id;
|
| 1501 |
+
}
|
| 1502 |
+
|
| 1503 |
+
llama_token llama_token_eot_impl(const struct llama_vocab & vocab) {
|
| 1504 |
+
return vocab.special_eot_id;
|
| 1505 |
+
}
|
| 1506 |
+
|
| 1507 |
+
llama_token llama_token_eom_impl(const struct llama_vocab & vocab) {
|
| 1508 |
+
return vocab.special_eom_id;
|
| 1509 |
+
}
|
| 1510 |
+
|
| 1511 |
+
int32_t llama_tokenize_impl(
|
| 1512 |
+
const struct llama_vocab & vocab,
|
| 1513 |
+
const char * text,
|
| 1514 |
+
int32_t text_len,
|
| 1515 |
+
llama_token * tokens,
|
| 1516 |
+
int32_t n_tokens_max,
|
| 1517 |
+
bool add_special,
|
| 1518 |
+
bool parse_special) {
|
| 1519 |
+
auto res = llama_tokenize_internal(vocab, std::string(text, text_len), add_special, parse_special);
|
| 1520 |
+
if (n_tokens_max < (int) res.size()) {
|
| 1521 |
+
// LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
|
| 1522 |
+
return -((int) res.size());
|
| 1523 |
+
}
|
| 1524 |
+
|
| 1525 |
+
for (size_t i = 0; i < res.size(); i++) {
|
| 1526 |
+
tokens[i] = res[i];
|
| 1527 |
+
}
|
| 1528 |
+
|
| 1529 |
+
return res.size();
|
| 1530 |
+
}
|
| 1531 |
+
|
| 1532 |
+
static std::string llama_decode_text(const std::string & text) {
|
| 1533 |
+
std::string decoded_text;
|
| 1534 |
+
|
| 1535 |
+
const auto cpts = unicode_cpts_from_utf8(text);
|
| 1536 |
+
for (const auto cpt : cpts) {
|
| 1537 |
+
const auto utf8 = unicode_cpt_to_utf8(cpt);
|
| 1538 |
+
try {
|
| 1539 |
+
decoded_text += unicode_utf8_to_byte(utf8);
|
| 1540 |
+
} catch (const std::out_of_range & /*e*/) {
|
| 1541 |
+
decoded_text += "[UNK_BYTE_0x";
|
| 1542 |
+
for (const auto c : utf8) {
|
| 1543 |
+
decoded_text += format("%02x", (uint8_t) c);
|
| 1544 |
+
}
|
| 1545 |
+
decoded_text += text + "]";
|
| 1546 |
+
}
|
| 1547 |
+
}
|
| 1548 |
+
|
| 1549 |
+
return decoded_text;
|
| 1550 |
+
}
|
| 1551 |
+
|
| 1552 |
+
// does not write null-terminator to buf
|
| 1553 |
+
int32_t llama_token_to_piece_impl(const struct llama_vocab & vocab, llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) {
|
| 1554 |
+
// ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
|
| 1555 |
+
static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
|
| 1556 |
+
const llama_token_attr attr = llama_token_get_attr_impl(vocab, token);
|
| 1557 |
+
if (!special && (attr & attr_special)) {
|
| 1558 |
+
return 0;
|
| 1559 |
+
}
|
| 1560 |
+
|
| 1561 |
+
// copy piece chars to output text buffer
|
| 1562 |
+
// skip up to 'lstrip' leading spaces before copying
|
| 1563 |
+
auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
|
| 1564 |
+
for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
|
| 1565 |
+
token++;
|
| 1566 |
+
size--;
|
| 1567 |
+
}
|
| 1568 |
+
if (length < (int32_t)size) {
|
| 1569 |
+
return -(int32_t) size;
|
| 1570 |
+
}
|
| 1571 |
+
memcpy(buf, token, size);
|
| 1572 |
+
return (int32_t) size;
|
| 1573 |
+
};
|
| 1574 |
+
|
| 1575 |
+
// if we have a cache - use it
|
| 1576 |
+
{
|
| 1577 |
+
const auto & cache = vocab.cache_token_to_piece;
|
| 1578 |
+
|
| 1579 |
+
if (!cache.empty()) {
|
| 1580 |
+
const auto & result = cache.at(token);
|
| 1581 |
+
return _try_copy(result.data(), result.size());
|
| 1582 |
+
}
|
| 1583 |
+
}
|
| 1584 |
+
|
| 1585 |
+
if (0 <= token && token < (int32_t) vocab.id_to_token.size()) {
|
| 1586 |
+
const std::string & token_text = vocab.id_to_token[token].text;
|
| 1587 |
+
switch (llama_vocab_get_type(vocab)) {
|
| 1588 |
+
case LLAMA_VOCAB_TYPE_WPM:
|
| 1589 |
+
case LLAMA_VOCAB_TYPE_SPM:
|
| 1590 |
+
case LLAMA_VOCAB_TYPE_UGM: {
|
| 1591 |
+
// NOTE: we accept all unsupported token types,
|
| 1592 |
+
// suppressing them like CONTROL tokens.
|
| 1593 |
+
if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
|
| 1594 |
+
return _try_copy(token_text.data(), token_text.size());
|
| 1595 |
+
} else if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
|
| 1596 |
+
std::string result = token_text;
|
| 1597 |
+
llama_unescape_whitespace(result);
|
| 1598 |
+
return _try_copy(result.data(), result.size());
|
| 1599 |
+
} else if (attr & LLAMA_TOKEN_ATTR_BYTE) {
|
| 1600 |
+
char byte = (char) llama_token_to_byte(vocab, token);
|
| 1601 |
+
return _try_copy((char*) &byte, 1);
|
| 1602 |
+
}
|
| 1603 |
+
break;
|
| 1604 |
+
}
|
| 1605 |
+
case LLAMA_VOCAB_TYPE_BPE: {
|
| 1606 |
+
// NOTE: we accept all unsupported token types,
|
| 1607 |
+
// suppressing them like CONTROL tokens.
|
| 1608 |
+
if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
|
| 1609 |
+
return _try_copy(token_text.data(), token_text.size());
|
| 1610 |
+
} else if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
|
| 1611 |
+
std::string result = llama_decode_text(token_text);
|
| 1612 |
+
return _try_copy(result.data(), result.size());
|
| 1613 |
+
}
|
| 1614 |
+
break;
|
| 1615 |
+
}
|
| 1616 |
+
default:
|
| 1617 |
+
GGML_ABORT("fatal error");
|
| 1618 |
+
}
|
| 1619 |
+
}
|
| 1620 |
+
|
| 1621 |
+
return 0;
|
| 1622 |
+
}
|
| 1623 |
+
|
| 1624 |
+
int32_t llama_detokenize_impl(
|
| 1625 |
+
const struct llama_vocab & vocab,
|
| 1626 |
+
const llama_token * tokens,
|
| 1627 |
+
int32_t n_tokens,
|
| 1628 |
+
char * text,
|
| 1629 |
+
int32_t text_len_max,
|
| 1630 |
+
bool remove_special,
|
| 1631 |
+
bool unparse_special) {
|
| 1632 |
+
int32_t avail = text_len_max;
|
| 1633 |
+
int32_t total = 0;
|
| 1634 |
+
|
| 1635 |
+
// remove the leading space
|
| 1636 |
+
bool remove_space = vocab.tokenizer_add_space_prefix;
|
| 1637 |
+
|
| 1638 |
+
if (remove_special && vocab.tokenizer_add_bos) {
|
| 1639 |
+
if (n_tokens > 0 && tokens[0] == vocab.special_bos_id) {
|
| 1640 |
+
remove_space = false;
|
| 1641 |
+
n_tokens--;
|
| 1642 |
+
tokens++;
|
| 1643 |
+
}
|
| 1644 |
+
}
|
| 1645 |
+
|
| 1646 |
+
if (remove_special && vocab.tokenizer_add_eos) {
|
| 1647 |
+
if (n_tokens > 0 && tokens[n_tokens-1] == vocab.special_eos_id) {
|
| 1648 |
+
n_tokens--;
|
| 1649 |
+
}
|
| 1650 |
+
}
|
| 1651 |
+
|
| 1652 |
+
for (int32_t i = 0; i < n_tokens; ++i) {
|
| 1653 |
+
GGML_ASSERT(avail >= 0);
|
| 1654 |
+
int32_t n_chars = llama_token_to_piece_impl(vocab, tokens[i], text, avail, remove_space, unparse_special);
|
| 1655 |
+
remove_space = false;
|
| 1656 |
+
if (n_chars < 0) {
|
| 1657 |
+
avail = 0;
|
| 1658 |
+
total -= n_chars;
|
| 1659 |
+
} else if (n_chars > 0) {
|
| 1660 |
+
avail -= n_chars;
|
| 1661 |
+
text += n_chars;
|
| 1662 |
+
total += n_chars;
|
| 1663 |
+
}
|
| 1664 |
+
}
|
| 1665 |
+
|
| 1666 |
+
if (total > text_len_max) {
|
| 1667 |
+
return -total;
|
| 1668 |
+
}
|
| 1669 |
+
|
| 1670 |
+
if (vocab.tokenizer_clean_spaces) {
|
| 1671 |
+
text -= total; // restart text
|
| 1672 |
+
|
| 1673 |
+
// first pass: characters ?!., //TODO: where do these characters come from?
|
| 1674 |
+
const int32_t total1 = total;
|
| 1675 |
+
total = total ? 1 : 0;
|
| 1676 |
+
for (int32_t i = 1; i < total1; ++i) {
|
| 1677 |
+
const char x = text[i];
|
| 1678 |
+
if (text[i - 1] == ' ') {
|
| 1679 |
+
if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ,"
|
| 1680 |
+
total--; // remove space
|
| 1681 |
+
}
|
| 1682 |
+
}
|
| 1683 |
+
text[total++] = x;
|
| 1684 |
+
}
|
| 1685 |
+
|
| 1686 |
+
// second pass: strip single apostrophe between spaces
|
| 1687 |
+
const int32_t total2 = total;
|
| 1688 |
+
total = total ? 1 : 0;
|
| 1689 |
+
for (int32_t i = 1; i < total2; ++i) {
|
| 1690 |
+
const char x = text[i];
|
| 1691 |
+
if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' "
|
| 1692 |
+
total--; // remove prev space
|
| 1693 |
+
text[++i] = '\0'; // remove next space
|
| 1694 |
+
}
|
| 1695 |
+
text[total++] = x;
|
| 1696 |
+
}
|
| 1697 |
+
|
| 1698 |
+
// third pass: apostrophe contractions //NOTE: this makes sense?
|
| 1699 |
+
const int32_t total3 = total;
|
| 1700 |
+
total = total ? 1 : 0;
|
| 1701 |
+
for (int32_t i = 1; i < total3; ++i) {
|
| 1702 |
+
const char x = text[i];
|
| 1703 |
+
if (text[i - 1] == ' ') {
|
| 1704 |
+
if (x == '\'' && i + 1 < total3) {
|
| 1705 |
+
const char x1 = text[i + 1];
|
| 1706 |
+
if (x1 == 't' || x1 == 'd') { // " 't", " 'd"
|
| 1707 |
+
//total--; // remove space
|
| 1708 |
+
} else if (x1 == 's' || x1 == 'm') { // " 's", " 'm"
|
| 1709 |
+
total--; // remove space
|
| 1710 |
+
} else if (i + 2 < total3) {
|
| 1711 |
+
const char x2 = text[i + 2];
|
| 1712 |
+
if ((x1 == 'l' && x2 == 'l')) { // " 'll"
|
| 1713 |
+
//total--; // remove space
|
| 1714 |
+
} else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've"
|
| 1715 |
+
total--; // remove space
|
| 1716 |
+
} else {
|
| 1717 |
+
//total--; // remove space
|
| 1718 |
+
}
|
| 1719 |
+
} else {
|
| 1720 |
+
//total--; // remove space
|
| 1721 |
+
}
|
| 1722 |
+
}
|
| 1723 |
+
}
|
| 1724 |
+
text[total++] = x;
|
| 1725 |
+
}
|
| 1726 |
+
}
|
| 1727 |
+
|
| 1728 |
+
return total <= text_len_max ? total : -total;
|
| 1729 |
+
}
|
examples/talk-llama/llama-vocab.h
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
#include "llama-impl.h"
|
| 4 |
+
|
| 5 |
+
#include <string>
|
| 6 |
+
#include <vector>
|
| 7 |
+
#include <unordered_map>
|
| 8 |
+
#include <map>
|
| 9 |
+
|
| 10 |
+
struct llama_vocab {
|
| 11 |
+
using id = llama_token;
|
| 12 |
+
using token = std::string;
|
| 13 |
+
using tattr = llama_token_attr;
|
| 14 |
+
|
| 15 |
+
struct token_data {
|
| 16 |
+
token text;
|
| 17 |
+
float score;
|
| 18 |
+
tattr attr;
|
| 19 |
+
};
|
| 20 |
+
|
| 21 |
+
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
|
| 22 |
+
enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
| 23 |
+
|
| 24 |
+
int max_token_len = 0; // used for optimizing longest token search
|
| 25 |
+
|
| 26 |
+
std::unordered_map<token, id> token_to_id;
|
| 27 |
+
std::vector<token_data> id_to_token;
|
| 28 |
+
|
| 29 |
+
std::vector<id> cache_special_tokens;
|
| 30 |
+
std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = true);
|
| 31 |
+
|
| 32 |
+
std::map<std::pair<std::string, std::string>, int> bpe_ranks;
|
| 33 |
+
|
| 34 |
+
// default LLaMA special tokens
|
| 35 |
+
id special_bos_id = 1;
|
| 36 |
+
id special_eos_id = 2;
|
| 37 |
+
id special_unk_id = 0;
|
| 38 |
+
id special_sep_id = -1;
|
| 39 |
+
id special_pad_id = -1;
|
| 40 |
+
id special_cls_id = -1;
|
| 41 |
+
id special_mask_id = -1;
|
| 42 |
+
|
| 43 |
+
id linefeed_id = 13;
|
| 44 |
+
id special_prefix_id = -1;
|
| 45 |
+
id special_suffix_id = -1;
|
| 46 |
+
id special_middle_id = -1;
|
| 47 |
+
id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
|
| 48 |
+
id special_eom_id = -1;
|
| 49 |
+
|
| 50 |
+
// tokenizer flags
|
| 51 |
+
bool tokenizer_add_space_prefix = false;
|
| 52 |
+
bool tokenizer_add_bos = false;
|
| 53 |
+
bool tokenizer_add_eos = false;
|
| 54 |
+
bool tokenizer_ignore_merges = false;
|
| 55 |
+
bool tokenizer_clean_spaces = false; // clean_up_tokenization_spaces
|
| 56 |
+
bool tokenizer_remove_extra_whitespaces = false;
|
| 57 |
+
bool tokenizer_escape_whitespaces = true;
|
| 58 |
+
bool tokenizer_treat_whitespace_as_suffix = false;
|
| 59 |
+
|
| 60 |
+
std::vector<char> precompiled_charsmap;
|
| 61 |
+
|
| 62 |
+
int find_bpe_rank(const std::string & token_left, const std::string & token_right) const;
|
| 63 |
+
};
|
| 64 |
+
|
| 65 |
+
const struct llama_vocab * llama_get_vocab(const struct llama_context * ctx);
|
| 66 |
+
|
| 67 |
+
//
|
| 68 |
+
// internal API
|
| 69 |
+
//
|
| 70 |
+
|
| 71 |
+
// TODO: rename to llama_tokenize_impl
|
| 72 |
+
// TODO: This should probably be in llama.h
|
| 73 |
+
std::vector<llama_vocab::id> llama_tokenize_internal(
|
| 74 |
+
const llama_vocab & vocab,
|
| 75 |
+
std::string raw_text,
|
| 76 |
+
bool add_special,
|
| 77 |
+
bool parse_special = false);
|
| 78 |
+
|
| 79 |
+
llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch);
|
| 80 |
+
|
| 81 |
+
const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token);
|
| 82 |
+
|
| 83 |
+
float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token);
|
| 84 |
+
|
| 85 |
+
llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token);
|
| 86 |
+
|
| 87 |
+
bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token);
|
| 88 |
+
|
| 89 |
+
bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token);
|
| 90 |
+
|
| 91 |
+
llama_token llama_token_bos_impl(const struct llama_vocab & vocab);
|
| 92 |
+
llama_token llama_token_eos_impl(const struct llama_vocab & vocab);
|
| 93 |
+
llama_token llama_token_cls_impl(const struct llama_vocab & vocab);
|
| 94 |
+
llama_token llama_token_sep_impl(const struct llama_vocab & vocab);
|
| 95 |
+
llama_token llama_token_nl_impl (const struct llama_vocab & vocab);
|
| 96 |
+
llama_token llama_token_pad_impl(const struct llama_vocab & vocab);
|
| 97 |
+
|
| 98 |
+
int32_t llama_add_bos_token_impl(const struct llama_vocab & vocab);
|
| 99 |
+
int32_t llama_add_eos_token_impl(const struct llama_vocab & vocab);
|
| 100 |
+
|
| 101 |
+
llama_token llama_token_prefix_impl(const struct llama_vocab & vocab);
|
| 102 |
+
llama_token llama_token_middle_impl(const struct llama_vocab & vocab);
|
| 103 |
+
llama_token llama_token_suffix_impl(const struct llama_vocab & vocab);
|
| 104 |
+
llama_token llama_token_eot_impl (const struct llama_vocab & vocab);
|
| 105 |
+
llama_token llama_token_eom_impl (const struct llama_vocab & vocab);
|
| 106 |
+
|
| 107 |
+
int32_t llama_tokenize_impl(
|
| 108 |
+
const struct llama_vocab & vocab,
|
| 109 |
+
const char * text,
|
| 110 |
+
int32_t text_len,
|
| 111 |
+
llama_token * tokens,
|
| 112 |
+
int32_t n_tokens_max,
|
| 113 |
+
bool add_special,
|
| 114 |
+
bool parse_special);
|
| 115 |
+
|
| 116 |
+
// does not write null-terminator to buf
|
| 117 |
+
int32_t llama_token_to_piece_impl(
|
| 118 |
+
const struct llama_vocab & vocab,
|
| 119 |
+
llama_token token,
|
| 120 |
+
char * buf,
|
| 121 |
+
int32_t length,
|
| 122 |
+
int32_t lstrip,
|
| 123 |
+
bool special);
|
| 124 |
+
|
| 125 |
+
int32_t llama_detokenize_impl(
|
| 126 |
+
const struct llama_vocab & vocab,
|
| 127 |
+
const llama_token * tokens,
|
| 128 |
+
int32_t n_tokens,
|
| 129 |
+
char * text,
|
| 130 |
+
int32_t text_len_max,
|
| 131 |
+
bool remove_special,
|
| 132 |
+
bool unparse_special);
|
examples/talk-llama/llama.cpp
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
examples/talk-llama/llama.h
CHANGED
|
@@ -33,17 +33,15 @@
|
|
| 33 |
|
| 34 |
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
|
| 35 |
|
| 36 |
-
#define LLAMA_MAX_RNG_STATE (64*1024)
|
| 37 |
-
|
| 38 |
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
|
| 39 |
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
| 40 |
#define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
|
| 41 |
|
| 42 |
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
| 43 |
-
#define LLAMA_SESSION_VERSION
|
| 44 |
|
| 45 |
#define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
|
| 46 |
-
#define LLAMA_STATE_SEQ_VERSION
|
| 47 |
|
| 48 |
#ifdef __cplusplus
|
| 49 |
extern "C" {
|
|
@@ -92,6 +90,9 @@ extern "C" {
|
|
| 92 |
LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
|
| 93 |
LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
|
| 94 |
LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
|
|
|
|
|
|
|
|
|
|
| 95 |
};
|
| 96 |
|
| 97 |
// note: these values should be synchronized with ggml_rope
|
|
@@ -133,7 +134,7 @@ extern "C" {
|
|
| 133 |
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
| 134 |
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
| 135 |
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
| 136 |
-
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
| 137 |
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
|
| 138 |
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
|
| 139 |
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
|
@@ -162,6 +163,9 @@ extern "C" {
|
|
| 162 |
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
|
| 163 |
LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
|
| 164 |
LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
| 167 |
};
|
|
@@ -341,7 +345,7 @@ extern "C" {
|
|
| 341 |
int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
| 342 |
enum llama_ftype ftype; // quantize to this llama_ftype
|
| 343 |
enum ggml_type output_tensor_type; // output tensor type
|
| 344 |
-
enum ggml_type token_embedding_type; //
|
| 345 |
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
| 346 |
bool quantize_output_tensor; // quantize output.weight
|
| 347 |
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
|
@@ -408,6 +412,9 @@ extern "C" {
|
|
| 408 |
const char * content;
|
| 409 |
} llama_chat_message;
|
| 410 |
|
|
|
|
|
|
|
|
|
|
| 411 |
// Helpers for getting default parameters
|
| 412 |
LLAMA_API struct llama_model_params llama_model_default_params(void);
|
| 413 |
LLAMA_API struct llama_context_params llama_context_default_params(void);
|
|
@@ -507,18 +514,32 @@ extern "C" {
|
|
| 507 |
const char * fname_out,
|
| 508 |
const llama_model_quantize_params * params);
|
| 509 |
|
| 510 |
-
//
|
| 511 |
-
//
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 522 |
|
| 523 |
// Apply a loaded control vector to a llama_context, or if data is NULL, clear
|
| 524 |
// the currently loaded vector.
|
|
@@ -668,10 +689,11 @@ extern "C" {
|
|
| 668 |
// State / sessions
|
| 669 |
//
|
| 670 |
|
| 671 |
-
// Returns the
|
| 672 |
-
// and kv_cache)
|
| 673 |
-
|
| 674 |
-
LLAMA_API
|
|
|
|
| 675 |
"use llama_state_get_size instead");
|
| 676 |
|
| 677 |
// Copies the state to the specified destination address.
|
|
@@ -679,7 +701,8 @@ extern "C" {
|
|
| 679 |
// Returns the number of bytes copied
|
| 680 |
LLAMA_API size_t llama_state_get_data(
|
| 681 |
struct llama_context * ctx,
|
| 682 |
-
uint8_t * dst
|
|
|
|
| 683 |
LLAMA_API DEPRECATED(size_t llama_copy_state_data(
|
| 684 |
struct llama_context * ctx,
|
| 685 |
uint8_t * dst),
|
|
@@ -689,7 +712,8 @@ extern "C" {
|
|
| 689 |
// Returns the number of bytes read
|
| 690 |
LLAMA_API size_t llama_state_set_data(
|
| 691 |
struct llama_context * ctx,
|
| 692 |
-
const uint8_t * src
|
|
|
|
| 693 |
LLAMA_API DEPRECATED(size_t llama_set_state_data(
|
| 694 |
struct llama_context * ctx,
|
| 695 |
const uint8_t * src),
|
|
@@ -731,6 +755,7 @@ extern "C" {
|
|
| 731 |
LLAMA_API size_t llama_state_seq_get_data(
|
| 732 |
struct llama_context * ctx,
|
| 733 |
uint8_t * dst,
|
|
|
|
| 734 |
llama_seq_id seq_id);
|
| 735 |
|
| 736 |
// Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
|
|
@@ -740,6 +765,7 @@ extern "C" {
|
|
| 740 |
LLAMA_API size_t llama_state_seq_set_data(
|
| 741 |
struct llama_context * ctx,
|
| 742 |
const uint8_t * src,
|
|
|
|
| 743 |
llama_seq_id dest_seq_id);
|
| 744 |
|
| 745 |
LLAMA_API size_t llama_state_seq_save_file(
|
|
@@ -887,10 +913,10 @@ extern "C" {
|
|
| 887 |
LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
|
| 888 |
|
| 889 |
// Returns -1 if unknown, 1 for true or 0 for false.
|
| 890 |
-
LLAMA_API int32_t
|
| 891 |
|
| 892 |
// Returns -1 if unknown, 1 for true or 0 for false.
|
| 893 |
-
LLAMA_API int32_t
|
| 894 |
|
| 895 |
// Codellama infill tokens
|
| 896 |
LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
|
|
@@ -946,6 +972,10 @@ extern "C" {
|
|
| 946 |
bool remove_special,
|
| 947 |
bool unparse_special);
|
| 948 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 949 |
/// Apply chat template. Inspired by hf apply_chat_template() on python.
|
| 950 |
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
|
| 951 |
/// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
|
|
@@ -984,6 +1014,23 @@ extern "C" {
|
|
| 984 |
|
| 985 |
LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
|
| 986 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 987 |
//
|
| 988 |
// Sampling functions
|
| 989 |
//
|
|
@@ -1065,12 +1112,6 @@ extern "C" {
|
|
| 1065 |
llama_token_data_array * candidates,
|
| 1066 |
float temp);
|
| 1067 |
|
| 1068 |
-
/// @details Apply constraints from grammar
|
| 1069 |
-
LLAMA_API void llama_sample_grammar(
|
| 1070 |
-
struct llama_context * ctx,
|
| 1071 |
-
llama_token_data_array * candidates,
|
| 1072 |
-
const struct llama_grammar * grammar);
|
| 1073 |
-
|
| 1074 |
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
| 1075 |
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
| 1076 |
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
|
@@ -1108,12 +1149,6 @@ extern "C" {
|
|
| 1108 |
struct llama_context * ctx,
|
| 1109 |
llama_token_data_array * candidates);
|
| 1110 |
|
| 1111 |
-
/// @details Accepts the sampled token into the grammar
|
| 1112 |
-
LLAMA_API void llama_grammar_accept_token(
|
| 1113 |
-
struct llama_context * ctx,
|
| 1114 |
-
struct llama_grammar * grammar,
|
| 1115 |
-
llama_token token);
|
| 1116 |
-
|
| 1117 |
//
|
| 1118 |
// Model split
|
| 1119 |
//
|
|
@@ -1156,38 +1191,45 @@ extern "C" {
|
|
| 1156 |
|
| 1157 |
struct ggml_tensor;
|
| 1158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1159 |
struct llama_partial_utf8 {
|
| 1160 |
uint32_t value; // bit value so far (unshifted)
|
| 1161 |
int n_remain; // num bytes remaining; -1 indicates invalid sequence
|
| 1162 |
};
|
| 1163 |
|
| 1164 |
-
struct llama_grammar {
|
| 1165 |
-
const std::vector<std::vector<llama_grammar_element>> rules;
|
| 1166 |
-
std::vector<std::vector<const llama_grammar_element *>> stacks;
|
| 1167 |
-
|
| 1168 |
-
// buffer for partially generated UTF-8 sequence from accepted tokens
|
| 1169 |
-
llama_partial_utf8 partial_utf8;
|
| 1170 |
-
};
|
| 1171 |
-
|
| 1172 |
struct llama_grammar_candidate {
|
| 1173 |
size_t index;
|
| 1174 |
const uint32_t * code_points;
|
| 1175 |
llama_partial_utf8 partial_utf8;
|
| 1176 |
};
|
| 1177 |
|
| 1178 |
-
|
| 1179 |
-
|
| 1180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1181 |
|
| 1182 |
void llama_grammar_accept(
|
| 1183 |
-
const
|
| 1184 |
-
const
|
| 1185 |
-
const uint32_t
|
| 1186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1187 |
|
| 1188 |
std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
|
| 1189 |
const std::string & src,
|
| 1190 |
-
llama_partial_utf8
|
| 1191 |
|
| 1192 |
// Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
|
| 1193 |
// This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
|
|
|
|
| 33 |
|
| 34 |
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
|
| 35 |
|
|
|
|
|
|
|
| 36 |
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
|
| 37 |
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
| 38 |
#define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
|
| 39 |
|
| 40 |
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
| 41 |
+
#define LLAMA_SESSION_VERSION 8
|
| 42 |
|
| 43 |
#define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
|
| 44 |
+
#define LLAMA_STATE_SEQ_VERSION 2
|
| 45 |
|
| 46 |
#ifdef __cplusplus
|
| 47 |
extern "C" {
|
|
|
|
| 90 |
LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
|
| 91 |
LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
|
| 92 |
LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
|
| 93 |
+
LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
|
| 94 |
+
LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
|
| 95 |
+
LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
|
| 96 |
};
|
| 97 |
|
| 98 |
// note: these values should be synchronized with ggml_rope
|
|
|
|
| 134 |
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
| 135 |
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
| 136 |
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
| 137 |
+
// LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
| 138 |
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
|
| 139 |
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
|
| 140 |
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
|
|
|
| 163 |
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
|
| 164 |
LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
|
| 165 |
LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
|
| 166 |
+
LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors
|
| 167 |
+
LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors
|
| 168 |
+
LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors
|
| 169 |
|
| 170 |
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
| 171 |
};
|
|
|
|
| 345 |
int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
| 346 |
enum llama_ftype ftype; // quantize to this llama_ftype
|
| 347 |
enum ggml_type output_tensor_type; // output tensor type
|
| 348 |
+
enum ggml_type token_embedding_type; // token embeddings tensor type
|
| 349 |
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
| 350 |
bool quantize_output_tensor; // quantize output.weight
|
| 351 |
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
|
|
|
| 412 |
const char * content;
|
| 413 |
} llama_chat_message;
|
| 414 |
|
| 415 |
+
// lora adapter
|
| 416 |
+
struct llama_lora_adapter;
|
| 417 |
+
|
| 418 |
// Helpers for getting default parameters
|
| 419 |
LLAMA_API struct llama_model_params llama_model_default_params(void);
|
| 420 |
LLAMA_API struct llama_context_params llama_context_default_params(void);
|
|
|
|
| 514 |
const char * fname_out,
|
| 515 |
const llama_model_quantize_params * params);
|
| 516 |
|
| 517 |
+
// Load a LoRA adapter from file
|
| 518 |
+
// The loaded adapter will be associated to the given model, and will be free when the model is deleted
|
| 519 |
+
LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
|
| 520 |
+
struct llama_model * model,
|
| 521 |
+
const char * path_lora);
|
| 522 |
+
|
| 523 |
+
// Add a loaded LoRA adapter to given context
|
| 524 |
+
// This will not modify model's weight
|
| 525 |
+
LLAMA_API int32_t llama_lora_adapter_set(
|
| 526 |
+
struct llama_context * ctx,
|
| 527 |
+
struct llama_lora_adapter * adapter,
|
| 528 |
+
float scale);
|
| 529 |
+
|
| 530 |
+
// Remove a specific LoRA adapter from given context
|
| 531 |
+
// Return -1 if the adapter is not present in the context
|
| 532 |
+
LLAMA_API int32_t llama_lora_adapter_remove(
|
| 533 |
+
struct llama_context * ctx,
|
| 534 |
+
struct llama_lora_adapter * adapter);
|
| 535 |
+
|
| 536 |
+
// Remove all LoRA adapters from given context
|
| 537 |
+
LLAMA_API void llama_lora_adapter_clear(
|
| 538 |
+
struct llama_context * ctx);
|
| 539 |
+
|
| 540 |
+
// Manually free a LoRA adapter
|
| 541 |
+
// Note: loaded adapters will be free when the associated model is deleted
|
| 542 |
+
LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
|
| 543 |
|
| 544 |
// Apply a loaded control vector to a llama_context, or if data is NULL, clear
|
| 545 |
// the currently loaded vector.
|
|
|
|
| 689 |
// State / sessions
|
| 690 |
//
|
| 691 |
|
| 692 |
+
// Returns the *actual* size in bytes of the state
|
| 693 |
+
// (rng, logits, embedding and kv_cache)
|
| 694 |
+
// Only use when saving the state, not when restoring it, otherwise the size may be too small.
|
| 695 |
+
LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
|
| 696 |
+
LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),
|
| 697 |
"use llama_state_get_size instead");
|
| 698 |
|
| 699 |
// Copies the state to the specified destination address.
|
|
|
|
| 701 |
// Returns the number of bytes copied
|
| 702 |
LLAMA_API size_t llama_state_get_data(
|
| 703 |
struct llama_context * ctx,
|
| 704 |
+
uint8_t * dst,
|
| 705 |
+
size_t size);
|
| 706 |
LLAMA_API DEPRECATED(size_t llama_copy_state_data(
|
| 707 |
struct llama_context * ctx,
|
| 708 |
uint8_t * dst),
|
|
|
|
| 712 |
// Returns the number of bytes read
|
| 713 |
LLAMA_API size_t llama_state_set_data(
|
| 714 |
struct llama_context * ctx,
|
| 715 |
+
const uint8_t * src,
|
| 716 |
+
size_t size);
|
| 717 |
LLAMA_API DEPRECATED(size_t llama_set_state_data(
|
| 718 |
struct llama_context * ctx,
|
| 719 |
const uint8_t * src),
|
|
|
|
| 755 |
LLAMA_API size_t llama_state_seq_get_data(
|
| 756 |
struct llama_context * ctx,
|
| 757 |
uint8_t * dst,
|
| 758 |
+
size_t size,
|
| 759 |
llama_seq_id seq_id);
|
| 760 |
|
| 761 |
// Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
|
|
|
|
| 765 |
LLAMA_API size_t llama_state_seq_set_data(
|
| 766 |
struct llama_context * ctx,
|
| 767 |
const uint8_t * src,
|
| 768 |
+
size_t size,
|
| 769 |
llama_seq_id dest_seq_id);
|
| 770 |
|
| 771 |
LLAMA_API size_t llama_state_seq_save_file(
|
|
|
|
| 913 |
LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
|
| 914 |
|
| 915 |
// Returns -1 if unknown, 1 for true or 0 for false.
|
| 916 |
+
LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
|
| 917 |
|
| 918 |
// Returns -1 if unknown, 1 for true or 0 for false.
|
| 919 |
+
LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
|
| 920 |
|
| 921 |
// Codellama infill tokens
|
| 922 |
LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
|
|
|
|
| 972 |
bool remove_special,
|
| 973 |
bool unparse_special);
|
| 974 |
|
| 975 |
+
//
|
| 976 |
+
// Chat templates
|
| 977 |
+
//
|
| 978 |
+
|
| 979 |
/// Apply chat template. Inspired by hf apply_chat_template() on python.
|
| 980 |
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
|
| 981 |
/// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
|
|
|
|
| 1014 |
|
| 1015 |
LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
|
| 1016 |
|
| 1017 |
+
/// @details Apply constraints from grammar
|
| 1018 |
+
LLAMA_API void llama_grammar_sample(
|
| 1019 |
+
const struct llama_grammar * grammar,
|
| 1020 |
+
const struct llama_context * ctx,
|
| 1021 |
+
llama_token_data_array * candidates);
|
| 1022 |
+
LLAMA_API DEPRECATED(void llama_sample_grammar(
|
| 1023 |
+
struct llama_context * ctx,
|
| 1024 |
+
llama_token_data_array * candidates,
|
| 1025 |
+
const struct llama_grammar * grammar),
|
| 1026 |
+
"use llama_grammar_sample instead");
|
| 1027 |
+
|
| 1028 |
+
/// @details Accepts the sampled token into the grammar
|
| 1029 |
+
LLAMA_API void llama_grammar_accept_token(
|
| 1030 |
+
struct llama_grammar * grammar,
|
| 1031 |
+
struct llama_context * ctx,
|
| 1032 |
+
llama_token token);
|
| 1033 |
+
|
| 1034 |
//
|
| 1035 |
// Sampling functions
|
| 1036 |
//
|
|
|
|
| 1112 |
llama_token_data_array * candidates,
|
| 1113 |
float temp);
|
| 1114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1115 |
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
| 1116 |
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
| 1117 |
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
|
|
|
| 1149 |
struct llama_context * ctx,
|
| 1150 |
llama_token_data_array * candidates);
|
| 1151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1152 |
//
|
| 1153 |
// Model split
|
| 1154 |
//
|
|
|
|
| 1191 |
|
| 1192 |
struct ggml_tensor;
|
| 1193 |
|
| 1194 |
+
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
|
| 1195 |
+
struct llama_context * ctx
|
| 1196 |
+
);
|
| 1197 |
+
|
| 1198 |
struct llama_partial_utf8 {
|
| 1199 |
uint32_t value; // bit value so far (unshifted)
|
| 1200 |
int n_remain; // num bytes remaining; -1 indicates invalid sequence
|
| 1201 |
};
|
| 1202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1203 |
struct llama_grammar_candidate {
|
| 1204 |
size_t index;
|
| 1205 |
const uint32_t * code_points;
|
| 1206 |
llama_partial_utf8 partial_utf8;
|
| 1207 |
};
|
| 1208 |
|
| 1209 |
+
using llama_grammar_rule = std::vector< llama_grammar_element>;
|
| 1210 |
+
using llama_grammar_stack = std::vector<const llama_grammar_element *>;
|
| 1211 |
+
|
| 1212 |
+
using llama_grammar_rules = std::vector<llama_grammar_rule>;
|
| 1213 |
+
using llama_grammar_stacks = std::vector<llama_grammar_stack>;
|
| 1214 |
+
using llama_grammar_candidates = std::vector<llama_grammar_candidate>;
|
| 1215 |
+
|
| 1216 |
+
const llama_grammar_rules & llama_grammar_get_rules (const struct llama_grammar * grammar);
|
| 1217 |
+
llama_grammar_stacks & llama_grammar_get_stacks( struct llama_grammar * grammar);
|
| 1218 |
|
| 1219 |
void llama_grammar_accept(
|
| 1220 |
+
const llama_grammar_rules & rules,
|
| 1221 |
+
const llama_grammar_stacks & stacks,
|
| 1222 |
+
const uint32_t chr,
|
| 1223 |
+
llama_grammar_stacks & new_stacks);
|
| 1224 |
+
|
| 1225 |
+
std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
|
| 1226 |
+
const llama_grammar_rules & rules,
|
| 1227 |
+
const llama_grammar_stack & stack,
|
| 1228 |
+
const llama_grammar_candidates & candidates);
|
| 1229 |
|
| 1230 |
std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
|
| 1231 |
const std::string & src,
|
| 1232 |
+
llama_partial_utf8 partial_start);
|
| 1233 |
|
| 1234 |
// Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
|
| 1235 |
// This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
|
examples/talk-llama/unicode.cpp
CHANGED
|
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#include "unicode.h"
|
| 2 |
#include "unicode-data.h"
|
| 3 |
|
|
@@ -15,6 +19,12 @@
|
|
| 15 |
#include <locale>
|
| 16 |
#include <codecvt>
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
static std::string unicode_cpts_to_utf8(const std::vector<uint32_t> & cps) {
|
| 19 |
std::string result;
|
| 20 |
for (size_t i = 0; i < cps.size(); ++i) {
|
|
|
|
| 1 |
+
#if defined(_MSC_VER)
|
| 2 |
+
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
|
| 3 |
+
#endif
|
| 4 |
+
|
| 5 |
#include "unicode.h"
|
| 6 |
#include "unicode-data.h"
|
| 7 |
|
|
|
|
| 19 |
#include <locale>
|
| 20 |
#include <codecvt>
|
| 21 |
|
| 22 |
+
size_t unicode_len_utf8(char src) {
|
| 23 |
+
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
|
| 24 |
+
uint8_t highbits = static_cast<uint8_t>(src) >> 4;
|
| 25 |
+
return lookup[highbits];
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
static std::string unicode_cpts_to_utf8(const std::vector<uint32_t> & cps) {
|
| 29 |
std::string result;
|
| 30 |
for (size_t i = 0; i < cps.size(); ++i) {
|
examples/talk-llama/unicode.h
CHANGED
|
@@ -4,6 +4,8 @@
|
|
| 4 |
#include <string>
|
| 5 |
#include <vector>
|
| 6 |
|
|
|
|
|
|
|
| 7 |
struct codepoint_flags {
|
| 8 |
enum {
|
| 9 |
UNDEFINED = 0x0001,
|
|
@@ -46,6 +48,7 @@ struct codepoint_flags {
|
|
| 46 |
}
|
| 47 |
};
|
| 48 |
|
|
|
|
| 49 |
|
| 50 |
std::string unicode_cpt_to_utf8(uint32_t cp);
|
| 51 |
uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset);
|
|
|
|
| 4 |
#include <string>
|
| 5 |
#include <vector>
|
| 6 |
|
| 7 |
+
// TODO: prefix all symbols with "llama_"
|
| 8 |
+
|
| 9 |
struct codepoint_flags {
|
| 10 |
enum {
|
| 11 |
UNDEFINED = 0x0001,
|
|
|
|
| 48 |
}
|
| 49 |
};
|
| 50 |
|
| 51 |
+
size_t unicode_len_utf8(char src);
|
| 52 |
|
| 53 |
std::string unicode_cpt_to_utf8(uint32_t cp);
|
| 54 |
uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset);
|
scripts/sync-llama.sh
CHANGED
|
@@ -2,7 +2,8 @@
|
|
| 2 |
|
| 3 |
cp -rpv ../llama.cpp/include/llama.h ./examples/talk-llama/llama.h
|
| 4 |
|
| 5 |
-
cp -rpv ../llama.cpp/src/llama
|
|
|
|
| 6 |
cp -rpv ../llama.cpp/src/unicode.h ./examples/talk-llama/unicode.h
|
| 7 |
cp -rpv ../llama.cpp/src/unicode.cpp ./examples/talk-llama/unicode.cpp
|
| 8 |
cp -rpv ../llama.cpp/src/unicode-data.h ./examples/talk-llama/unicode-data.h
|
|
|
|
| 2 |
|
| 3 |
cp -rpv ../llama.cpp/include/llama.h ./examples/talk-llama/llama.h
|
| 4 |
|
| 5 |
+
cp -rpv ../llama.cpp/src/llama*.cpp ./examples/talk-llama/
|
| 6 |
+
cp -rpv ../llama.cpp/src/llama*.h ./examples/talk-llama/
|
| 7 |
cp -rpv ../llama.cpp/src/unicode.h ./examples/talk-llama/unicode.h
|
| 8 |
cp -rpv ../llama.cpp/src/unicode.cpp ./examples/talk-llama/unicode.cpp
|
| 9 |
cp -rpv ../llama.cpp/src/unicode-data.h ./examples/talk-llama/unicode-data.h
|