// SPDX-FileCopyrightText: Copyright 2025 Arm Limited and/or its affiliates // SPDX-License-Identifier: MIT // #include #include #include #include #include #include #include #if defined(__linux__) #include #include #elif defined(__APPLE__) #include #include #include #elif defined(_WIN32) #include #include #endif #include "kleidiai.h" #include "ggml-cpu.h" #include "ggml-impl.h" #include "ggml-backend-impl.h" #include "ggml-threading.h" #include "traits.h" #include "kernels.h" #include "kai_common.h" #define GGML_COMMON_DECL_CPP #include "ggml-common.h" struct ggml_kleidiai_context { cpu_feature features; ggml_kleidiai_kernels * kernels; } static ctx = { CPU_FEATURE_NONE, NULL }; static const char* cpu_feature_to_string(cpu_feature f) { switch (f) { case CPU_FEATURE_NONE: return "NONE"; case CPU_FEATURE_DOTPROD: return "DOTPROD"; case CPU_FEATURE_I8MM: return "I8MM"; case CPU_FEATURE_SVE: return "SVE"; case CPU_FEATURE_SME: return "SME"; default: return "UNKNOWN"; } } static void init_kleidiai_context(void) { ggml_critical_section_start(); static bool initialized = false; if (!initialized) { initialized = true; const char *env_var = getenv("GGML_KLEIDIAI_SME"); int sme_enabled = 0; ctx.features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) | (ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) | (ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE); if (env_var) { sme_enabled = atoi(env_var); } if (sme_enabled != 0) { ctx.features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE; } ctx.kernels = ggml_kleidiai_select_kernels_q4_0(ctx.features); #ifndef NDEBUG if (ctx.kernels) { GGML_LOG_DEBUG("kleidiai: using kernel with CPU feature %s\n", cpu_feature_to_string(ctx.kernels->required_cpu)); } #endif } ggml_critical_section_end(); } static inline int64_t ggml_ne(const ggml_tensor * tensor, int dim) { GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS); return tensor->ne[dim]; } template static Ret variant_call(const Variant & var, Args&&... args) { return std::visit([&](auto&& func) -> Ret { if constexpr (std::is_invocable_r_v) { return func(std::forward(args)...); } else { throw std::runtime_error("Invalid function type in variant_call"); } }, var); } namespace ggml::cpu::kleidiai { static size_t round_down(size_t x, size_t y) { return y == 0 ? x : x - (x % y); } static void transpose_f32kxn_f16nxk(size_t n, size_t k, float * dst, const uint16_t * src, size_t rhs_stride) { size_t src_stride = rhs_stride / sizeof(uint16_t); size_t dst_stride = n; for (size_t k_idx = 0; k_idx < k; ++k_idx) { for (size_t n_idx = 0; n_idx < n; ++n_idx) { uint16_t v = *(src + k_idx + n_idx * src_stride); *(dst + n_idx + k_idx * dst_stride) = kai_cast_f32_f16(v); } } } class tensor_traits : public ggml::cpu::tensor_traits { bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override { if (op->op != GGML_OP_MUL_MAT) { return false; } ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op); GGML_ASSERT(kernels); kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm; size_t k = op->src[0]->ne[0]; size_t n = op->src[0]->ne[1]; size_t m = op->src[1]->ne[1]; size_t mr = kernel->get_mr(); size_t kr = kernel->get_kr(); size_t sr = kernel->get_sr(); if (kernels->rhs_type == GGML_TYPE_Q4_0) { size = variant_call(kernels->lhs_info.packed_size, m, k, QK4_0, mr, kr, sr); } else if (kernels->rhs_type == GGML_TYPE_F16) { size = variant_call(kernels->lhs_info.packed_size, m, k, mr, kr, sr) + variant_call(kernels->rhs_info.packed_size, n, k) + k * n * sizeof(float) + n * sizeof(float); } else { GGML_ASSERT(false); } return true; } bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * dst) override { if (dst->op == GGML_OP_MUL_MAT) { if (dst->src[0]->type == GGML_TYPE_Q4_0) { return compute_forward_q4_0(params, dst); } else if (dst->src[0]->type == GGML_TYPE_F16) { return compute_forward_kv_cache(params, dst); } } else if (dst->op == GGML_OP_GET_ROWS) { if (dst->src[0]->type == GGML_TYPE_Q4_0) { return compute_forward_get_rows(params, dst); } } return false; } bool compute_forward_kv_cache(ggml_compute_params * params, struct ggml_tensor * dst) { static std::atomic_flag first_to_arrive = ATOMIC_FLAG_INIT; const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst); GGML_ASSERT(kernels); kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm; GGML_ASSERT(kernel); const int nth = params->nth; const int ith = params->ith; const int64_t lhs_batch_size0 = ne12; const int64_t rhs_batch_size0 = ne02; const int64_t batch_size = rhs_batch_size0; const int64_t r = lhs_batch_size0 / rhs_batch_size0; const int64_t m = ne11 * r; const int64_t n = ne01; const int64_t k = ne00; const size_t lhs_stride = src1->nb[1]; const size_t rhs_stride = src0->nb[1]; const size_t dst_stride = dst->nb[1]; const int64_t mr = static_cast(kernel->get_mr()); const int64_t nr = static_cast(kernel->get_nr()); const int64_t kr = static_cast(kernel->get_kr()); const int64_t sr = static_cast(kernel->get_sr()); const size_t lhs_packed_size = variant_call(kernels->lhs_info.packed_size, m, k, mr, kr, sr); const size_t rhs_packed_size = variant_call(kernels->rhs_info.packed_size, n, k); const size_t kxn_size = k * n * sizeof(float); const size_t bias_size = n * sizeof(float); const size_t wsize_required = lhs_packed_size + rhs_packed_size + kxn_size + bias_size; GGML_ASSERT(wsize_required <= params->wsize); uint8_t * lhs_packed = static_cast(params->wdata); uint8_t * rhs_packed = lhs_packed + lhs_packed_size; uint8_t * rhs_kxn = rhs_packed + rhs_packed_size; uint8_t * bias = rhs_kxn + kxn_size; for (int64_t batch_idx = 0; batch_idx < batch_size; ++batch_idx) { const uint8_t * lhs_batch = static_cast(src1->data) + batch_idx * m * lhs_stride; const uint8_t * rhs_batch = static_cast(src0->data) + batch_idx * n * rhs_stride; uint8_t * dst_batch = static_cast(dst->data) + batch_idx * m * dst_stride; // LHS packing { const int64_t m_roundup_mr = kai_roundup(m, mr); const int64_t num_threads = KAI_MIN(m_roundup_mr / mr, nth); if (ith < num_threads) { const int64_t num_m_per_thread0 = round_down(m_roundup_mr / num_threads, mr); const int64_t num_m_per_threadN_1 = m - (num_threads - 1) * num_m_per_thread0; const int64_t m_start = ith * num_m_per_thread0; const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0; const size_t lhs_offset = variant_call(kernels->gemm.get_lhs_offset, m_start, lhs_stride); const size_t lhs_packed_offset = variant_call(kernels->lhs_info.get_packed_offset, m_start, k, mr, kr, sr); const void * src_ptr = static_cast(lhs_batch) + lhs_offset; void * dst_ptr = static_cast(lhs_packed) + lhs_packed_offset; variant_call(kernels->lhs_info.pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr); } } // RHS packing if (first_to_arrive.test_and_set(std::memory_order_acquire) == false) { // First thread to reach this point handles RHS packing memset(bias, 0, n * sizeof(float)); transpose_f32kxn_f16nxk(n, k, reinterpret_cast(rhs_kxn), reinterpret_cast(rhs_batch), rhs_stride); variant_call(kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, n * sizeof(float), rhs_kxn, bias, nullptr, rhs_packed, 0, nullptr); } ggml_barrier(params->threadpool); first_to_arrive.clear(std::memory_order_release); // Perform the matmul { const int64_t m_to_process = m; const int64_t m_start = 0; const int64_t n_step = static_cast(kernel->get_n_step()); int64_t num_threads = KAI_MIN(n / n_step, nth); if (num_threads <= 0) { num_threads = 1; } if (ith < num_threads) { const int64_t num_n_per_thread0 = round_down(n / num_threads, n_step); const int64_t num_n_per_threadN_1 = n - (num_threads - 1) * num_n_per_thread0; const int64_t n_start = ith * num_n_per_thread0; const int64_t n_to_process = (ith == num_threads - 1) ? num_n_per_threadN_1 : num_n_per_thread0; const size_t lhs_packed_offset = variant_call(kernel->get_lhs_offset, m_start, k); const size_t rhs_packed_offset = variant_call(kernel->get_rhs_packed_offset, n_start, k); const size_t dst_offset = kernel->get_dst_offset(m_start, n_start, dst_stride); const void * lhs_ptr = lhs_packed + lhs_packed_offset; const void * rhs_ptr = rhs_packed + rhs_packed_offset; float * dst_ptr = reinterpret_cast(dst_batch + dst_offset); variant_call(kernel->run_kernel, m_to_process, n_to_process, k, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, sizeof(float), -FLT_MAX, FLT_MAX); } } if (batch_idx != batch_size - 1) { // This barrier is necessary when the batch size is larger than 1. While processing a batch, // the work data buffer (params->wdata) is used as temporary storage which means that only // a single batch can be processed at any given time. No barrier is needed for the last // batch since GGML inserts a barrier between the execution of every operator. ggml_barrier(params->threadpool); } } return true; } bool compute_forward_q4_0(struct ggml_compute_params * params, struct ggml_tensor * dst) { GGML_ASSERT(dst->src[0]->type == GGML_TYPE_Q4_0); const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst); GGML_ASSERT(kernels); kernel_info * kernel = src1->ne[1] == 1 ? &kernels->gemv : &kernels->gemm; lhs_packing_info * lhs_info = &kernels->lhs_info; GGML_ASSERT(kernel); const int ith = params->ith; const int nth_raw = params->nth; const int nth = nth_raw > 0 ? nth_raw : 1; const size_t k = ne00; const size_t m = ne11; const size_t n = ne01; size_t mr = kernel->get_mr(); size_t kr = kernel->get_kr(); size_t sr = kernel->get_sr(); const uint8_t * lhs = static_cast(src1->data); uint8_t * lhs_packed = (uint8_t*)params->wdata; const uint8_t * rhs_packed = static_cast(src0->data); const size_t n_step = kernel->get_n_step(); const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step); const size_t n_start = ith * num_n_per_thread; size_t n_to_process = 0; if (n_start < n) { n_to_process = num_n_per_thread; if ((n_start + n_to_process) > n) { n_to_process = n - n_start; } } // Calculate number of columns to be processed per thread const size_t num_m_per_thread = kai_roundup(m, mr * nth) / nth; const size_t m_start = ith * num_m_per_thread; size_t m_to_process = num_m_per_thread; if ((m_start + m_to_process) > m) { m_to_process = m - m_start; } if (m_start < m) { // Transform LHS const size_t src_stride = src1->nb[1]; const float * src_ptr = reinterpret_cast(lhs + lhs_info->get_offset(m_start, dst->src[1]->nb[1])); const size_t lhs_packed_offset = variant_call(lhs_info->get_packed_offset, m_start, k, QK4_0, mr, kr, sr); void * lhs_packed_ptr = static_cast(lhs_packed + lhs_packed_offset); variant_call(lhs_info->pack_func, m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr); } ggml_barrier(params->threadpool); // Perform the operation const size_t dst_stride = dst->nb[1]; const size_t lhs_packed_offset = variant_call(lhs_info->get_packed_offset, 0, k, QK4_0, mr, kr, sr); const size_t rhs_packed_offset = variant_call(kernel->get_rhs_packed_offset, n_start, k, QK4_0); const size_t dst_offset = kernel->get_dst_offset(0, n_start, dst_stride); const void * rhs_ptr = static_cast(rhs_packed + rhs_packed_offset); const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset); float *dst_ptr = reinterpret_cast(static_cast(dst->data) + dst_offset); if (n_to_process > 0) { variant_call(kernel->run_kernel, m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, sizeof(float), -FLT_MAX, FLT_MAX); } return true; } bool compute_forward_get_rows(struct ggml_compute_params * params, struct ggml_tensor * dst) { GGML_ASSERT(dst->src[0]->type == GGML_TYPE_Q4_0); GGML_ASSERT(ctx.kernels); const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS rhs_packing_info * rhs_info = &ctx.kernels->rhs_info; kernel_info * kernel = &ctx.kernels->gemm; const int64_t nc = ne00; const int64_t nr = ggml_nelements(src1); const size_t block_rows = kernel->get_nr(); const size_t kr = kernel->get_kr(); const size_t num_bytes_multiplier = sizeof(uint16_t); const size_t packed_stride = rhs_info->packed_stride(nc, block_rows, kr, QK4_0); const int ith = params->ith; const int nth = params->nth; const int dr = (nr + nth - 1) / nth; const int ir0 = dr * ith; const int ir1 = MIN(ir0 + dr, nr); for (int64_t i = ir0; i < ir1; ++i) { GGML_ASSERT(src1->type == GGML_TYPE_I32); int64_t row_idx = ((const int32_t *)src1->data)[i]; GGML_ASSERT(row_idx >= 0 && row_idx < src0->ne[1]); float *out = (float *)((char *)dst->data + i * nb1); rhs_info->to_float(src0->data, row_idx, nc, out, block_rows, packed_stride, kr, QK4_0, num_bytes_multiplier); } return true; } public: int repack(struct ggml_tensor * tensor, const void * data, size_t data_size) { GGML_ASSERT(tensor->type == GGML_TYPE_Q4_0); GGML_ASSERT(ctx.kernels); const size_t n = tensor->ne[1]; const size_t k = tensor->ne[0]; size_t nr = ctx.kernels->gemm.get_nr(); size_t kr = ctx.kernels->gemm.get_kr(); size_t sr = ctx.kernels->gemm.get_sr(); struct kai_rhs_pack_qs4cxs1s0_param params; params.lhs_zero_point = 1; params.rhs_zero_point = 8; variant_call(ctx.kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, QK4_0, (const uint8_t*)data, nullptr, tensor->data, 0, ¶ms); return 0; GGML_UNUSED(data_size); } }; static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struct ggml_tensor *) { static tensor_traits traits; return &traits; } } // namespace ggml::cpu::kleidiai static enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { tensor->extra = (void *) ggml::cpu::kleidiai::get_tensor_traits(buffer, tensor); return GGML_STATUS_SUCCESS; GGML_UNUSED(buffer); } static void ggml_backend_cpu_kleidiai_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { GGML_ASSERT(offset == 0); GGML_ASSERT(size == ggml_nbytes(tensor)); auto tensor_traits = (ggml::cpu::kleidiai::tensor_traits *) tensor->extra; auto OK = tensor_traits->repack(tensor, data, size); GGML_ASSERT(OK == 0); GGML_UNUSED(buffer); } static const char * ggml_backend_cpu_kleidiai_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return "CPU_KLEIDIAI"; GGML_UNUSED(buft); } static ggml_backend_buffer_t ggml_backend_cpu_kleidiai_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size); if (buffer == nullptr) { return nullptr; } buffer->buft = buft; buffer->iface.init_tensor = ggml_backend_cpu_kleidiai_buffer_init_tensor; buffer->iface.set_tensor = ggml_backend_cpu_kleidiai_buffer_set_tensor; buffer->iface.get_tensor = nullptr; buffer->iface.cpy_tensor = nullptr; return buffer; } static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return TENSOR_ALIGNMENT; GGML_UNUSED(buft); } static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) { GGML_ASSERT(tensor->type == GGML_TYPE_Q4_0); GGML_ASSERT(ctx.kernels); const size_t n = tensor->ne[1]; const size_t k = tensor->ne[0]; const size_t nr = ctx.kernels->gemm.get_nr(); const size_t kr = ctx.kernels->gemm.get_kr(); return variant_call(ctx.kernels->rhs_info.packed_size, n, k, nr, kr, QK4_0); GGML_UNUSED(buft); } namespace ggml::cpu::kleidiai { class extra_buffer_type : ggml::cpu::extra_buffer_type { bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override { if ((op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_GET_ROWS) && op->src[0]->type == GGML_TYPE_Q4_0 && op->src[0]->buffer && (ggml_n_dims(op->src[0]) == 2) && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels) { if (op->op == GGML_OP_GET_ROWS && op->src[1]->ne[0] != 8) { return false; } if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) { return false; } if ((op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_I32) && ggml_ne(op->src[1], 2) == 1 && ggml_ne(op->src[1], 3) == 1) { return true; } } return false; } ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override { if (op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_GET_ROWS) { if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) { return (ggml::cpu::tensor_traits *) op->src[0]->extra; } else if (ggml_kleidiai_select_kernels(ctx.features, op) && op->src[0]->op == GGML_OP_VIEW && (op->src[1]->op == GGML_OP_PERMUTE || op->src[1]->op == GGML_OP_SOFT_MAX) && op->src[1]->ne[1] > 1) { if ((op->src[0]->nb[0] != 2) || (op->src[1]->nb[0] != 4) || (op->src[0]->nb[1] * op->src[0]->ne[1] != op->src[0]->nb[2]) || (op->src[1]->nb[1] * op->src[1]->ne[1] != op->src[1]->nb[2])) { return nullptr; } return ggml::cpu::kleidiai::get_tensor_traits(NULL, NULL); } } return nullptr; } }; } // namespace ggml::cpu::kleidiai ggml_backend_buffer_type_t ggml_backend_cpu_kleidiai_buffer_type(void) { static ggml::cpu::kleidiai::extra_buffer_type ctx; static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_kleidiai = { /* .iface = */ { /* .get_name = */ ggml_backend_cpu_kleidiai_buffer_type_get_name, /* .alloc_buffer = */ ggml_backend_cpu_kleidiai_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_cpu_kleidiai_buffer_type_get_alignment, /* .get_max_size = */ nullptr, // defaults to SIZE_MAX /* .get_alloc_size = */ ggml_backend_cpu_kleidiai_buffer_type_get_alloc_size, /* .is_host = */ nullptr, }, /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0), /* .context = */ &ctx, }; init_kleidiai_context(); return &ggml_backend_cpu_buffer_type_kleidiai; }