Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| import os | |
| # Ensure the required library is installed | |
| os.system("pip install minijinja gradio huggingface_hub") | |
| # Initialize the client with the desired model | |
| client = InferenceClient("meta-llama/Meta-Llama-3.1-8B") | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [system_message] | |
| for val in history: | |
| if val[0]: | |
| messages.append(val[0]) | |
| if val[1]: | |
| messages.append(val[1]) | |
| messages.append(message) | |
| response = "" | |
| try: | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| except Exception as e: | |
| yield f"Error: {str(e)}" | |
| def autocomplete(prompt, max_tokens, temperature, top_p): | |
| messages = [prompt] | |
| response = "" | |
| try: | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| except Exception as e: | |
| yield f"Error: {str(e)}" | |
| # Create the Gradio interface | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.Markdown("# Chat with Meta-Llama") | |
| with gr.Tab("Chat Interface"): | |
| chatbot = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| with gr.Tab("Notebook Interface"): | |
| gr.Markdown("## Notebook Interface with Autocomplete") | |
| prompt = gr.Textbox(label="Enter your text") | |
| output = gr.Textbox(label="Autocompleted Text", interactive=False) | |
| max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") | |
| temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
| top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") | |
| autocomplete_button = gr.Button("Autocomplete") | |
| autocomplete_button.click( | |
| autocomplete, | |
| inputs=[prompt, max_tokens, temperature, top_p], | |
| outputs=output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |