sachin6624's picture
Create app.py
b3e0ef2 verified
import gradio as gr
import torch
from unsloth import FastLanguageModel
from snac import SNAC
import numpy as np
# Set device globally for the app
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load models (globally, once when app starts)
model_name = "sachin6624/orpheus-3b-0.1-ft-malayalam-3epoch"
print(f"Loading LLM {model_name} on {device}...")
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
max_seq_length=2048,
dtype=None,
load_in_4bit=False, # Use True for 4-bit loading to reduce memory if needed
)
model.to(device)
FastLanguageModel.for_inference(model)
print("LLM loaded.")
print(f"Loading SNAC decoder on {device}...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
# Explicitly define sample rate as the model name 'snac_24khz' suggests 24000 Hz
snac_model_sample_rate = 24000
print("SNAC decoder loaded. Assumed sample rate:", snac_model_sample_rate)
# Define tokens on the selected device
start_token = torch.tensor([[128259]], dtype=torch.int64, device=device) # Start of human
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device) # End of text, End of human
token_to_find = 128257
token_to_remove = 128258
def redistribute_codes(code_list):
"""
Redistributes SNAC codes into layers and decodes them to audio.
`code_list` is expected to be a list of Python integers.
"""
if not code_list:
raise ValueError("Input code_list to redistribute_codes is empty.")
layer_1 = []
layer_2 = []
layer_3 = []
# Ensure there are enough codes to form full groups of 7
processed_len = (len(code_list) // 7) * 7
if processed_len == 0:
raise ValueError("code_list is too short to form any valid SNAC layers.")
for i in range(processed_len // 7):
base_idx = 7*i
layer_1.append(code_list[base_idx])
layer_2.append(code_list[base_idx+1]-4096)
layer_3.append(code_list[base_idx+2]-(2*4096))
layer_3.append(code_list[base_idx+3]-(3*4096))
layer_2.append(code_list[base_idx+4]-(4*4096))
layer_3.append(code_list[base_idx+5]-(5*4096))
layer_3.append(code_list[base_idx+6]-(6*4096))
# Convert lists of Python integers to torch tensors on the specified device
codes = [
torch.tensor(layer_1, dtype=torch.long, device=device).unsqueeze(0),
torch.tensor(layer_2, dtype=torch.long, device=device).unsqueeze(0),
torch.tensor(layer_3, dtype=torch.long, device=device).unsqueeze(0)
]
audio_hat = snac_model.decode(codes)
return audio_hat
def generate_audio(prompt: str):
"""
Generates audio from a given text prompt.
"""
if not prompt or not prompt.strip():
raise gr.Error("Please enter a valid text prompt.")
try:
# Tokenize the prompt and prepare input_ids
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
# Concatenate start/end tokens to the input_ids
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
# Create an attention mask for the unpadded input
attention_mask = torch.ones_like(modified_input_ids, dtype=torch.long, device=device)
# Generate IDs using the model
generated_ids = model.generate(
input_ids=modified_input_ids,
attention_mask=attention_mask,
max_new_tokens=1200,
do_sample=True,
temperature=0.6,
top_p=0.95,
repetition_penalty=1.1,
num_return_sequences=1,
eos_token_id=128258,
use_cache = True
)
# Post-process generated_ids to extract SNAC codes
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
cropped_tensor = generated_ids
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
# Filter out token_to_remove (EOS token for generation)
processed_row_tensor = cropped_tensor[cropped_tensor != token_to_remove]
row_length = processed_row_tensor.size(0)
new_length = (row_length // 7) * 7 # Ensure length is a multiple of 7 for redistribution
if new_length == 0:
raise gr.Error("Generated response was too short to form valid audio codes. Try a different prompt or longer text.")
trimmed_row = processed_row_tensor[:new_length]
# Convert tensor elements to Python integers and apply offset
trimmed_row_list = [t.item() - 128266 for t in trimmed_row]
samples = redistribute_codes(trimmed_row_list)
audio_output = samples.detach().squeeze().to("cpu").numpy()
return (snac_model_sample_rate, audio_output)
except Exception as e:
raise gr.Error(f"An error occurred during audio generation: {e}")
# Gradio Interface setup
iface = gr.Interface(
fn=generate_audio,
inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Text Prompt (Malayalam)"),
outputs=gr.Audio(label="Generated Audio", autoplay=True),
title="Malayalam Text-to-Speech (Orpheus-3B & SNAC)",
description="Generate speech from Malayalam text using the fine-tuned Orpheus-3B model and SNAC for audio generation.",
examples=[["എങ്ങനെയുണ്ട് എന്റെ കുട്ടി?, <giggles>."],
["നമസ്കാരം, നിങ്ങൾക്ക് സുഖമാണോ?"]],
)
# Use flagging_mode instead of allow_flagging for Gradio 4.0+
iface.flagging_mode = 'never'
# Launch the Gradio app if the script is run directly
if __name__ == "__main__":
iface.launch()