Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from unsloth import FastLanguageModel | |
| from snac import SNAC | |
| import numpy as np | |
| # Set device globally for the app | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Load models (globally, once when app starts) | |
| model_name = "sachin6624/orpheus-3b-0.1-ft-malayalam-3epoch" | |
| print(f"Loading LLM {model_name} on {device}...") | |
| model, tokenizer = FastLanguageModel.from_pretrained( | |
| model_name=model_name, | |
| max_seq_length=2048, | |
| dtype=None, | |
| load_in_4bit=False, # Use True for 4-bit loading to reduce memory if needed | |
| ) | |
| model.to(device) | |
| FastLanguageModel.for_inference(model) | |
| print("LLM loaded.") | |
| print(f"Loading SNAC decoder on {device}...") | |
| snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz") | |
| snac_model = snac_model.to(device) | |
| # Explicitly define sample rate as the model name 'snac_24khz' suggests 24000 Hz | |
| snac_model_sample_rate = 24000 | |
| print("SNAC decoder loaded. Assumed sample rate:", snac_model_sample_rate) | |
| # Define tokens on the selected device | |
| start_token = torch.tensor([[128259]], dtype=torch.int64, device=device) # Start of human | |
| end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device) # End of text, End of human | |
| token_to_find = 128257 | |
| token_to_remove = 128258 | |
| def redistribute_codes(code_list): | |
| """ | |
| Redistributes SNAC codes into layers and decodes them to audio. | |
| `code_list` is expected to be a list of Python integers. | |
| """ | |
| if not code_list: | |
| raise ValueError("Input code_list to redistribute_codes is empty.") | |
| layer_1 = [] | |
| layer_2 = [] | |
| layer_3 = [] | |
| # Ensure there are enough codes to form full groups of 7 | |
| processed_len = (len(code_list) // 7) * 7 | |
| if processed_len == 0: | |
| raise ValueError("code_list is too short to form any valid SNAC layers.") | |
| for i in range(processed_len // 7): | |
| base_idx = 7*i | |
| layer_1.append(code_list[base_idx]) | |
| layer_2.append(code_list[base_idx+1]-4096) | |
| layer_3.append(code_list[base_idx+2]-(2*4096)) | |
| layer_3.append(code_list[base_idx+3]-(3*4096)) | |
| layer_2.append(code_list[base_idx+4]-(4*4096)) | |
| layer_3.append(code_list[base_idx+5]-(5*4096)) | |
| layer_3.append(code_list[base_idx+6]-(6*4096)) | |
| # Convert lists of Python integers to torch tensors on the specified device | |
| codes = [ | |
| torch.tensor(layer_1, dtype=torch.long, device=device).unsqueeze(0), | |
| torch.tensor(layer_2, dtype=torch.long, device=device).unsqueeze(0), | |
| torch.tensor(layer_3, dtype=torch.long, device=device).unsqueeze(0) | |
| ] | |
| audio_hat = snac_model.decode(codes) | |
| return audio_hat | |
| def generate_audio(prompt: str): | |
| """ | |
| Generates audio from a given text prompt. | |
| """ | |
| if not prompt or not prompt.strip(): | |
| raise gr.Error("Please enter a valid text prompt.") | |
| try: | |
| # Tokenize the prompt and prepare input_ids | |
| input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) | |
| # Concatenate start/end tokens to the input_ids | |
| modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) | |
| # Create an attention mask for the unpadded input | |
| attention_mask = torch.ones_like(modified_input_ids, dtype=torch.long, device=device) | |
| # Generate IDs using the model | |
| generated_ids = model.generate( | |
| input_ids=modified_input_ids, | |
| attention_mask=attention_mask, | |
| max_new_tokens=1200, | |
| do_sample=True, | |
| temperature=0.6, | |
| top_p=0.95, | |
| repetition_penalty=1.1, | |
| num_return_sequences=1, | |
| eos_token_id=128258, | |
| use_cache = True | |
| ) | |
| # Post-process generated_ids to extract SNAC codes | |
| token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True) | |
| cropped_tensor = generated_ids | |
| if len(token_indices[1]) > 0: | |
| last_occurrence_idx = token_indices[1][-1].item() | |
| cropped_tensor = generated_ids[:, last_occurrence_idx+1:] | |
| # Filter out token_to_remove (EOS token for generation) | |
| processed_row_tensor = cropped_tensor[cropped_tensor != token_to_remove] | |
| row_length = processed_row_tensor.size(0) | |
| new_length = (row_length // 7) * 7 # Ensure length is a multiple of 7 for redistribution | |
| if new_length == 0: | |
| raise gr.Error("Generated response was too short to form valid audio codes. Try a different prompt or longer text.") | |
| trimmed_row = processed_row_tensor[:new_length] | |
| # Convert tensor elements to Python integers and apply offset | |
| trimmed_row_list = [t.item() - 128266 for t in trimmed_row] | |
| samples = redistribute_codes(trimmed_row_list) | |
| audio_output = samples.detach().squeeze().to("cpu").numpy() | |
| return (snac_model_sample_rate, audio_output) | |
| except Exception as e: | |
| raise gr.Error(f"An error occurred during audio generation: {e}") | |
| # Gradio Interface setup | |
| iface = gr.Interface( | |
| fn=generate_audio, | |
| inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Text Prompt (Malayalam)"), | |
| outputs=gr.Audio(label="Generated Audio", autoplay=True), | |
| title="Malayalam Text-to-Speech (Orpheus-3B & SNAC)", | |
| description="Generate speech from Malayalam text using the fine-tuned Orpheus-3B model and SNAC for audio generation.", | |
| examples=[["എങ്ങനെയുണ്ട് എന്റെ കുട്ടി?, <giggles>."], | |
| ["നമസ്കാരം, നിങ്ങൾക്ക് സുഖമാണോ?"]], | |
| ) | |
| # Use flagging_mode instead of allow_flagging for Gradio 4.0+ | |
| iface.flagging_mode = 'never' | |
| # Launch the Gradio app if the script is run directly | |
| if __name__ == "__main__": | |
| iface.launch() |