Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import sparknlp | |
| import os | |
| import pandas as pd | |
| from sparknlp.base import * | |
| from sparknlp.annotator import * | |
| from pyspark.ml import Pipeline | |
| from sparknlp.pretrained import PretrainedPipeline | |
| from annotated_text import annotated_text | |
| # Page configuration | |
| st.set_page_config( | |
| layout="wide", | |
| initial_sidebar_state="auto" | |
| ) | |
| # CSS for styling | |
| st.markdown(""" | |
| <style> | |
| .main-title { | |
| font-size: 36px; | |
| color: #4A90E2; | |
| font-weight: bold; | |
| text-align: center; | |
| } | |
| .section { | |
| background-color: #f9f9f9; | |
| padding: 10px; | |
| border-radius: 10px; | |
| margin-top: 10px; | |
| } | |
| .section p, .section ul { | |
| color: #666666; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| def init_spark(): | |
| return sparknlp.start() | |
| def create_pipeline(model): | |
| document_assembler = DocumentAssembler() \ | |
| .setInputCol('text') \ | |
| .setOutputCol('document') | |
| sentence_detector = SentenceDetector() \ | |
| .setInputCols(['document']) \ | |
| .setOutputCol('sentence') | |
| tokenizer = Tokenizer() \ | |
| .setInputCols(['sentence']) \ | |
| .setOutputCol('token') | |
| tokenClassifier_loaded = BertForTokenClassification.pretrained("bert_token_classifier_hi_en_ner", "hi") \ | |
| .setInputCols(["sentence", 'token']) \ | |
| .setOutputCol("ner") | |
| ner_converter = NerConverter() \ | |
| .setInputCols(["sentence", "token", "ner"]) \ | |
| .setOutputCol("ner_chunk") | |
| # Create the NLP pipeline | |
| pipeline = Pipeline(stages=[ | |
| document_assembler, | |
| sentence_detector, | |
| tokenizer, | |
| tokenClassifier_loaded, | |
| ner_converter | |
| ]) | |
| return pipeline | |
| def fit_data(pipeline, data): | |
| empty_df = spark.createDataFrame([['']]).toDF('text') | |
| pipeline_model = pipeline.fit(empty_df) | |
| model = LightPipeline(pipeline_model) | |
| result = model.fullAnnotate(data) | |
| return result | |
| def annotate(data): | |
| document, chunks, labels = data["Document"], data["NER Chunk"], data["NER Label"] | |
| annotated_words = [] | |
| for chunk, label in zip(chunks, labels): | |
| parts = document.split(chunk, 1) | |
| if parts[0]: | |
| annotated_words.append(parts[0]) | |
| annotated_words.append((chunk, label)) | |
| document = parts[1] | |
| if document: | |
| annotated_words.append(document) | |
| annotated_text(*annotated_words) | |
| # Sidebar content | |
| model = st.sidebar.selectbox( | |
| "Choose the pretrained model", | |
| ["bert_token_classifier_hi_en_ner"], | |
| help="For more info about the models visit: https://sparknlp.org/models" | |
| ) | |
| # Set up the page layout | |
| title, sub_title = ('Named Entity Recogniation for Hindi+English text', 'This model was imported from Hugging Face to carry out Name Entity Recognition with mixed Hindi-English texts, provided by the LinCE repository.') | |
| st.markdown(f'<div class="main-title">{title}</div>', unsafe_allow_html=True) | |
| st.markdown(f'<div class="section"><p>{sub_title}</p></div>', unsafe_allow_html=True) | |
| # Reference notebook link in sidebar | |
| link = """ | |
| <a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/NER_HINDI_ENGLISH.ipynb"> | |
| <img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/> | |
| </a> | |
| """ | |
| st.sidebar.markdown('Reference notebook:') | |
| st.sidebar.markdown(link, unsafe_allow_html=True) | |
| # Load examples | |
| folder_path = f"inputs/{model}" | |
| examples = [ | |
| lines[1].strip() | |
| for filename in os.listdir(folder_path) | |
| if filename.endswith('.txt') | |
| for lines in [open(os.path.join(folder_path, filename), 'r', encoding='utf-8').readlines()] | |
| if len(lines) >= 2 | |
| ] | |
| selected_text = st.selectbox("Select an example", examples) | |
| custom_input = st.text_input("Try it with your own Sentence!") | |
| text_to_analyze = custom_input if custom_input else selected_text | |
| st.subheader('Full example text') | |
| HTML_WRAPPER = """<div class="scroll entities" style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem; white-space:pre-wrap">{}</div>""" | |
| st.markdown(HTML_WRAPPER.format(text_to_analyze), unsafe_allow_html=True) | |
| # Initialize Spark and create pipeline | |
| spark = init_spark() | |
| pipeline = create_pipeline(model) | |
| output = fit_data(pipeline, text_to_analyze) | |
| # Display matched sentence | |
| st.subheader("Processed output:") | |
| results = { | |
| 'Document': output[0]['document'][0].result, | |
| 'NER Chunk': [n.result for n in output[0]['ner_chunk']], | |
| "NER Label": [n.metadata['entity'] for n in output[0]['ner_chunk']] | |
| } | |
| annotate(results) | |
| with st.expander("View DataFrame"): | |
| df = pd.DataFrame({'NER Chunk': results['NER Chunk'], 'NER Label': results['NER Label']}) | |
| df.index += 1 | |
| st.dataframe(df) | |