Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from safetensors.torch import load_model
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
import torch
|
| 8 |
+
from torch import nn
|
| 9 |
+
from torch.nn import functional as func_nn
|
| 10 |
+
from einops import rearrange
|
| 11 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 12 |
+
from torchvision import models
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# main model network
|
| 16 |
+
class SiameseNetwork(nn.Module, PyTorchModelHubMixin):
|
| 17 |
+
def __init__(self):
|
| 18 |
+
super().__init__()
|
| 19 |
+
|
| 20 |
+
# convolutional layer/block
|
| 21 |
+
# self.convnet = MobileNet()
|
| 22 |
+
self.convnet = models.mobilenet_v2(pretrained=True) # pretrained backbone
|
| 23 |
+
num_ftrs = self.convnet.classifier[1].in_features # get the first deimnesion of model head
|
| 24 |
+
|
| 25 |
+
self.convnet.classifier[1] = nn.Linear(num_ftrs, 512) # change/switch backbone linear head
|
| 26 |
+
|
| 27 |
+
# fully connected layer for classification
|
| 28 |
+
self.fc_linear = nn.Sequential(
|
| 29 |
+
nn.Linear(512, 128),
|
| 30 |
+
nn.ReLU(inplace=True), # actvation layer
|
| 31 |
+
nn.Linear(128, 2)
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
def single_pass(self, x) -> torch.Tensor:
|
| 35 |
+
# sinlge Forward pass for each image
|
| 36 |
+
x = rearrange(x, 'b h w c -> b c h w') # rearrange to (batch, channels, height, width) to match model input
|
| 37 |
+
output = self.convnet(x)
|
| 38 |
+
output = self.fc_linear(output)
|
| 39 |
+
|
| 40 |
+
return output
|
| 41 |
+
|
| 42 |
+
def forward(self, input_1: torch.Tensor, input_2: torch.Tensor) -> torch.Tensor:
|
| 43 |
+
|
| 44 |
+
# forward pass of first image
|
| 45 |
+
output_1 = self.single_pass(input_1)
|
| 46 |
+
|
| 47 |
+
# forward pass of second contrast image
|
| 48 |
+
output_2 = self.single_pass(input_2)
|
| 49 |
+
|
| 50 |
+
return output_1, output_2
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# pretrained model file
|
| 54 |
+
model_file = 'best_signature_mobilenet.safetensors' #config.safetensor_file
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# Function to compute similarity
|
| 58 |
+
def compute_similarity(output1, output2):
|
| 59 |
+
return torch.nn.functional.cosine_similarity(output1, output2).item()
|
| 60 |
+
|
| 61 |
+
# Function to visualize feature heatmaps
|
| 62 |
+
def visualize_heatmap(model, image):
|
| 63 |
+
model.eval()
|
| 64 |
+
x = image.unsqueeze(0) # remove batch dimension
|
| 65 |
+
features = model.convnet(x) # feature heatmap learnt by model
|
| 66 |
+
heatmap = torch.mean(features, dim=1).squeeze().detach().numpy() # normalize heatmap to ndarray
|
| 67 |
+
plt.imshow(heatmap, cmap="hot") # display heatmap as plot
|
| 68 |
+
plt.axis("off")
|
| 69 |
+
|
| 70 |
+
return plt
|
| 71 |
+
|
| 72 |
+
# Load the pre-trained model from safeetesor file
|
| 73 |
+
def load_pipeline(model_id=):
|
| 74 |
+
model_id = 'tensorkelechi/signature_mobilenet'
|
| 75 |
+
# model = SiameseNetwork() # model class/skeleton
|
| 76 |
+
|
| 77 |
+
# model.load_state_dict(torch.load(model_file))
|
| 78 |
+
model = pipeline('image-classification', model=model_id, device='cpu')
|
| 79 |
+
model.eval()
|
| 80 |
+
|
| 81 |
+
return model
|
| 82 |
+
|
| 83 |
+
# Streamlit app UI template
|
| 84 |
+
st.title("Signature Forgery Detection")
|
| 85 |
+
st.write('Application to run/test signature forgery detecton model')
|
| 86 |
+
|
| 87 |
+
st.subheader('Compare signatures')
|
| 88 |
+
# File uploaders for the two images
|
| 89 |
+
original_image = st.file_uploader(
|
| 90 |
+
"Upload the original signature", type=["png", "jpg", "jpeg"]
|
| 91 |
+
)
|
| 92 |
+
comparison_image = st.file_uploader(
|
| 93 |
+
"Upload the signature to compare", type=["png", "jpg", "jpeg"]
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
def run_model_pipeline(model, original_image, comparison_image, threshold=0.5):
|
| 97 |
+
if original_image is not None and comparison_image is not None: # ensure both images are uploaded
|
| 98 |
+
|
| 99 |
+
# Preprocess images
|
| 100 |
+
img1 = Image.open(original_image).convert("RGB") # load images from file paths to PIL Image
|
| 101 |
+
img2 = Image.open(comparison_image).convert("RGB")
|
| 102 |
+
|
| 103 |
+
# read/reshape and normalize as numpy array
|
| 104 |
+
img1 = read_image(img1)
|
| 105 |
+
img2 = read_image(img2)
|
| 106 |
+
|
| 107 |
+
# convert to tensors and add batch dimensions to match model input shape
|
| 108 |
+
img1_tensor = torch.unsqueeze(torch.as_tensor(img1), 0)
|
| 109 |
+
img2_tensor = torch.unsqueeze(torch.as_tensor(img2), 0)
|
| 110 |
+
|
| 111 |
+
# Get model embeddings/probabilites
|
| 112 |
+
output1, output2 = model(img1_tensor, img2_tensor)
|
| 113 |
+
st.success('outputs extracted')
|
| 114 |
+
|
| 115 |
+
# Compute similarity
|
| 116 |
+
similarity = compute_similarity(output1, output2)
|
| 117 |
+
|
| 118 |
+
# Determine if it's a forgery based on determined threshold
|
| 119 |
+
is_forgery = similarity < threshold
|
| 120 |
+
|
| 121 |
+
# Display results
|
| 122 |
+
st.subheader("Results")
|
| 123 |
+
st.write(f"Similarity: {similarity:.2f}")
|
| 124 |
+
st.write(f"Classification: {'Forgery' if is_forgery else 'Genuine'}")
|
| 125 |
+
|
| 126 |
+
# Display images
|
| 127 |
+
col1, col2 = st.columns(2) # GUI columns
|
| 128 |
+
|
| 129 |
+
with col1:
|
| 130 |
+
st.image(img1, caption="Original Signature", use_column_width=True)
|
| 131 |
+
with col2:
|
| 132 |
+
st.image(img2, caption="Comparison Signature", use_column_width=True)
|
| 133 |
+
|
| 134 |
+
# Visualize heatmaps from extracted model features
|
| 135 |
+
st.subheader("Feature Heatmaps")
|
| 136 |
+
col3, col4 = st.columns(2)
|
| 137 |
+
with col3:
|
| 138 |
+
fig1 = visualize_heatmap(model, img1_tensor)
|
| 139 |
+
st.pyplot(fig1)
|
| 140 |
+
with col4:
|
| 141 |
+
fig2 = visualize_heatmap(model, img2_tensor)
|
| 142 |
+
st.pyplot(fig2)
|
| 143 |
+
|
| 144 |
+
else:
|
| 145 |
+
st.write("Please upload both the original and comparison signatures.")
|
| 146 |
+
|
| 147 |
+
# Run the model pipeline if a button is clicked
|
| 148 |
+
if st.button("Run Model Pipeline"):
|
| 149 |
+
model = load_pipeline()
|
| 150 |
+
|
| 151 |
+
# button click to process images
|
| 152 |
+
if st.button("Process Images"):
|
| 153 |
+
run_model_pipeline(model, original_image, comparison_image)
|