File size: 35,122 Bytes
b4bbb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
from typing import Sequence
import random
from typing import Any

from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import diffusers.schedulers as noise_schedulers
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils.torch_utils import randn_tensor

from models.autoencoder.autoencoder_base import AutoEncoderBase
from models.content_encoder.content_encoder import ContentEncoder
from models.content_adapter import ContentAdapterBase, ContentEncoderAdapterMixin
from models.common import (
    LoadPretrainedBase, CountParamsBase, SaveTrainableParamsBase,
    DurationAdapterMixin
)
from utils.torch_utilities import (
    create_alignment_path, create_mask_from_length, loss_with_mask,
    trim_or_pad_length
)


class DiffusionMixin:
    def __init__(
        self,
        noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
        snr_gamma: float = None,
        cfg_drop_ratio: float = 0.2
    ) -> None:
        self.noise_scheduler_name = noise_scheduler_name
        self.snr_gamma = snr_gamma
        self.classifier_free_guidance = cfg_drop_ratio > 0.0
        self.cfg_drop_ratio = cfg_drop_ratio
        self.noise_scheduler = noise_schedulers.DDPMScheduler.from_pretrained(
            self.noise_scheduler_name, subfolder="scheduler"
        )

    def compute_snr(self, timesteps) -> torch.Tensor:
        """
        Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
        """
        alphas_cumprod = self.noise_scheduler.alphas_cumprod
        sqrt_alphas_cumprod = alphas_cumprod**0.5
        sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod)**0.5

        # Expand the tensors.
        # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
        sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device
                                                    )[timesteps].float()
        while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
            sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
        alpha = sqrt_alphas_cumprod.expand(timesteps.shape)

        sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(
            device=timesteps.device
        )[timesteps].float()
        while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
            sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[...,
                                                                          None]
        sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)

        # Compute SNR.
        snr = (alpha / sigma)**2
        return snr

    def get_timesteps(
        self,
        batch_size: int,
        device: torch.device,
        training: bool = True
    ) -> torch.Tensor:
        if training:
            timesteps = torch.randint(
                0,
                self.noise_scheduler.config.num_train_timesteps,
                (batch_size, ),
                device=device
            )
        else:
            # validation on half of the total timesteps
            timesteps = (self.noise_scheduler.config.num_train_timesteps //
                         2) * torch.ones((batch_size, ),
                                         dtype=torch.int64,
                                         device=device)

        timesteps = timesteps.long()
        return timesteps

    def get_input_target_and_timesteps(
        self,
        latent: torch.Tensor,
        training: bool,
    ):
        batch_size = latent.shape[0]
        device = latent.device
        num_train_timesteps = self.noise_scheduler.config.num_train_timesteps
        self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
        timesteps = self.get_timesteps(batch_size, device, training=training)
        noise = torch.randn_like(latent)
        noisy_latent = self.noise_scheduler.add_noise(latent, noise, timesteps)
        target = self.get_target(latent, noise, timesteps)
        return noisy_latent, target, timesteps

    def get_target(
        self, latent: torch.Tensor, noise: torch.Tensor,
        timesteps: torch.Tensor
    ) -> torch.Tensor:
        """
        Get the target for loss depending on the prediction type
        """
        if self.noise_scheduler.config.prediction_type == "epsilon":
            target = noise
        elif self.noise_scheduler.config.prediction_type == "v_prediction":
            target = self.noise_scheduler.get_velocity(
                latent, noise, timesteps
            )
        else:
            raise ValueError(
                f"Unknown prediction type {self.noise_scheduler.config.prediction_type}"
            )
        return target

    def loss_with_snr(
        self,
        pred: torch.Tensor,
        target: torch.Tensor,
        timesteps: torch.Tensor,
        mask: torch.Tensor,
        reduce: bool = True
    ) -> torch.Tensor:
        if self.snr_gamma is None:
            loss = F.mse_loss(pred.float(), target.float(), reduction="none")
            loss = loss_with_mask(loss, mask, reduce=reduce)
        else:
            # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
            # Adapted from https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py#L1006
            snr = self.compute_snr(timesteps)
            mse_loss_weights = torch.stack(
                [
                    snr,
                    self.snr_gamma * torch.ones_like(timesteps),
                ],
                dim=1,
            ).min(dim=1)[0]
            # division by (snr + 1) does not work well, not clear about the reason
            mse_loss_weights = mse_loss_weights / snr
            loss = F.mse_loss(pred.float(), target.float(), reduction="none")
            loss = loss_with_mask(loss, mask, reduce=False) * mse_loss_weights
            if reduce:
                loss = loss.mean()
        return loss

    def rescale_cfg(
        self, pred_cond: torch.Tensor, pred_cfg: torch.Tensor,
        guidance_rescale: float
    ):
        """
        Rescale `pred_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
        Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
        """
        std_cond = pred_cond.std(
            dim=list(range(1, pred_cond.ndim)), keepdim=True
        )
        std_cfg = pred_cfg.std(dim=list(range(1, pred_cfg.ndim)), keepdim=True)

        pred_rescaled = pred_cfg * (std_cond / std_cfg)
        pred_cfg = guidance_rescale * pred_rescaled + (
            1 - guidance_rescale
        ) * pred_cfg
        return pred_cfg


class SingleTaskCrossAttentionAudioDiffusion(
    LoadPretrainedBase, CountParamsBase, SaveTrainableParamsBase,
    DiffusionMixin, ContentEncoderAdapterMixin
):
    def __init__(
        self,
        autoencoder: AutoEncoderBase,
        content_encoder: ContentEncoder,
        backbone: nn.Module,
        noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
        snr_gamma: float = None,
        cfg_drop_ratio: float = 0.2,
    ):
        nn.Module.__init__(self)
        DiffusionMixin.__init__(
            self, noise_scheduler_name, snr_gamma, cfg_drop_ratio
        )
        ContentEncoderAdapterMixin.__init__(
            self, content_encoder=content_encoder
        )

        self.autoencoder = autoencoder
        for param in self.autoencoder.parameters():
            param.requires_grad = False

        if hasattr(self.content_encoder, "audio_encoder"):
            self.content_encoder.audio_encoder.model = self.autoencoder

        self.backbone = backbone
        self.dummy_param = nn.Parameter(torch.empty(0))

    def forward(
        self, content: list[Any], condition: list[Any], task: list[str],
        waveform: torch.Tensor, waveform_lengths: torch.Tensor, **kwargs
    ):
        device = self.dummy_param.device

        self.autoencoder.eval()
        with torch.no_grad():
            latent, latent_mask = self.autoencoder.encode(
                waveform.unsqueeze(1), waveform_lengths
            )

        content_dict = self.encode_content(content, task, device)
        content, content_mask = content_dict["content"], content_dict[
            "content_mask"]

        if self.training and self.classifier_free_guidance:
            mask_indices = [
                k for k in range(len(waveform))
                if random.random() < self.cfg_drop_ratio
            ]
            if len(mask_indices) > 0:
                content[mask_indices] = 0

        noisy_latent, target, timesteps = self.get_input_target_and_timesteps(
            latent, self.training
        )

        pred: torch.Tensor = self.backbone(
            x=noisy_latent,
            timesteps=timesteps,
            context=content,
            x_mask=latent_mask,
            context_mask=content_mask
        )

        pred = pred.transpose(1, self.autoencoder.time_dim)
        target = target.transpose(1, self.autoencoder.time_dim)
        loss = self.loss_with_snr(pred, target, timesteps, latent_mask)

        return loss

    def prepare_latent(
        self, batch_size: int, scheduler: SchedulerMixin,
        latent_shape: Sequence[int], dtype: torch.dtype, device: str
    ):
        shape = (batch_size, *latent_shape)
        latent = randn_tensor(
            shape, generator=None, device=device, dtype=dtype
        )
        # scale the initial noise by the standard deviation required by the scheduler
        latent = latent * scheduler.init_noise_sigma
        return latent

    def iterative_denoise(
        self,
        latent: torch.Tensor,
        scheduler: SchedulerMixin,
        verbose: bool,
        cfg: bool,
        cfg_scale: float,
        cfg_rescale: float,
        backbone_input: dict,
    ):
        timesteps = scheduler.timesteps
        num_steps = len(timesteps)
        num_warmup_steps = len(timesteps) - num_steps * scheduler.order
        progress_bar = tqdm(range(num_steps), disable=not verbose)

        for i, timestep in enumerate(timesteps):
            # expand the latent if we are doing classifier free guidance
            if cfg:
                latent_input = torch.cat([latent, latent])
            else:
                latent_input = latent
            latent_input = scheduler.scale_model_input(latent_input, timestep)

            noise_pred = self.backbone(
                x=latent_input, timesteps=timestep, **backbone_input
            )

            # perform guidance
            if cfg:
                noise_pred_uncond, noise_pred_content = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + cfg_scale * (
                    noise_pred_content - noise_pred_uncond
                )
                if cfg_rescale != 0.0:
                    noise_pred = self.rescale_cfg(
                        noise_pred_content, noise_pred, cfg_rescale
                    )

            # compute the previous noisy sample x_t -> x_t-1
            latent = scheduler.step(noise_pred, timestep, latent).prev_sample

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and
                                           (i + 1) % scheduler.order == 0):
                progress_bar.update(1)

        progress_bar.close()

        return latent

    @torch.no_grad()
    def inference(
        self,
        content: list[Any],
        condition: list[Any],
        task: list[str],
        latent_shape: Sequence[int],
        scheduler: SchedulerMixin,
        num_steps: int = 50,
        guidance_scale: float = 3.0,
        guidance_rescale: float = 0.0,
        disable_progress: bool = True,
        **kwargs
    ):
        device = self.dummy_param.device
        classifier_free_guidance = guidance_scale > 1.0
        batch_size = len(content)

        content_output: dict[str, torch.Tensor] = self.encode_content(
            content, task, device
        )
        content, content_mask = content_output["content"], content_output[
            "content_mask"]

        if classifier_free_guidance:
            uncond_content = torch.zeros_like(content)
            uncond_content_mask = content_mask.detach().clone()
            content = torch.cat([uncond_content, content])
            content_mask = torch.cat([uncond_content_mask, content_mask])

        scheduler.set_timesteps(num_steps, device=device)

        latent = self.prepare_latent(
            batch_size, scheduler, latent_shape, content.dtype, device
        )
        latent = self.iterative_denoise(
            latent=latent,
            scheduler=scheduler,
            verbose=not disable_progress,
            cfg=classifier_free_guidance,
            cfg_scale=guidance_scale,
            cfg_rescale=guidance_rescale,
            backbone_input={
                "context": content,
                "context_mask": content_mask
            },
        )

        waveform = self.autoencoder.decode(latent)

        return waveform


class CrossAttentionAudioDiffusion(
    SingleTaskCrossAttentionAudioDiffusion, DurationAdapterMixin
):
    def __init__(
        self,
        autoencoder: AutoEncoderBase,
        content_encoder: ContentEncoder,
        content_adapter: ContentAdapterBase,
        backbone: nn.Module,
        content_dim: int = None,
        frame_resolution: float = None,
        duration_offset: float = 1.0,
        noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
        snr_gamma: float = None,
        cfg_drop_ratio: float = 0.2,
    ):
        super().__init__(
            autoencoder=autoencoder,
            content_encoder=content_encoder,
            backbone=backbone,
            noise_scheduler_name=noise_scheduler_name,
            snr_gamma=snr_gamma,
            cfg_drop_ratio=cfg_drop_ratio
        )
        ContentEncoderAdapterMixin.__init__(
            self,
            content_encoder=content_encoder,
            content_adapter=content_adapter,
        )
        DurationAdapterMixin.__init__(
            self,
            latent_token_rate=autoencoder.latent_token_rate,
            offset=duration_offset,
        )

    def encode_content_with_instruction(
        self,
        content: list[Any],
        task: list[str],
        device: str | torch.device,
        instruction: torch.Tensor,
        instruction_lengths: torch.Tensor,
    ):
        content_dict = self.encode_content(
            content, task, device, instruction, instruction_lengths
        )
        return (
            content_dict["content"],
            content_dict["content_mask"],
            content_dict["global_duration_pred"],
            content_dict["local_duration_pred"],
            content_dict["length_aligned_content"],
        )

    def forward(
        self,
        content: list[Any],
        task: list[str],
        waveform: torch.Tensor,
        waveform_lengths: torch.Tensor,
        instruction: torch.Tensor,
        instruction_lengths: Sequence[int],
        loss_reduce: bool = True,
        **kwargs
    ):
        device = self.dummy_param.device
        loss_reduce = self.training or (loss_reduce and not self.training)

        self.autoencoder.eval()
        with torch.no_grad():
            latent, latent_mask = self.autoencoder.encode(
                waveform.unsqueeze(1), waveform_lengths
            )

        content, content_mask, global_duration_pred, _, _ = \
            self.encode_content_with_instruction(
                content, task, device, instruction, instruction_lengths
            )
        global_duration_loss = self.get_global_duration_loss(
            global_duration_pred, latent_mask, reduce=loss_reduce
        )

        if self.training and self.classifier_free_guidance:
            mask_indices = [
                k for k in range(len(waveform))
                if random.random() < self.cfg_drop_ratio
            ]
            if len(mask_indices) > 0:
                content[mask_indices] = 0

        noisy_latent, target, timesteps = self.get_input_target_and_timesteps(
            latent, training=self.training
        )

        pred: torch.Tensor = self.backbone(
            x=noisy_latent,
            timesteps=timesteps,
            context=content,
            x_mask=latent_mask,
            context_mask=content_mask
        )

        pred = pred.transpose(1, self.autoencoder.time_dim)
        target = target.transpose(1, self.autoencoder.time_dim)
        diff_loss = self.loss_with_snr(pred, target, timesteps, latent_mask)

        return {
            "diff_loss": diff_loss,
            "global_duration_loss": global_duration_loss,
        }

    @torch.no_grad()
    def inference(
        self,
        content: list[Any],
        condition: list[Any],
        task: list[str],
        is_time_aligned: Sequence[bool],
        instruction: torch.Tensor,
        instruction_lengths: Sequence[int],
        scheduler: SchedulerMixin,
        num_steps: int = 50,
        guidance_scale: float = 3.0,
        guidance_rescale: float = 0.0,
        disable_progress: bool = True,
        use_gt_duration: bool = False,
        **kwargs
    ):
        device = self.dummy_param.device
        classifier_free_guidance = guidance_scale > 1.0

        (
            content,
            content_mask,
            global_duration_pred,
            local_duration_pred,
            _,
        ) = self.encode_content_with_instruction(
            content, task, device, instruction, instruction_lengths
        )

        if use_gt_duration:
            raise NotImplementedError(
                "Using ground truth global duration only is not implemented yet"
            )

        # prepare global duration
        global_duration = self.prepare_global_duration(
            global_duration_pred,
            local_duration_pred,
            is_time_aligned,
            use_local=False
        )
        latent_length = torch.round(global_duration * self.latent_token_rate)
        latent_mask = create_mask_from_length(latent_length).to(device)
        max_latent_length = latent_mask.sum(1).max().item()

        # prepare latent and noise
        if classifier_free_guidance:
            uncond_content = torch.zeros_like(content)
            uncond_content_mask = content_mask.detach().clone()
            context = torch.cat([uncond_content, content])
            context_mask = torch.cat([uncond_content_mask, content_mask])
        else:
            context = content
            context_mask = content_mask

        batch_size = content.size(0)
        latent_shape = tuple(
            max_latent_length if dim is None else dim
            for dim in self.autoencoder.latent_shape
        )
        latent = self.prepare_latent(
            batch_size, scheduler, latent_shape, content.dtype, device
        )

        scheduler.set_timesteps(num_steps, device=device)
        latent = self.iterative_denoise(
            latent=latent,
            scheduler=scheduler,
            verbose=not disable_progress,
            cfg=classifier_free_guidance,
            cfg_scale=guidance_scale,
            cfg_rescale=guidance_rescale,
            backbone_input={
                "x_mask": latent_mask,
                "context": context,
                "context_mask": context_mask,
            }
        )

        waveform = self.autoencoder.decode(latent)

        return waveform


class DummyContentAudioDiffusion(CrossAttentionAudioDiffusion):
    def __init__(
        self,
        autoencoder: AutoEncoderBase,
        content_encoder: ContentEncoder,
        content_adapter: ContentAdapterBase,
        backbone: nn.Module,
        content_dim: int,
        frame_resolution: float,
        duration_offset: float = 1.0,
        noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
        snr_gamma: float = None,
        cfg_drop_ratio: float = 0.2,
    ):
        """
        Args:
            autoencoder:
                Pretrained audio autoencoder that encodes raw waveforms into latent
                space and decodes latents back to waveforms.
            content_encoder:
                Module that produces content embeddings (e.g., from text, MIDI, or
                other modalities) used to guide the diffusion.
            content_adapter (ContentAdapterBase):
                Adapter module that fuses task instruction embeddings and content embeddings,
                and performs duration prediction for time-aligned tasks.
            backbone:
                U‑Net or Transformer backbone that performs the core denoising
                operations in latent space.
            content_dim:
                Dimension of the content embeddings produced by the `content_encoder` 
                and `content_adapter`.
            frame_resolution:
                Time resolution, in seconds, of each content frame when predicting
                duration alignment. Used when calculating duration loss.
            duration_offset:
                A small positive offset (frame number) added to predicted durations
                to ensure numerical stability of log-scaled duration prediction. 
            noise_scheduler_name:
                Identifier of the pretrained noise scheduler to use. 
            snr_gamma:
                Clipping value in min-SNR diffusion loss weighting strategy.
            cfg_drop_ratio:
                Probability of dropping the content conditioning during training
                to support CFG.
        """
        super().__init__(
            autoencoder=autoencoder,
            content_encoder=content_encoder,
            content_adapter=content_adapter,
            backbone=backbone,
            duration_offset=duration_offset,
            noise_scheduler_name=noise_scheduler_name,
            snr_gamma=snr_gamma,
            cfg_drop_ratio=cfg_drop_ratio,
        )
        self.frame_resolution = frame_resolution
        self.dummy_nta_embed = nn.Parameter(torch.zeros(content_dim))
        self.dummy_ta_embed = nn.Parameter(torch.zeros(content_dim))

    def get_backbone_input(
        self,
        target_length: int,
        content: torch.Tensor,
        content_mask: torch.Tensor,
        time_aligned_content: torch.Tensor,
        length_aligned_content: torch.Tensor,
        is_time_aligned: torch.Tensor,
    ):
        # TODO compatility for 2D spectrogram VAE
        time_aligned_content = trim_or_pad_length(
            time_aligned_content, target_length, 1
        )
        length_aligned_content = trim_or_pad_length(
            length_aligned_content, target_length, 1
        )
        # time_aligned_content: from monotonic aligned input, without frame expansion (phoneme)
        # length_aligned_content: from aligned input (f0/energy)
        time_aligned_content = time_aligned_content + length_aligned_content
        time_aligned_content[~is_time_aligned] = self.dummy_ta_embed.to(
            time_aligned_content.dtype
        )

        context = content
        context[is_time_aligned] = self.dummy_nta_embed.to(context.dtype)
        # only use the first dummy non time aligned embedding
        context_mask = content_mask.detach().clone()
        context_mask[is_time_aligned, 1:] = False

        # truncate dummy non time aligned context
        if is_time_aligned.sum().item() < content.size(0):
            trunc_nta_length = content_mask[~is_time_aligned].sum(1).max()
        else:
            trunc_nta_length = content.size(1)
        context = context[:, :trunc_nta_length]
        context_mask = context_mask[:, :trunc_nta_length]

        return context, context_mask, time_aligned_content

    def forward(
        self,
        content: list[Any],
        task: list[str],
        is_time_aligned: Sequence[bool],
        duration: Sequence[float],
        waveform: torch.Tensor,
        waveform_lengths: torch.Tensor,
        instruction: torch.Tensor,
        instruction_lengths: Sequence[int],
        loss_reduce: bool = True,
        **kwargs
    ):
        device = self.dummy_param.device
        loss_reduce = self.training or (loss_reduce and not self.training)

        self.autoencoder.eval()
        with torch.no_grad():
            latent, latent_mask = self.autoencoder.encode(
                waveform.unsqueeze(1), waveform_lengths
            )

        (
            content, content_mask, global_duration_pred, local_duration_pred,
            length_aligned_content
        ) = self.encode_content_with_instruction(
            content, task, device, instruction, instruction_lengths
        )

        # truncate unused non time aligned duration prediction
        if is_time_aligned.sum() > 0:
            trunc_ta_length = content_mask[is_time_aligned].sum(1).max()
        else:
            trunc_ta_length = content.size(1)

        # duration loss
        local_duration_pred = local_duration_pred[:, :trunc_ta_length]
        ta_content_mask = content_mask[:, :trunc_ta_length]
        local_duration_loss = self.get_local_duration_loss(
            duration,
            local_duration_pred,
            ta_content_mask,
            is_time_aligned,
            reduce=loss_reduce
        )
        global_duration_loss = self.get_global_duration_loss(
            global_duration_pred, latent_mask, reduce=loss_reduce
        )

        # --------------------------------------------------------------------
        # prepare latent and diffusion-related noise
        # --------------------------------------------------------------------
        noisy_latent, target, timesteps = self.get_input_target_and_timesteps(
            latent, training=self.training
        )

        # --------------------------------------------------------------------
        # duration adapter
        # --------------------------------------------------------------------
        if is_time_aligned.sum() == 0 and \
            duration.size(1) < content_mask.size(1):
            # for non time-aligned tasks like TTA, `duration` is dummy one
            duration = F.pad(
                duration, (0, content_mask.size(1) - duration.size(1))
            )
        time_aligned_content, _ = self.expand_by_duration(
            x=content[:, :trunc_ta_length],
            content_mask=ta_content_mask,
            local_duration=duration,
        )

        # --------------------------------------------------------------------
        # prepare input to the backbone
        # --------------------------------------------------------------------
        # TODO compatility for 2D spectrogram VAE
        latent_length = noisy_latent.size(self.autoencoder.time_dim)
        context, context_mask, time_aligned_content = self.get_backbone_input(
            latent_length, content, content_mask, time_aligned_content,
            length_aligned_content, is_time_aligned
        )

        # --------------------------------------------------------------------
        # classifier free guidance
        # --------------------------------------------------------------------
        if self.training and self.classifier_free_guidance:
            mask_indices = [
                k for k in range(len(waveform))
                if random.random() < self.cfg_drop_ratio
            ]
            if len(mask_indices) > 0:
                context[mask_indices] = 0
                time_aligned_content[mask_indices] = 0

        pred: torch.Tensor = self.backbone(
            x=noisy_latent,
            x_mask=latent_mask,
            timesteps=timesteps,
            context=context,
            context_mask=context_mask,
            time_aligned_context=time_aligned_content,
        )
        pred = pred.transpose(1, self.autoencoder.time_dim)
        target = target.transpose(1, self.autoencoder.time_dim)
        diff_loss = self.loss_with_snr(
            pred, target, timesteps, latent_mask, reduce=loss_reduce
        )
        return {
            "diff_loss": diff_loss,
            "local_duration_loss": local_duration_loss,
            "global_duration_loss": global_duration_loss
        }

    @torch.no_grad()
    def inference(
        self,
        content: list[Any],
        condition: list[Any],
        task: list[str],
        is_time_aligned: list[bool],
        instruction: torch.Tensor,
        instruction_lengths: Sequence[int],
        scheduler: SchedulerMixin,
        num_steps: int = 20,
        guidance_scale: float = 3.0,
        guidance_rescale: float = 0.0,
        disable_progress: bool = True,
        use_gt_duration: bool = False,
        **kwargs
    ):
        device = self.dummy_param.device
        classifier_free_guidance = guidance_scale > 1.0

        (
            content, content_mask, global_duration_pred, local_duration_pred,
            length_aligned_content
        ) = self.encode_content_with_instruction(
            content, task, device, instruction, instruction_lengths
        )

        batch_size = content.size(0)

        # truncate dummy time aligned duration prediction
        is_time_aligned = torch.as_tensor(is_time_aligned)
        if is_time_aligned.sum() > 0:
            trunc_ta_length = content_mask[is_time_aligned].sum(1).max()
        else:
            trunc_ta_length = content.size(1)

        # prepare local duration
        local_duration = self.prepare_local_duration(
            local_duration_pred, content_mask
        )
        local_duration = local_duration[:, :trunc_ta_length]
        # use ground truth duration
        if use_gt_duration and "duration" in kwargs:
            local_duration = torch.as_tensor(kwargs["duration"]).to(device)

        # prepare global duration
        global_duration = self.prepare_global_duration(
            global_duration_pred, local_duration, is_time_aligned
        )

        # --------------------------------------------------------------------
        # duration adapter
        # --------------------------------------------------------------------
        time_aligned_content, latent_mask = self.expand_by_duration(
            x=content[:, :trunc_ta_length],
            content_mask=content_mask[:, :trunc_ta_length],
            local_duration=local_duration,
            global_duration=global_duration,
        )

        context, context_mask, time_aligned_content = self.get_backbone_input(
            target_length=time_aligned_content.size(1),
            content=content,
            content_mask=content_mask,
            time_aligned_content=time_aligned_content,
            length_aligned_content=length_aligned_content,
            is_time_aligned=is_time_aligned
        )

        # --------------------------------------------------------------------
        # prepare unconditional input
        # --------------------------------------------------------------------
        if classifier_free_guidance:
            uncond_time_aligned_content = torch.zeros_like(
                time_aligned_content
            )
            uncond_context = torch.zeros_like(context)
            uncond_context_mask = context_mask.detach().clone()
            time_aligned_content = torch.cat([
                uncond_time_aligned_content, time_aligned_content
            ])
            context = torch.cat([uncond_context, context])
            context_mask = torch.cat([uncond_context_mask, context_mask])
            latent_mask = torch.cat([
                latent_mask, latent_mask.detach().clone()
            ])

        # --------------------------------------------------------------------
        # prepare input to the backbone
        # --------------------------------------------------------------------
        latent_length = latent_mask.sum(1).max().item()
        latent_shape = tuple(
            latent_length if dim is None else dim
            for dim in self.autoencoder.latent_shape
        )
        latent = self.prepare_latent(
            batch_size, scheduler, latent_shape, content.dtype, device
        )

        scheduler.set_timesteps(num_steps, device=device)
        latent = self.iterative_denoise(
            latent=latent,
            scheduler=scheduler,
            verbose=not disable_progress,
            cfg=classifier_free_guidance,
            cfg_scale=guidance_scale,
            cfg_rescale=guidance_rescale,
            backbone_input={
                "x_mask": latent_mask,
                "context": context,
                "context_mask": context_mask,
                "time_aligned_context": time_aligned_content,
            }
        )
        # TODO variable length decoding, using `latent_mask`
        waveform = self.autoencoder.decode(latent)
        return waveform


class DoubleContentAudioDiffusion(DummyContentAudioDiffusion):
    def get_backbone_input(
        self,
        target_length: int,
        content: torch.Tensor,
        content_mask: torch.Tensor,
        time_aligned_content: torch.Tensor,
        length_aligned_content: torch.Tensor,
        is_time_aligned: torch.Tensor,
    ):
        time_aligned_content = trim_or_pad_length(
            time_aligned_content, target_length, 1
        )
        context_length = min(content.size(1), time_aligned_content.size(1))
        time_aligned_content[~is_time_aligned, :context_length] = content[
            ~is_time_aligned, :context_length]
        length_aligned_content = trim_or_pad_length(
            length_aligned_content, target_length, 1
        )
        time_aligned_content = time_aligned_content + length_aligned_content

        context = content
        context_mask = content_mask.detach().clone()

        return context, context_mask, time_aligned_content


class HybridContentAudioDiffusion(DummyContentAudioDiffusion):
    def get_backbone_input(
        self,
        target_length: int,
        content: torch.Tensor,
        content_mask: torch.Tensor,
        time_aligned_content: torch.Tensor,
        length_aligned_content: torch.Tensor,
        is_time_aligned: torch.Tensor,
    ):
        # TODO compatility for 2D spectrogram VAE
        time_aligned_content = trim_or_pad_length(
            time_aligned_content, target_length, 1
        )
        length_aligned_content = trim_or_pad_length(
            length_aligned_content, target_length, 1
        )
        # time_aligned_content: from monotonic aligned input, without frame expansion (phoneme)
        # length_aligned_content: from aligned input (f0/energy)
        time_aligned_content = time_aligned_content + length_aligned_content
        time_aligned_content[~is_time_aligned] = self.dummy_ta_embed.to(
            time_aligned_content.dtype
        )

        context = content
        context_mask = content_mask.detach().clone()

        return context, context_mask, time_aligned_content