Spaces:
Running
on
Zero
Running
on
Zero
File size: 35,122 Bytes
b4bbb92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 |
from typing import Sequence
import random
from typing import Any
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import diffusers.schedulers as noise_schedulers
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils.torch_utils import randn_tensor
from models.autoencoder.autoencoder_base import AutoEncoderBase
from models.content_encoder.content_encoder import ContentEncoder
from models.content_adapter import ContentAdapterBase, ContentEncoderAdapterMixin
from models.common import (
LoadPretrainedBase, CountParamsBase, SaveTrainableParamsBase,
DurationAdapterMixin
)
from utils.torch_utilities import (
create_alignment_path, create_mask_from_length, loss_with_mask,
trim_or_pad_length
)
class DiffusionMixin:
def __init__(
self,
noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
snr_gamma: float = None,
cfg_drop_ratio: float = 0.2
) -> None:
self.noise_scheduler_name = noise_scheduler_name
self.snr_gamma = snr_gamma
self.classifier_free_guidance = cfg_drop_ratio > 0.0
self.cfg_drop_ratio = cfg_drop_ratio
self.noise_scheduler = noise_schedulers.DDPMScheduler.from_pretrained(
self.noise_scheduler_name, subfolder="scheduler"
)
def compute_snr(self, timesteps) -> torch.Tensor:
"""
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = self.noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod)**0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device
)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(
device=timesteps.device
)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[...,
None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma)**2
return snr
def get_timesteps(
self,
batch_size: int,
device: torch.device,
training: bool = True
) -> torch.Tensor:
if training:
timesteps = torch.randint(
0,
self.noise_scheduler.config.num_train_timesteps,
(batch_size, ),
device=device
)
else:
# validation on half of the total timesteps
timesteps = (self.noise_scheduler.config.num_train_timesteps //
2) * torch.ones((batch_size, ),
dtype=torch.int64,
device=device)
timesteps = timesteps.long()
return timesteps
def get_input_target_and_timesteps(
self,
latent: torch.Tensor,
training: bool,
):
batch_size = latent.shape[0]
device = latent.device
num_train_timesteps = self.noise_scheduler.config.num_train_timesteps
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
timesteps = self.get_timesteps(batch_size, device, training=training)
noise = torch.randn_like(latent)
noisy_latent = self.noise_scheduler.add_noise(latent, noise, timesteps)
target = self.get_target(latent, noise, timesteps)
return noisy_latent, target, timesteps
def get_target(
self, latent: torch.Tensor, noise: torch.Tensor,
timesteps: torch.Tensor
) -> torch.Tensor:
"""
Get the target for loss depending on the prediction type
"""
if self.noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif self.noise_scheduler.config.prediction_type == "v_prediction":
target = self.noise_scheduler.get_velocity(
latent, noise, timesteps
)
else:
raise ValueError(
f"Unknown prediction type {self.noise_scheduler.config.prediction_type}"
)
return target
def loss_with_snr(
self,
pred: torch.Tensor,
target: torch.Tensor,
timesteps: torch.Tensor,
mask: torch.Tensor,
reduce: bool = True
) -> torch.Tensor:
if self.snr_gamma is None:
loss = F.mse_loss(pred.float(), target.float(), reduction="none")
loss = loss_with_mask(loss, mask, reduce=reduce)
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Adapted from https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py#L1006
snr = self.compute_snr(timesteps)
mse_loss_weights = torch.stack(
[
snr,
self.snr_gamma * torch.ones_like(timesteps),
],
dim=1,
).min(dim=1)[0]
# division by (snr + 1) does not work well, not clear about the reason
mse_loss_weights = mse_loss_weights / snr
loss = F.mse_loss(pred.float(), target.float(), reduction="none")
loss = loss_with_mask(loss, mask, reduce=False) * mse_loss_weights
if reduce:
loss = loss.mean()
return loss
def rescale_cfg(
self, pred_cond: torch.Tensor, pred_cfg: torch.Tensor,
guidance_rescale: float
):
"""
Rescale `pred_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_cond = pred_cond.std(
dim=list(range(1, pred_cond.ndim)), keepdim=True
)
std_cfg = pred_cfg.std(dim=list(range(1, pred_cfg.ndim)), keepdim=True)
pred_rescaled = pred_cfg * (std_cond / std_cfg)
pred_cfg = guidance_rescale * pred_rescaled + (
1 - guidance_rescale
) * pred_cfg
return pred_cfg
class SingleTaskCrossAttentionAudioDiffusion(
LoadPretrainedBase, CountParamsBase, SaveTrainableParamsBase,
DiffusionMixin, ContentEncoderAdapterMixin
):
def __init__(
self,
autoencoder: AutoEncoderBase,
content_encoder: ContentEncoder,
backbone: nn.Module,
noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
snr_gamma: float = None,
cfg_drop_ratio: float = 0.2,
):
nn.Module.__init__(self)
DiffusionMixin.__init__(
self, noise_scheduler_name, snr_gamma, cfg_drop_ratio
)
ContentEncoderAdapterMixin.__init__(
self, content_encoder=content_encoder
)
self.autoencoder = autoencoder
for param in self.autoencoder.parameters():
param.requires_grad = False
if hasattr(self.content_encoder, "audio_encoder"):
self.content_encoder.audio_encoder.model = self.autoencoder
self.backbone = backbone
self.dummy_param = nn.Parameter(torch.empty(0))
def forward(
self, content: list[Any], condition: list[Any], task: list[str],
waveform: torch.Tensor, waveform_lengths: torch.Tensor, **kwargs
):
device = self.dummy_param.device
self.autoencoder.eval()
with torch.no_grad():
latent, latent_mask = self.autoencoder.encode(
waveform.unsqueeze(1), waveform_lengths
)
content_dict = self.encode_content(content, task, device)
content, content_mask = content_dict["content"], content_dict[
"content_mask"]
if self.training and self.classifier_free_guidance:
mask_indices = [
k for k in range(len(waveform))
if random.random() < self.cfg_drop_ratio
]
if len(mask_indices) > 0:
content[mask_indices] = 0
noisy_latent, target, timesteps = self.get_input_target_and_timesteps(
latent, self.training
)
pred: torch.Tensor = self.backbone(
x=noisy_latent,
timesteps=timesteps,
context=content,
x_mask=latent_mask,
context_mask=content_mask
)
pred = pred.transpose(1, self.autoencoder.time_dim)
target = target.transpose(1, self.autoencoder.time_dim)
loss = self.loss_with_snr(pred, target, timesteps, latent_mask)
return loss
def prepare_latent(
self, batch_size: int, scheduler: SchedulerMixin,
latent_shape: Sequence[int], dtype: torch.dtype, device: str
):
shape = (batch_size, *latent_shape)
latent = randn_tensor(
shape, generator=None, device=device, dtype=dtype
)
# scale the initial noise by the standard deviation required by the scheduler
latent = latent * scheduler.init_noise_sigma
return latent
def iterative_denoise(
self,
latent: torch.Tensor,
scheduler: SchedulerMixin,
verbose: bool,
cfg: bool,
cfg_scale: float,
cfg_rescale: float,
backbone_input: dict,
):
timesteps = scheduler.timesteps
num_steps = len(timesteps)
num_warmup_steps = len(timesteps) - num_steps * scheduler.order
progress_bar = tqdm(range(num_steps), disable=not verbose)
for i, timestep in enumerate(timesteps):
# expand the latent if we are doing classifier free guidance
if cfg:
latent_input = torch.cat([latent, latent])
else:
latent_input = latent
latent_input = scheduler.scale_model_input(latent_input, timestep)
noise_pred = self.backbone(
x=latent_input, timesteps=timestep, **backbone_input
)
# perform guidance
if cfg:
noise_pred_uncond, noise_pred_content = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + cfg_scale * (
noise_pred_content - noise_pred_uncond
)
if cfg_rescale != 0.0:
noise_pred = self.rescale_cfg(
noise_pred_content, noise_pred, cfg_rescale
)
# compute the previous noisy sample x_t -> x_t-1
latent = scheduler.step(noise_pred, timestep, latent).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and
(i + 1) % scheduler.order == 0):
progress_bar.update(1)
progress_bar.close()
return latent
@torch.no_grad()
def inference(
self,
content: list[Any],
condition: list[Any],
task: list[str],
latent_shape: Sequence[int],
scheduler: SchedulerMixin,
num_steps: int = 50,
guidance_scale: float = 3.0,
guidance_rescale: float = 0.0,
disable_progress: bool = True,
**kwargs
):
device = self.dummy_param.device
classifier_free_guidance = guidance_scale > 1.0
batch_size = len(content)
content_output: dict[str, torch.Tensor] = self.encode_content(
content, task, device
)
content, content_mask = content_output["content"], content_output[
"content_mask"]
if classifier_free_guidance:
uncond_content = torch.zeros_like(content)
uncond_content_mask = content_mask.detach().clone()
content = torch.cat([uncond_content, content])
content_mask = torch.cat([uncond_content_mask, content_mask])
scheduler.set_timesteps(num_steps, device=device)
latent = self.prepare_latent(
batch_size, scheduler, latent_shape, content.dtype, device
)
latent = self.iterative_denoise(
latent=latent,
scheduler=scheduler,
verbose=not disable_progress,
cfg=classifier_free_guidance,
cfg_scale=guidance_scale,
cfg_rescale=guidance_rescale,
backbone_input={
"context": content,
"context_mask": content_mask
},
)
waveform = self.autoencoder.decode(latent)
return waveform
class CrossAttentionAudioDiffusion(
SingleTaskCrossAttentionAudioDiffusion, DurationAdapterMixin
):
def __init__(
self,
autoencoder: AutoEncoderBase,
content_encoder: ContentEncoder,
content_adapter: ContentAdapterBase,
backbone: nn.Module,
content_dim: int = None,
frame_resolution: float = None,
duration_offset: float = 1.0,
noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
snr_gamma: float = None,
cfg_drop_ratio: float = 0.2,
):
super().__init__(
autoencoder=autoencoder,
content_encoder=content_encoder,
backbone=backbone,
noise_scheduler_name=noise_scheduler_name,
snr_gamma=snr_gamma,
cfg_drop_ratio=cfg_drop_ratio
)
ContentEncoderAdapterMixin.__init__(
self,
content_encoder=content_encoder,
content_adapter=content_adapter,
)
DurationAdapterMixin.__init__(
self,
latent_token_rate=autoencoder.latent_token_rate,
offset=duration_offset,
)
def encode_content_with_instruction(
self,
content: list[Any],
task: list[str],
device: str | torch.device,
instruction: torch.Tensor,
instruction_lengths: torch.Tensor,
):
content_dict = self.encode_content(
content, task, device, instruction, instruction_lengths
)
return (
content_dict["content"],
content_dict["content_mask"],
content_dict["global_duration_pred"],
content_dict["local_duration_pred"],
content_dict["length_aligned_content"],
)
def forward(
self,
content: list[Any],
task: list[str],
waveform: torch.Tensor,
waveform_lengths: torch.Tensor,
instruction: torch.Tensor,
instruction_lengths: Sequence[int],
loss_reduce: bool = True,
**kwargs
):
device = self.dummy_param.device
loss_reduce = self.training or (loss_reduce and not self.training)
self.autoencoder.eval()
with torch.no_grad():
latent, latent_mask = self.autoencoder.encode(
waveform.unsqueeze(1), waveform_lengths
)
content, content_mask, global_duration_pred, _, _ = \
self.encode_content_with_instruction(
content, task, device, instruction, instruction_lengths
)
global_duration_loss = self.get_global_duration_loss(
global_duration_pred, latent_mask, reduce=loss_reduce
)
if self.training and self.classifier_free_guidance:
mask_indices = [
k for k in range(len(waveform))
if random.random() < self.cfg_drop_ratio
]
if len(mask_indices) > 0:
content[mask_indices] = 0
noisy_latent, target, timesteps = self.get_input_target_and_timesteps(
latent, training=self.training
)
pred: torch.Tensor = self.backbone(
x=noisy_latent,
timesteps=timesteps,
context=content,
x_mask=latent_mask,
context_mask=content_mask
)
pred = pred.transpose(1, self.autoencoder.time_dim)
target = target.transpose(1, self.autoencoder.time_dim)
diff_loss = self.loss_with_snr(pred, target, timesteps, latent_mask)
return {
"diff_loss": diff_loss,
"global_duration_loss": global_duration_loss,
}
@torch.no_grad()
def inference(
self,
content: list[Any],
condition: list[Any],
task: list[str],
is_time_aligned: Sequence[bool],
instruction: torch.Tensor,
instruction_lengths: Sequence[int],
scheduler: SchedulerMixin,
num_steps: int = 50,
guidance_scale: float = 3.0,
guidance_rescale: float = 0.0,
disable_progress: bool = True,
use_gt_duration: bool = False,
**kwargs
):
device = self.dummy_param.device
classifier_free_guidance = guidance_scale > 1.0
(
content,
content_mask,
global_duration_pred,
local_duration_pred,
_,
) = self.encode_content_with_instruction(
content, task, device, instruction, instruction_lengths
)
if use_gt_duration:
raise NotImplementedError(
"Using ground truth global duration only is not implemented yet"
)
# prepare global duration
global_duration = self.prepare_global_duration(
global_duration_pred,
local_duration_pred,
is_time_aligned,
use_local=False
)
latent_length = torch.round(global_duration * self.latent_token_rate)
latent_mask = create_mask_from_length(latent_length).to(device)
max_latent_length = latent_mask.sum(1).max().item()
# prepare latent and noise
if classifier_free_guidance:
uncond_content = torch.zeros_like(content)
uncond_content_mask = content_mask.detach().clone()
context = torch.cat([uncond_content, content])
context_mask = torch.cat([uncond_content_mask, content_mask])
else:
context = content
context_mask = content_mask
batch_size = content.size(0)
latent_shape = tuple(
max_latent_length if dim is None else dim
for dim in self.autoencoder.latent_shape
)
latent = self.prepare_latent(
batch_size, scheduler, latent_shape, content.dtype, device
)
scheduler.set_timesteps(num_steps, device=device)
latent = self.iterative_denoise(
latent=latent,
scheduler=scheduler,
verbose=not disable_progress,
cfg=classifier_free_guidance,
cfg_scale=guidance_scale,
cfg_rescale=guidance_rescale,
backbone_input={
"x_mask": latent_mask,
"context": context,
"context_mask": context_mask,
}
)
waveform = self.autoencoder.decode(latent)
return waveform
class DummyContentAudioDiffusion(CrossAttentionAudioDiffusion):
def __init__(
self,
autoencoder: AutoEncoderBase,
content_encoder: ContentEncoder,
content_adapter: ContentAdapterBase,
backbone: nn.Module,
content_dim: int,
frame_resolution: float,
duration_offset: float = 1.0,
noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
snr_gamma: float = None,
cfg_drop_ratio: float = 0.2,
):
"""
Args:
autoencoder:
Pretrained audio autoencoder that encodes raw waveforms into latent
space and decodes latents back to waveforms.
content_encoder:
Module that produces content embeddings (e.g., from text, MIDI, or
other modalities) used to guide the diffusion.
content_adapter (ContentAdapterBase):
Adapter module that fuses task instruction embeddings and content embeddings,
and performs duration prediction for time-aligned tasks.
backbone:
U‑Net or Transformer backbone that performs the core denoising
operations in latent space.
content_dim:
Dimension of the content embeddings produced by the `content_encoder`
and `content_adapter`.
frame_resolution:
Time resolution, in seconds, of each content frame when predicting
duration alignment. Used when calculating duration loss.
duration_offset:
A small positive offset (frame number) added to predicted durations
to ensure numerical stability of log-scaled duration prediction.
noise_scheduler_name:
Identifier of the pretrained noise scheduler to use.
snr_gamma:
Clipping value in min-SNR diffusion loss weighting strategy.
cfg_drop_ratio:
Probability of dropping the content conditioning during training
to support CFG.
"""
super().__init__(
autoencoder=autoencoder,
content_encoder=content_encoder,
content_adapter=content_adapter,
backbone=backbone,
duration_offset=duration_offset,
noise_scheduler_name=noise_scheduler_name,
snr_gamma=snr_gamma,
cfg_drop_ratio=cfg_drop_ratio,
)
self.frame_resolution = frame_resolution
self.dummy_nta_embed = nn.Parameter(torch.zeros(content_dim))
self.dummy_ta_embed = nn.Parameter(torch.zeros(content_dim))
def get_backbone_input(
self,
target_length: int,
content: torch.Tensor,
content_mask: torch.Tensor,
time_aligned_content: torch.Tensor,
length_aligned_content: torch.Tensor,
is_time_aligned: torch.Tensor,
):
# TODO compatility for 2D spectrogram VAE
time_aligned_content = trim_or_pad_length(
time_aligned_content, target_length, 1
)
length_aligned_content = trim_or_pad_length(
length_aligned_content, target_length, 1
)
# time_aligned_content: from monotonic aligned input, without frame expansion (phoneme)
# length_aligned_content: from aligned input (f0/energy)
time_aligned_content = time_aligned_content + length_aligned_content
time_aligned_content[~is_time_aligned] = self.dummy_ta_embed.to(
time_aligned_content.dtype
)
context = content
context[is_time_aligned] = self.dummy_nta_embed.to(context.dtype)
# only use the first dummy non time aligned embedding
context_mask = content_mask.detach().clone()
context_mask[is_time_aligned, 1:] = False
# truncate dummy non time aligned context
if is_time_aligned.sum().item() < content.size(0):
trunc_nta_length = content_mask[~is_time_aligned].sum(1).max()
else:
trunc_nta_length = content.size(1)
context = context[:, :trunc_nta_length]
context_mask = context_mask[:, :trunc_nta_length]
return context, context_mask, time_aligned_content
def forward(
self,
content: list[Any],
task: list[str],
is_time_aligned: Sequence[bool],
duration: Sequence[float],
waveform: torch.Tensor,
waveform_lengths: torch.Tensor,
instruction: torch.Tensor,
instruction_lengths: Sequence[int],
loss_reduce: bool = True,
**kwargs
):
device = self.dummy_param.device
loss_reduce = self.training or (loss_reduce and not self.training)
self.autoencoder.eval()
with torch.no_grad():
latent, latent_mask = self.autoencoder.encode(
waveform.unsqueeze(1), waveform_lengths
)
(
content, content_mask, global_duration_pred, local_duration_pred,
length_aligned_content
) = self.encode_content_with_instruction(
content, task, device, instruction, instruction_lengths
)
# truncate unused non time aligned duration prediction
if is_time_aligned.sum() > 0:
trunc_ta_length = content_mask[is_time_aligned].sum(1).max()
else:
trunc_ta_length = content.size(1)
# duration loss
local_duration_pred = local_duration_pred[:, :trunc_ta_length]
ta_content_mask = content_mask[:, :trunc_ta_length]
local_duration_loss = self.get_local_duration_loss(
duration,
local_duration_pred,
ta_content_mask,
is_time_aligned,
reduce=loss_reduce
)
global_duration_loss = self.get_global_duration_loss(
global_duration_pred, latent_mask, reduce=loss_reduce
)
# --------------------------------------------------------------------
# prepare latent and diffusion-related noise
# --------------------------------------------------------------------
noisy_latent, target, timesteps = self.get_input_target_and_timesteps(
latent, training=self.training
)
# --------------------------------------------------------------------
# duration adapter
# --------------------------------------------------------------------
if is_time_aligned.sum() == 0 and \
duration.size(1) < content_mask.size(1):
# for non time-aligned tasks like TTA, `duration` is dummy one
duration = F.pad(
duration, (0, content_mask.size(1) - duration.size(1))
)
time_aligned_content, _ = self.expand_by_duration(
x=content[:, :trunc_ta_length],
content_mask=ta_content_mask,
local_duration=duration,
)
# --------------------------------------------------------------------
# prepare input to the backbone
# --------------------------------------------------------------------
# TODO compatility for 2D spectrogram VAE
latent_length = noisy_latent.size(self.autoencoder.time_dim)
context, context_mask, time_aligned_content = self.get_backbone_input(
latent_length, content, content_mask, time_aligned_content,
length_aligned_content, is_time_aligned
)
# --------------------------------------------------------------------
# classifier free guidance
# --------------------------------------------------------------------
if self.training and self.classifier_free_guidance:
mask_indices = [
k for k in range(len(waveform))
if random.random() < self.cfg_drop_ratio
]
if len(mask_indices) > 0:
context[mask_indices] = 0
time_aligned_content[mask_indices] = 0
pred: torch.Tensor = self.backbone(
x=noisy_latent,
x_mask=latent_mask,
timesteps=timesteps,
context=context,
context_mask=context_mask,
time_aligned_context=time_aligned_content,
)
pred = pred.transpose(1, self.autoencoder.time_dim)
target = target.transpose(1, self.autoencoder.time_dim)
diff_loss = self.loss_with_snr(
pred, target, timesteps, latent_mask, reduce=loss_reduce
)
return {
"diff_loss": diff_loss,
"local_duration_loss": local_duration_loss,
"global_duration_loss": global_duration_loss
}
@torch.no_grad()
def inference(
self,
content: list[Any],
condition: list[Any],
task: list[str],
is_time_aligned: list[bool],
instruction: torch.Tensor,
instruction_lengths: Sequence[int],
scheduler: SchedulerMixin,
num_steps: int = 20,
guidance_scale: float = 3.0,
guidance_rescale: float = 0.0,
disable_progress: bool = True,
use_gt_duration: bool = False,
**kwargs
):
device = self.dummy_param.device
classifier_free_guidance = guidance_scale > 1.0
(
content, content_mask, global_duration_pred, local_duration_pred,
length_aligned_content
) = self.encode_content_with_instruction(
content, task, device, instruction, instruction_lengths
)
batch_size = content.size(0)
# truncate dummy time aligned duration prediction
is_time_aligned = torch.as_tensor(is_time_aligned)
if is_time_aligned.sum() > 0:
trunc_ta_length = content_mask[is_time_aligned].sum(1).max()
else:
trunc_ta_length = content.size(1)
# prepare local duration
local_duration = self.prepare_local_duration(
local_duration_pred, content_mask
)
local_duration = local_duration[:, :trunc_ta_length]
# use ground truth duration
if use_gt_duration and "duration" in kwargs:
local_duration = torch.as_tensor(kwargs["duration"]).to(device)
# prepare global duration
global_duration = self.prepare_global_duration(
global_duration_pred, local_duration, is_time_aligned
)
# --------------------------------------------------------------------
# duration adapter
# --------------------------------------------------------------------
time_aligned_content, latent_mask = self.expand_by_duration(
x=content[:, :trunc_ta_length],
content_mask=content_mask[:, :trunc_ta_length],
local_duration=local_duration,
global_duration=global_duration,
)
context, context_mask, time_aligned_content = self.get_backbone_input(
target_length=time_aligned_content.size(1),
content=content,
content_mask=content_mask,
time_aligned_content=time_aligned_content,
length_aligned_content=length_aligned_content,
is_time_aligned=is_time_aligned
)
# --------------------------------------------------------------------
# prepare unconditional input
# --------------------------------------------------------------------
if classifier_free_guidance:
uncond_time_aligned_content = torch.zeros_like(
time_aligned_content
)
uncond_context = torch.zeros_like(context)
uncond_context_mask = context_mask.detach().clone()
time_aligned_content = torch.cat([
uncond_time_aligned_content, time_aligned_content
])
context = torch.cat([uncond_context, context])
context_mask = torch.cat([uncond_context_mask, context_mask])
latent_mask = torch.cat([
latent_mask, latent_mask.detach().clone()
])
# --------------------------------------------------------------------
# prepare input to the backbone
# --------------------------------------------------------------------
latent_length = latent_mask.sum(1).max().item()
latent_shape = tuple(
latent_length if dim is None else dim
for dim in self.autoencoder.latent_shape
)
latent = self.prepare_latent(
batch_size, scheduler, latent_shape, content.dtype, device
)
scheduler.set_timesteps(num_steps, device=device)
latent = self.iterative_denoise(
latent=latent,
scheduler=scheduler,
verbose=not disable_progress,
cfg=classifier_free_guidance,
cfg_scale=guidance_scale,
cfg_rescale=guidance_rescale,
backbone_input={
"x_mask": latent_mask,
"context": context,
"context_mask": context_mask,
"time_aligned_context": time_aligned_content,
}
)
# TODO variable length decoding, using `latent_mask`
waveform = self.autoencoder.decode(latent)
return waveform
class DoubleContentAudioDiffusion(DummyContentAudioDiffusion):
def get_backbone_input(
self,
target_length: int,
content: torch.Tensor,
content_mask: torch.Tensor,
time_aligned_content: torch.Tensor,
length_aligned_content: torch.Tensor,
is_time_aligned: torch.Tensor,
):
time_aligned_content = trim_or_pad_length(
time_aligned_content, target_length, 1
)
context_length = min(content.size(1), time_aligned_content.size(1))
time_aligned_content[~is_time_aligned, :context_length] = content[
~is_time_aligned, :context_length]
length_aligned_content = trim_or_pad_length(
length_aligned_content, target_length, 1
)
time_aligned_content = time_aligned_content + length_aligned_content
context = content
context_mask = content_mask.detach().clone()
return context, context_mask, time_aligned_content
class HybridContentAudioDiffusion(DummyContentAudioDiffusion):
def get_backbone_input(
self,
target_length: int,
content: torch.Tensor,
content_mask: torch.Tensor,
time_aligned_content: torch.Tensor,
length_aligned_content: torch.Tensor,
is_time_aligned: torch.Tensor,
):
# TODO compatility for 2D spectrogram VAE
time_aligned_content = trim_or_pad_length(
time_aligned_content, target_length, 1
)
length_aligned_content = trim_or_pad_length(
length_aligned_content, target_length, 1
)
# time_aligned_content: from monotonic aligned input, without frame expansion (phoneme)
# length_aligned_content: from aligned input (f0/energy)
time_aligned_content = time_aligned_content + length_aligned_content
time_aligned_content[~is_time_aligned] = self.dummy_ta_embed.to(
time_aligned_content.dtype
)
context = content
context_mask = content_mask.detach().clone()
return context, context_mask, time_aligned_content
|