FirstLLM / app.py
zabih1's picture
Upload 2 files
92dbf28 verified
import os
from typing import List
from langchain_chroma import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_groq import ChatGroq
from langchain_community.document_loaders import PyPDFLoader
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.prompts import PromptTemplate
from langchain import hub
import chainlit as cl
from io import BytesIO
##################################### Load the embeddings and model #####################################
groq_api_key = os.getenv("GROQ_API_KEY")
embeddings_api_key = os.getenv('GOOGLE_API_KEY')
embedding_model = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
llm = ChatGroq(model="mixtral-8x7b-32768", temperature=0)
##################################### on_chat_start event handler #######################################
@cl.on_chat_start
async def on_chat_start():
files = None
while files is None:
files = await cl.AskFileMessage(
content="Please upload a text file to begin",
accept=["application/pdf"],
max_size_mb=20,
timeout=300
).send()
file = files[0]
msg = cl.Message(content=f"Processing `{file.name}` ...")
await msg.send()
##################################### Load the text from the file ####################################
pdf_loader = PyPDFLoader(file.path).load()
##################################### Split the text into chunks #####################################
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
chunks = text_splitter.split_documents(pdf_loader)
##################################### Chroma DB setup ################################################
docsearch = await cl.make_async(Chroma.from_documents)(
chunks, embedding_model
)
message_history = ChatMessageHistory()
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
chat_memory=message_history,
return_messages=True
)
##################################### Chain setup ###################################################
# Define your custom prompt template
custom_prompt_template = """
Based on the provided context please answer . if you don't know the answer. just say i don't know.
{context}
Question: {question}
"""
custom_prompt = PromptTemplate(
template=custom_prompt_template,
input_variables=["context", "question"],)
chain = ConversationalRetrievalChain.from_llm(
llm,
chain_type="stuff",
retriever=docsearch.as_retriever(),
memory=memory,
return_source_documents=True,
combine_docs_chain_kwargs={"prompt": custom_prompt}
)
msg.content = f"Processing `{file.name}` ... Done!✅ You can ask questions now!"
await msg.update()
cl.user_session.set("chain", chain)
##################################### On message event handler ###########################################
@cl.on_message
async def main(message: cl.Message):
chain = cl.user_session.get("chain")
cb = cl.AsyncLangchainCallbackHandler()
res = await chain.acall(message.content, callbacks=[cb])
answer = res['answer']
source_documents = res["source_documents"] # type: List[Document]
text_elements = [] # type: List[cl.Text]
if source_documents:
for source_idx, source_doc in enumerate(source_documents):
source_name = f"source_{source_idx}"
# Create the text element referenced in the message
text_elements.append(
cl.Text(content=source_doc.page_content, name=source_name, display="side")
)
source_names = [text_el.name for text_el in text_elements]
if source_names:
answer += f"\nSources: {', '.join(source_names)}"
else:
answer += "\nNo sources found"
await cl.Message(content=answer, elements=text_elements).send()