|
|
import os
|
|
|
from typing import List
|
|
|
|
|
|
from langchain_chroma import Chroma
|
|
|
from langchain.chains import ConversationalRetrievalChain
|
|
|
from langchain_groq import ChatGroq
|
|
|
|
|
|
from langchain_community.document_loaders import PyPDFLoader
|
|
|
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
|
|
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
|
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
|
from langchain_core.prompts import PromptTemplate
|
|
|
from langchain import hub
|
|
|
|
|
|
import chainlit as cl
|
|
|
from io import BytesIO
|
|
|
|
|
|
|
|
|
|
|
|
groq_api_key = os.getenv("GROQ_API_KEY")
|
|
|
embeddings_api_key = os.getenv('GOOGLE_API_KEY')
|
|
|
|
|
|
embedding_model = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
|
|
llm = ChatGroq(model="mixtral-8x7b-32768", temperature=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@cl.on_chat_start
|
|
|
async def on_chat_start():
|
|
|
files = None
|
|
|
|
|
|
while files is None:
|
|
|
files = await cl.AskFileMessage(
|
|
|
content="Please upload a text file to begin",
|
|
|
accept=["application/pdf"],
|
|
|
max_size_mb=20,
|
|
|
timeout=300
|
|
|
).send()
|
|
|
|
|
|
file = files[0]
|
|
|
msg = cl.Message(content=f"Processing `{file.name}` ...")
|
|
|
await msg.send()
|
|
|
|
|
|
|
|
|
|
|
|
pdf_loader = PyPDFLoader(file.path).load()
|
|
|
|
|
|
|
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
|
|
chunks = text_splitter.split_documents(pdf_loader)
|
|
|
|
|
|
|
|
|
|
|
|
docsearch = await cl.make_async(Chroma.from_documents)(
|
|
|
chunks, embedding_model
|
|
|
)
|
|
|
|
|
|
message_history = ChatMessageHistory()
|
|
|
|
|
|
memory = ConversationBufferMemory(
|
|
|
memory_key="chat_history",
|
|
|
output_key="answer",
|
|
|
chat_memory=message_history,
|
|
|
return_messages=True
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
custom_prompt_template = """
|
|
|
Based on the provided context please answer . if you don't know the answer. just say i don't know.
|
|
|
{context}
|
|
|
|
|
|
Question: {question}
|
|
|
"""
|
|
|
custom_prompt = PromptTemplate(
|
|
|
template=custom_prompt_template,
|
|
|
input_variables=["context", "question"],)
|
|
|
|
|
|
chain = ConversationalRetrievalChain.from_llm(
|
|
|
llm,
|
|
|
chain_type="stuff",
|
|
|
retriever=docsearch.as_retriever(),
|
|
|
memory=memory,
|
|
|
return_source_documents=True,
|
|
|
combine_docs_chain_kwargs={"prompt": custom_prompt}
|
|
|
|
|
|
)
|
|
|
|
|
|
msg.content = f"Processing `{file.name}` ... Done!✅ You can ask questions now!"
|
|
|
await msg.update()
|
|
|
|
|
|
cl.user_session.set("chain", chain)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@cl.on_message
|
|
|
async def main(message: cl.Message):
|
|
|
chain = cl.user_session.get("chain")
|
|
|
cb = cl.AsyncLangchainCallbackHandler()
|
|
|
|
|
|
res = await chain.acall(message.content, callbacks=[cb])
|
|
|
answer = res['answer']
|
|
|
|
|
|
source_documents = res["source_documents"]
|
|
|
|
|
|
text_elements = []
|
|
|
|
|
|
if source_documents:
|
|
|
for source_idx, source_doc in enumerate(source_documents):
|
|
|
source_name = f"source_{source_idx}"
|
|
|
|
|
|
text_elements.append(
|
|
|
cl.Text(content=source_doc.page_content, name=source_name, display="side")
|
|
|
)
|
|
|
source_names = [text_el.name for text_el in text_elements]
|
|
|
|
|
|
if source_names:
|
|
|
answer += f"\nSources: {', '.join(source_names)}"
|
|
|
else:
|
|
|
answer += "\nNo sources found"
|
|
|
|
|
|
await cl.Message(content=answer, elements=text_elements).send()
|
|
|
|