YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
π οΈ Requirements
Environment
- Python 3.8+
- PyTorch 1.13.0+
- CUDA 11.6+
- Ubuntu 18.04 or higher / Windows 10
Installation
# Create conda environment
conda create -n dccs python=3.8 -y
conda activate dccs
# Install PyTorch
pip install torch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0
# Install dependencies
pip install packaging
pip install timm==0.4.12
pip install pytest chardet yacs termcolor
pip install submitit tensorboardX
pip install triton==2.0.0
pip install causal_conv1d==1.0.0
pip install mamba_ssm==1.0.1
# Or simply run
pip install -r requirements.txt
π Dataset Preparation
We evaluate our method on three public datasets: IRSTD-1K, NUAA-SIRST, and SIRST-Aug.
Please organize the datasets as follows:
βββ dataset/
β βββ IRSTD-1K/
β β βββ images/
β β β βββ XDU514png
β β β βββ XDU646.png
β β β βββ ...
β β βββ masks/
β β β βββ XDU514.png
β β β βββ XDU646.png
β β β βββ ...
β β βββ trainval.txt
β β βββ test.txt
β βββ NUAA-SIRST/
β β βββ ...
β βββ SIRST-Aug/
β βββ ...
π Training
python main.py --dataset-dir '/path/to/dataset' \
--batch-size 4 \
--epochs 400 \
--lr 0.05 \
--mode 'train'
Example:
python main.py --dataset-dir './dataset/IRSTD-1K' --batch-size 4 --epochs 400 --lr 0.05 --mode 'train'
π Testing
python main.py --dataset-dir '/path/to/dataset' \
--batch-size 4 \
--mode 'test' \
--weight-path '/path/to/weight.tar'
Example:
python main.py --dataset-dir './dataset/IRSTD-1K' --batch-size 4 --mode 'test' --weight-path './weight/irstd1k_weight.pkl'
π Results
Quantitative Results
| Dataset | IoU (Γ10β»Β²) | Pd (Γ10β»Β²) | Fa (Γ10β»βΆ) | Weights |
|---|---|---|---|---|
| IRSTD-1K | 69.64 | 95.58 | 10.48 | Download |
| NUAA-SIRST | 78.65 | 78.65 | 2.48 | Download |
| SIRST-Aug | 75.57 | 98.90 | 33.46 | Download |
π Project Structure
DCCS/
βββ dataset/ # Dataset loading and preprocessing
βββ model/ # Network architecture
βββ utils/ # Utility functions
βββ weight/ # Pretrained weights
βββ main.py # Main entry point
βββ requirements.txt # Dependencies
βββ README.md
π Acknowledgement
We sincerely thank the following works for their contributions:
- BasicIRSTD - A comprehensive toolbox
- MSHNet - Scale and Location Sensitive Loss
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support