|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from einops import rearrange |
|
|
from model.utils import weight_init |
|
|
|
|
|
|
|
|
|
|
|
def drop_path(x, drop_prob: float = 0., training: bool = False): |
|
|
if drop_prob == 0. or not training: |
|
|
return x |
|
|
keep_prob = 1 - drop_prob |
|
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1) |
|
|
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) |
|
|
random_tensor.floor_() |
|
|
output = x.div(keep_prob) * random_tensor |
|
|
return output |
|
|
|
|
|
|
|
|
class DropPath(nn.Module): |
|
|
def __init__(self, drop_prob=None): |
|
|
super(DropPath, self).__init__() |
|
|
self.drop_prob = drop_prob |
|
|
|
|
|
def forward(self, x): |
|
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
|
|
|
|
|
class Mlp(nn.Module): |
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
|
super().__init__() |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
|
self.act = act_layer() |
|
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
|
self.drop = nn.Dropout(drop) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.fc1(x) |
|
|
x = self.act(x) |
|
|
x = self.drop(x) |
|
|
x = self.fc2(x) |
|
|
x = self.drop(x) |
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class CrossAttention(nn.Module): |
|
|
def __init__(self, dim1, dim2, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): |
|
|
super().__init__() |
|
|
self.num_heads = num_heads |
|
|
head_dim = dim1 // num_heads |
|
|
self.scale = head_dim ** -0.5 |
|
|
|
|
|
self.q = nn.Linear(dim1, dim1, bias=qkv_bias) |
|
|
self.kv = nn.Linear(dim2, dim1 * 2, bias=qkv_bias) |
|
|
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
|
self.proj = nn.Linear(dim1, dim1) |
|
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
|
|
def forward(self, x, y): |
|
|
B1, N1, C1 = x.shape |
|
|
B2, N2, C2 = y.shape |
|
|
|
|
|
q = self.q(x).reshape(B1, N1, self.num_heads, C1 // self.num_heads).permute(0, 2, 1, 3) |
|
|
kv = self.kv(y).reshape(B2, N2, 2, self.num_heads, C1 // self.num_heads).permute(2, 0, 3, 1, 4) |
|
|
|
|
|
k, v = kv[0], kv[1] |
|
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
|
attn = attn.softmax(dim=-1) |
|
|
attn = self.attn_drop(attn) |
|
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B1, N1, C1) |
|
|
|
|
|
x = self.proj(x) |
|
|
x = self.proj_drop(x) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class Block(nn.Module): |
|
|
def __init__(self, dim1, dim2, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., |
|
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
|
super().__init__() |
|
|
self.norm1 = norm_layer(dim1) |
|
|
self.norm2 = norm_layer(dim2) |
|
|
self.attn = CrossAttention(dim1, dim2, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) |
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
self.norm3 = norm_layer(dim1) |
|
|
mlp_hidden_dim = int(dim1 * mlp_ratio) |
|
|
self.mlp = Mlp(in_features=dim1, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
|
|
def forward(self, x, y): |
|
|
x = x + self.drop_path(self.attn(self.norm1(x), self.norm2(y))) |
|
|
x = x + self.drop_path(self.mlp(self.norm3(x))) |
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class ContentAwareAggregation(nn.Module): |
|
|
def __init__(self, low_dim, high_dim): |
|
|
super().__init__() |
|
|
self.project = nn.Sequential( |
|
|
nn.Conv2d(high_dim, low_dim, kernel_size=1), |
|
|
nn.BatchNorm2d(low_dim), |
|
|
nn.ReLU(inplace=True) |
|
|
) |
|
|
|
|
|
self.attn_gen = nn.Sequential( |
|
|
nn.Conv2d(low_dim, low_dim, kernel_size=3, padding=1, groups=low_dim), |
|
|
nn.BatchNorm2d(low_dim), |
|
|
nn.ReLU(inplace=True), |
|
|
nn.Conv2d(low_dim, low_dim, kernel_size=1), |
|
|
nn.Sigmoid() |
|
|
) |
|
|
|
|
|
def forward(self, low_feat, high_feat): |
|
|
high_feat = F.interpolate(high_feat, size=low_feat.shape[2:], mode='bilinear', align_corners=False) |
|
|
high_feat = self.project(high_feat) |
|
|
attn = self.attn_gen(low_feat + high_feat) |
|
|
out = attn * low_feat + high_feat |
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
class FeatureInjector(nn.Module): |
|
|
def __init__(self, dim1=384, dim2=[64, 128, 256], num_heads=8, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., |
|
|
drop_path=0., act_layer=nn.ReLU, norm_layer=nn.LayerNorm): |
|
|
super().__init__() |
|
|
|
|
|
self.c2_c5 = Block(dim1, dim2[0], num_heads, mlp_ratio, qkv_bias, drop, attn_drop, drop_path, act_layer, norm_layer) |
|
|
self.c3_c5 = Block(dim1, dim2[1], num_heads, mlp_ratio, qkv_bias, drop, attn_drop, drop_path, act_layer, norm_layer) |
|
|
self.c4_c5 = Block(dim1, dim2[2], num_heads, mlp_ratio, qkv_bias, drop, attn_drop, drop_path, act_layer, norm_layer) |
|
|
|
|
|
self.fuse = nn.Conv2d(dim1*3, dim1, 1, bias=False) |
|
|
self.caa = ContentAwareAggregation(dim1, dim1) |
|
|
|
|
|
weight_init(self) |
|
|
|
|
|
def base_forward(self, c2, c3, c4, c5): |
|
|
H, W = c5.shape[2:] |
|
|
|
|
|
c2 = rearrange(c2, 'b c h w -> b (h w) c') |
|
|
c3 = rearrange(c3, 'b c h w -> b (h w) c') |
|
|
c4 = rearrange(c4, 'b c h w -> b (h w) c') |
|
|
c5 = rearrange(c5, 'b c h w -> b (h w) c') |
|
|
|
|
|
_c2 = self.c2_c5(c5, c2) |
|
|
_c2 = rearrange(_c2, 'b (h w) c -> b c h w', h=H, w=W) |
|
|
|
|
|
_c3 = self.c3_c5(c5, c3) |
|
|
_c3 = rearrange(_c3, 'b (h w) c -> b c h w', h=H, w=W) |
|
|
|
|
|
_c4 = self.c4_c5(c5, c4) |
|
|
_c4 = rearrange(_c4, 'b (h w) c -> b c h w', h=H, w=W) |
|
|
|
|
|
_c5 = self.fuse(torch.cat([_c2, _c3, _c4], dim=1)) |
|
|
|
|
|
return _c5 |
|
|
|
|
|
def forward(self, fx, fy): |
|
|
_c5x = self.base_forward(fx[0], fx[1], fx[2], fx[3]) |
|
|
_c5y = self.base_forward(fy[0], fy[1], fy[2], fy[3]) |
|
|
|
|
|
|
|
|
_c5x = self.caa(_c5x, _c5y) |
|
|
_c5y = self.caa(_c5y, _c5x) |
|
|
|
|
|
return _c5x, _c5y |
|
|
|
|
|
|
|
|
class DualAttentionGate(nn.Module): |
|
|
def __init__(self, channels, ratio=8): |
|
|
super().__init__() |
|
|
self.channel_att = nn.Sequential( |
|
|
nn.AdaptiveAvgPool2d(1), |
|
|
nn.Conv2d(channels, channels // ratio, 1, bias=False), |
|
|
nn.ReLU(), |
|
|
nn.Conv2d(channels // ratio, channels, 1, bias=False), |
|
|
nn.Sigmoid() |
|
|
) |
|
|
|
|
|
self.spatial_att = nn.Sequential( |
|
|
nn.Conv2d(2, 1, 7, padding=3, bias=False), |
|
|
nn.Sigmoid() |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
c_att = self.channel_att(x) |
|
|
mean = torch.mean(x, dim=1, keepdim=True) |
|
|
std = torch.std(x, dim=1, keepdim=True) |
|
|
s_att = self.spatial_att(torch.cat([mean, std], dim=1)) |
|
|
|
|
|
|
|
|
return x * c_att * s_att |
|
|
|
|
|
|
|
|
class SimplifiedFGFM(nn.Module): |
|
|
def __init__(self, in_channels, out_channels): |
|
|
super().__init__() |
|
|
self.down = nn.Conv2d(in_channels, out_channels, 1, bias=False) |
|
|
self.flow_make = nn.Conv2d(out_channels * 2, 4, 3, padding=1, bias=False) |
|
|
self.dual_att = DualAttentionGate(out_channels) |
|
|
|
|
|
def flow_warp(self, input, flow, size): |
|
|
|
|
|
out_h, out_w = size |
|
|
n, c, h, w = input.size() |
|
|
|
|
|
norm = torch.tensor([[[[out_w, out_h]]]]).type_as(input).to(input.device) |
|
|
grid = torch.meshgrid( |
|
|
torch.linspace(-1.0, 1.0, out_h), |
|
|
torch.linspace(-1.0, 1.0, out_w), |
|
|
indexing='ij' |
|
|
) |
|
|
grid = torch.stack((grid[1], grid[0]), 2).repeat(n, 1, 1, 1).type_as(input) |
|
|
grid = grid + flow.permute(0, 2, 3, 1) / norm |
|
|
|
|
|
return F.grid_sample(input, grid, align_corners=True) |
|
|
|
|
|
def forward(self, lowres_feature, highres_feature): |
|
|
|
|
|
l_feature = self.down(lowres_feature) |
|
|
l_feature_up = F.interpolate(l_feature, size=highres_feature.shape[2:], mode='bilinear', align_corners=True) |
|
|
|
|
|
flow = self.flow_make(torch.cat([l_feature_up, highres_feature], dim=1)) |
|
|
flow_l, flow_h = flow[:, :2, :, :], flow[:, 2:, :, :] |
|
|
|
|
|
l_warp = self.flow_warp(l_feature, flow_l, highres_feature.shape[2:]) |
|
|
h_warp = self.flow_warp(highres_feature, flow_h, highres_feature.shape[2:]) |
|
|
|
|
|
|
|
|
fused = self.dual_att(l_warp + h_warp) |
|
|
return fused |
|
|
|
|
|
|
|
|
|
|
|
class Decoder(nn.Module): |
|
|
def __init__(self, in_dim=[64, 128, 256, 384], decay=4, num_class=1): |
|
|
super().__init__() |
|
|
c2_channel, c3_channel, c4_channel, c5_channel = in_dim |
|
|
|
|
|
self.structure_enhance = FeatureInjector(dim1=c5_channel) |
|
|
|
|
|
|
|
|
self.fgfm_c4 = SimplifiedFGFM(in_channels=c5_channel, out_channels=c4_channel) |
|
|
self.fgfm_c3 = SimplifiedFGFM(in_channels=c4_channel, out_channels=c3_channel) |
|
|
self.fgfm_c2 = SimplifiedFGFM(in_channels=c3_channel, out_channels=c2_channel) |
|
|
|
|
|
|
|
|
self.classfier = nn.Sequential( |
|
|
nn.ConvTranspose2d(c2_channel, c2_channel, kernel_size=4, stride=2, padding=1), |
|
|
nn.Conv2d(c2_channel, num_class, 3, 1, padding=1, bias=False) |
|
|
) |
|
|
|
|
|
|
|
|
self.mlp = nn.ModuleList([ |
|
|
nn.Sequential( |
|
|
nn.Conv2d(dim * 3, dim // decay, 1, bias=False), |
|
|
nn.BatchNorm2d(dim // decay), |
|
|
nn.ReLU(), |
|
|
nn.Conv2d(dim // decay, dim // decay, 3, 1, padding=1, bias=False), |
|
|
nn.ReLU(), |
|
|
nn.Conv2d(dim // decay, dim // decay, 3, 1, padding=1, bias=False), |
|
|
nn.ReLU(), |
|
|
nn.Conv2d(dim // decay, dim, 3, 1, padding=1, bias=False) |
|
|
) for dim in in_dim |
|
|
]) |
|
|
|
|
|
def difference_modeling(self, x, y, block): |
|
|
f = torch.cat([x, y, torch.abs(x - y)], dim=1) |
|
|
return block(f) |
|
|
|
|
|
def forward(self, fx, fy): |
|
|
c2x, c3x, c4x = fx[:-1] |
|
|
c2y, c3y, c4y = fy[:-1] |
|
|
|
|
|
|
|
|
c5x, c5y = self.structure_enhance(fx, fy) |
|
|
|
|
|
|
|
|
c2 = self.difference_modeling(c2x, c2y, self.mlp[0]) |
|
|
c3 = self.difference_modeling(c3x, c3y, self.mlp[1]) |
|
|
c4 = self.difference_modeling(c4x, c4y, self.mlp[2]) |
|
|
c5 = self.difference_modeling(c5x, c5y, self.mlp[3]) |
|
|
|
|
|
|
|
|
c4f = self.fgfm_c4(c5, c4) |
|
|
c3f = self.fgfm_c3(c4f, c3) |
|
|
c2f = self.fgfm_c2(c3f, c2) |
|
|
|
|
|
|
|
|
pred = self.classfier(c2f) |
|
|
pred_mask = torch.sigmoid(pred) |
|
|
|
|
|
return pred_mask |